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Abstract

The study of pollen morphology has historically allowed evolutionary biologists to assess

phylogenetic relationships among Angiosperms, as well as to better understand the fossil

record. During this process, pollen has mainly been studied by discretizing some of its main

characteristics such as size, shape, and exine ornamentation. One large plant clade in

which pollen has been used this way for phylogenetic inference and character mapping is

the order Myrtales, composed by the small families Alzateaceae, Crypteroniaceae, and

Penaeaceae (collectively the “CAP clade”), as well as the large families Combretaceae,

Lythraceae, Melastomataceae, Myrtaceae, Onagraceae and Vochysiaceae. In this study,

we present a novel way to study pollen evolution by using quantitative size and shape vari-

ables. We use morphometric and morphospace methods to evaluate pollen change in the

order Myrtales using a time-calibrated, supermatrix phylogeny. We then test for conserva-

tism, divergence, and morphological convergence of pollen and for correlation between the

latitudinal gradient and pollen size and shape. To obtain an estimate of shape, Myrtales pol-

len images were extracted from the literature, and their outlines analyzed using elliptic Fou-

rier methods. Shape and size variables were then analyzed in a phylogenetic framework

under an Ornstein-Uhlenbeck process to test for shifts in size and shape during the evolu-

tionary history of Myrtales. Few shifts in Myrtales pollen morphology were found which indi-

cates morphological conservatism. Heterocolpate, small pollen is ancestral with largest

pollen in Onagraceae. Convergent shifts in shape but not size occurred in Myrtaceae

and Onagraceae and are correlated to shifts in latitude and biogeography. A quantitative

approach was applied for the first time to examine pollen evolution across a large time

scale. Using phylogenetic based morphometrics and an OU process, hypotheses of pollen

size and shape were tested across Myrtales. Convergent pollen shifts and position in the lat-

itudinal gradient support the selective role of harmomegathy, the mechanism by which pol-

len grains accommodate their volume in response to water loss.
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Introduction

Recent and continuing intellectual and computational advancements have facilitated the inte-

gration of phylogenetics, ecology, character evolution, biogeography, and rates of evolution,

enabling evolutionary biologists to rigorously test hypotheses in ways not possible even a

decade ago [1–5]. These advances are now impacting the manner in which morphological

characters are being used in a phylogenetic context. The use of continuous characters in a phy-

logenetic framework has been a contentious, conceptually difficult topic for systematists due

to potential lack of objectivity in character scoring [6, 7]. The recent use of geometric morpho-

metrics to describe quantitative variables of an individual’s character(s), as its ‘morphospace’,

in combination with explicit phylogenetic methods [5, 8–16] has provided one solution to this

problem.

The evolution and systematic utility of pollen shape and size within seed plants have been

studied by quantifying pollen grains with traditional morphometric methods that take into

account linear measurements and/or meristic variables [17–21]. Pollen evolution has been

studied in a phylogenetic context in just over a dozen cases [22–28]. These studies for the most

part have reconstructed the ancestral states of pollen characters onto molecular phylogenies as

discrete traits, or as continuous traits that were binned under certain criteria such as the gap

weighting method implemented in the program MorphoCode [6, 29]. In the case of shape, it is

usually discretized in categories including oblate, subspheroidal, or prolate [25, 30]. The evolu-

tion of pollen shape and size may be influenced by ecological factors such as shifts in mode of

pollination [31] and by water availability. For example, harmomegathy or change in pollen vol-

ume to accommodate changes in water availability [32, 33] may be important in pollen evolu-

tion within clades that have experienced repeated biome shifts [1]. Geometric morphometric

tools are just beginning to be used with pollen. These include landmark based analyses [34]

and elliptic Fourier analyses (EFA) [35–37] of pollen shape outlines [38].

We present here, using a recent phylogenetic framework for the angiosperm order Myrtales

[39], the largest study of pollen shape and size undertaken with these new approaches. The

order Myrtales is one of the largest in the Angiosperms with around 12,000 species and is esti-

mated to have diverged from Geraniales about 124 million years ago either in Africa or South

America during the early stages of the break up of Gondwana [39]. Phylogenetic relationships

within the order are for the most part well established [39–41], and currently nine families are

recognized within Myrtales: Alzateaceae, Combretaceae, Crypteroniaceae, Lythraceae, Mela-

stomataceae, Myrtaceae, Onagraceae, Penaeaceae, and Vochysiaceae [42]. Species vary widely

in habit and life history, including annual herbs to large trees. Melastomataceae and Myrtaceae

represent some of the most common understory shrub and tree species in the world’s tropical

forests, whereas Onagraceae are a common element of temperate habitats and deserts. The

evolution of floral form in Myrtales is intimately connected with pollinator diversity. In some

cases a large clade is almost totally restricted in its pollinators such as the Melastomataceae, in

which most of its about 5,500 species are pollinated by female bees that buzz the flowers for the

pollen reward [43]. In other cases like Myrtaceae, complex mechanisms of secondary pollen

presentation have evolved [44, 45]. Documented pollinators within the order are diverse and

include beetles, thrips, flies, bees, hawkmoths, hummingbirds, passerine birds, bats, rodents,

and small marsupials [43, 46–49]. By far the vast majority of species within the order appear to

be pollinated by bees [43, 48].

The accompanying pollen diversity to this remarkable ecological and floral diversity (sum-

marized comprehensively by [50]), not surprisingly, has been utilized in phylogenetic analyses

of the Myrtales [50–54]. A pioneering morphological cladistic study included five binary pol-

len characters: presence or absence of syncolporate pollen, the shape of the pollen in equatorial
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view (“more or less oblate” or not), absence or presence of viscin threads, and the absence or

presence of both subsidiary colpi and an “onagraceous exine” [53]. The potential of these char-

acters as diagnostic for different families was demonstrated by mapping syncolporate pollen

and pollen shape onto a molecular phylogeny [55]. More recently, fossil pollen in Myrtales,

especially in the Lythraceae, Myrtaceae and Onagraceae, have been used to time calibrate

molecular phylogenies [27, 39–41, 56, 57]. Onagraceae fossil pollen is particularly easy to iden-

tify due to the presence of viscin threads [58–60]. In other cases fossil pollen grains have been

assigned with doubt, such as those ofHeterocolpites palaeocenica, which were tentatively placed

in the family Melastomataceae [61], whereas other fossil grains resembling Heterocolpites have

been suggested to belong to the Combretaceae [52].

Here we use elliptic Fourier analysis to quantify shape variation from two-dimensional

images of equatorial and polar views of pollen grains from almost 600 species of Myrtales to

address specific hypotheses of pollen evolution using an expanded phylogenetic framework of

the order. The extensive and descriptive documentation of Myrtales pollen with Light, Scan-

ning Electron and Transmission Electron microscopy provides an ideal image database for

this continuous morphological approach. Previous discretization of shape and ornamentation

for phylogenetic analysis and character mapping [40, 53] was done for practical reasons despite

known issues of categorizing continuous pollen traits (e.g., shape of the pollen as “more or less

oblate” in equatorial view). Lastly, the controversial terminology surrounding pseudocolpi

[62], not widespread in angiosperms but a synapomorphy for Myrtlaes [52], could benefit

from additional tools that are able to quantify variation across the order.

Specifically, we ask the following questions using morphometrics of pollen in this phyloge-

netic framework for Myrtales: Is pollen of Myrtaceae and Onagraceae “distinctively oblate”

in equatorial view as has been suggested and is this the result of convergent evolution? What

important transitions in pollen shape and size have occurred during the evolutionary history

of the group? Is there a signature of climatic niche space as captured through the latitudinal

gradient on pollen size and shape evolution?

Materials and methods

In order to quantify shape and size of pollen in Myrtales, images of pollen grains in both equa-

torial and polar view (see Fig 1) were extracted for morphometric analyses and measuring

Fig 1. Examples of pollen grains in Myrtales. Scanning electron micrographs of pollen grains from selected species of Myrtales.

Representing the CAP clade is Saltera sarcocolla; Bucida macrostachya in equatorial view and Conocarpus erecta in polar view

(Combretaceae); Heimia salicifolia (Lythraceae); Miconia alypifolia in equatorial view and Miconia caesia in polar view for (Melastomaceae);

Tristania conferta (Myrtaceae); Calylophus toumeyi (Onagraceae). Scale bars are 5 um except for Onagraceae which is 50 um. Adapted

from [50] with permission from the Annals of the Missouri Botanical Garden Press.

https://doi.org/10.1371/journal.pone.0187228.g001
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from the following literature sources: [27, 50, 56, 61–104]. When the view was not clearly equa-

torial or polar, those grains were excluded from the analyses.

Pollen size

Images of pollen grains from the literature were measured using the software ImageJ [105].

Four measurements were taken for each pollen grain, two for each view (Fig 1). In polar view,

grains were consistently positioned with one aperture pointing upward and two apertures

placed at the base. A linear measurement was taken from the aperture vertically down the mid-

dle of the two opposing apertures to represent the length in polar view. A measurement at the

widest point was taken to represent width in polar view. In equatorial view, the apertures were

used to guide a horizontal and linear measurement of the widest part of the grain. Prior to

comparing pollen size by family within Myrtales, a Shapiro-Wilk test of normality was con-

ducted with the stats package for R [106]. As the test showed that none of the four pollen mea-

surements were normally distributed, they were subsequently log transformed. Pollen size was

compared between groups using approximate randomization tests in the R package coin [107],

with post hoc multiple comparisons implemented in the R package multcompView [108] and

functions available in rcompanion [109]. Double boxplots to visualize size variation in both

the equatorial and polar view of the pollen were constructed with the package boxplotdbl

[110].

Pollen shape

After extracting images of pollen grains from the literature, they were outlined using GIMP

2.8 (http://www.gimp.org). In order to quantify shape of the pollen, we conducted analysis of

outlines with elliptic Fourier transformations on both the equatorial and the polar views inde-

pendently with the R package Momocs [37]. To this end, the outlines are read into R and con-

verted to lists of coordinates that describe them and then subjected to elliptic Fourier analysis

(EFA) using normalization of the Fourier coefficients for rotation, translation, size and orien-

tation. Small amounts of noise between outline halves were removed using the rm_asym and

rm_sym functions in Momocs. After, a Principal Components Analysis (PCA) is conducted to

summarize variation in the harmonic coefficients resulting from the EFA. A total of 32 har-

monics which contributed 99% of harmonic power were used in the PCA. We opted for EFA

instead of a landmark based approach because the only reliable homologous points in the pol-

len grains are the pores, and these result in just three landmarks in polar view and sometimes,

depending on the image, one single landmark in equatorial view. For this study we were partic-

ularly interested in the area between the pores, thus the landmark based approach was insuffi-

cient to capture variation in this area. EFA on the other hand places many coordinates all

around the outline and can extract very accurate information form curved areas such as in

between the pollen pores. A multivariate analysis of variance (MANOVA) was done in

Momocs to test for significant differences between the families using the first 15 principal

components scores resulting from the EFA, which for both pollen views correspond to more

than 95% of the variation. All pollen outlines and R code needed to reproduce the analyses are

available at the Dryad Digital Repository (http://dx.doi.org/10.5061/dryad.j17pm).

Comparative methods

Phylogeny

We generated a matrix of DNA for Myrtales from sequences available in GenBank—these

included 12 regions representing 3346 tips. Among these tips we included the most likely sister
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to Myrtales, the Geraniales, as well as Vitis vinifera as the ultimate outgroup for rooting. The

10 chloroplast DNA (cpDNA) regions used were: accD-psaI, atpB-rbcL, atpF-atpH, matK,

ndhf, psbK-psbL, rbcL, rpl16, trnL-trnF, trnS-trnG. We also added the nuclear ribosomal

(nrDNA) spacers: external transcribed spacer (ETS) and internal transcribed spacers (ITS).

DNA sequences were aligned using MAFFT version 7 [111]. For the alignment the direction

of sequences were adjusted according to the first sequence and the FFT-NS-I slow, iterative

refinement strategy was employed. We estimated phylogenetic trees for the cpDNA and

nrDNA data independently and also as a concatenated data set. Due to the differential place-

ment of Combretaceae seen in previous molecular phylogenetic studies (summarized in [39]),

we utilized and compared pollen evolution across three different backbone topologies varying

the placement of Combretaceae (Fig 2). Phylogenies were generated using Maximum Likeli-

hood (ML) under the GTR+Γ model of sequence evolution using RAxML [112] run in the

CIPRES Science Gateway v.3.3 [113]. The best ML trees from the three analyses were time-cali-

brated using the range of ages reported for the crown of the order Myrtales and for the crowns

of each of the major clades (families) within the order [39]. The dating of the phylogenies was

done using penalized likelihood as implemented in the software treePL [114]. The settings for

the treePL runs included the thorough option to iterate until convergence, as well as the ran-

domcv option to perform cross validation. In order to check the taxonomy of the tips of the

phylogeny, we queried the Taxonomic Names Resolution Service (TNRS) [115] and updated

any outdated names or synonyms.

Reconstructing pollen shape and size across Myrtales

The four variables analyzed in downstream applications were pollen size as represented by log-

transformed pollen length and width in polar view, PC1 of pollen shape in polar view, and

PC1 of shape in equatorial view. Pollen size in equatorial view was not analyzed due to the

large amount of missing data relative to that of pollen size in polar view and the similarity in

the distribution of the available data to that of pollen size in polar view. Given the different

numbers of species in the phylogeny that match either the shape or size data, we generated

Fig 2. Summary of major relationships within Myrtales. Major relationships within Myrtales showing three possible placements of

Combretaceae (summarized in [39]). A: Phylogeny with the family Combretaceae sister to the rest of the order. B: Phylogeny with the family

Combretaceae sister to Lythraceae + Onagraceae. C: Phylogeny with the family Combretaceae as sister to rest of the order excluding

Lythraceae + Onagraceae.

https://doi.org/10.1371/journal.pone.0187228.g002
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three separate datasets of different sizes for downstream analyses. The first two with all taxa

that match either the shape and size data, and a third dataset in which only species with all

shape and size data were retained. We used these data sets to explore the evolutionary dynam-

ics of pollen in Myrtales as described in the “Modeling shifts” section below, and also used a

phylomorphospace approach to visualize the exploration of morphospace with the phylogeny

projected in said space using the library phytools for R [116].

We also tested the hypothesis of a relationship between equatorial and polar shape due to

developmental constraints by using phylogenetic generalized least squares regression (PGLS)

as implemented in the R package phylolm [117]. Using the same approach, we tested for

allometry using pollen length in polar view and pollen shape in polar view. For both tests we

compared the fit of the Brownian Motion (BM) evolutionary model and the Ornstein-Uhlen-

beck (OU) process with the ancestral state estimated at the root (“OUfixedRoot”) as the phylo-

genetic models for the error term. PGLS models were constructed for the three phylogenies to

test for sensitivity of topological uncertainty on the results.

Modeling shifts in pollen evolution using Ornstein-Uhlenbeck process

To assess the role of selection acting on pollen traits during the evolution of Myrtales, we mod-

eled shifts in pollen shape and size independently, as well as in a total evidence analysis with

the four variables together and on the three phylogenies under an Ornstein-Uhlenbeck (OU)

process. The OU process is a convenient way to model the evolution of continuous traits that

allows the detection of shifts to different morphological regimes, each with different adaptive

optimum, along the edges of a time calibrated phylogeny [118–122]. To graphically represent

the different regimes, the edges of the phylogeny are painted with different colors correspond-

ing to the different regimes. If no shifts are detected during the analysis and a single regime is

found across the tree, then evolution would be occurring under a Brownian Motion model.

We used the R package l1ou, which uses the LASSO (Least Absolute Shrinkage and Selection

Operator [123]) to detect the best shift configuration [122]. An analysis with l1ou requires a

phylogeny and one to many continuous traits for which we want to test for shifts. One of the

advantage of this approach is that it does not require a priori identification of the location of

the shifts on the phylogeny. The shift detection procedures were run on each of the three topol-

ogies. In order to avoid the over-fitting of shifts, we used the phylogenetic Bayesian Informa-

tion Criterion (pBIC) to select the number of shifts. This recently developed model selection

criterion accounts for the phylogenetic correlation between species and has lower false shift

detection rate than criteria such as AIC [122, 124]. The maximum number of shifts to detect

was set to 50 and a non-parametric bootstrap procedure was used to assess the support for the

shifts that were detected in the initial search. This bootstrap procedure which is also imple-

mented in l1ou, takes as input the best shift configuration detected by l1ou and calculates

phylogenetically uncorrelated standardized residuals for each node of the phylogeny. These

residuals are sampled with replacement and mapped back onto the tree creating bootstrap rep-

licates [122]. Each bootstrap replicate was also analyzed under the pBIC model selection crite-

rion. An additional step was run in l1ou to identify convergence to the same morphological

regime. In this step similar regimes are collapsed into convergent regimes that are then painted

with the same color on the edges of the tree. During this step, we also used the pBIC model

selection criterion.

Testing linkage of ecological space and pollen features

To explore the role climate might have had in pollen shape and size evolution in Myrtales

(see [125]), we examined in a phylogenetic framework the correlation of latitude and pollen
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features. Latitudinal gradients can be considered coarse proxies for temperature and precipita-

tion when examining plant responses to climate, and many life-history traits of plants vary

along these gradients [126–128]. We characterized the distributions for species of Myrtales by

mining the Global Biodiversity Information Facility (GBIF; www.gbif.org). Using conservative

approaches [129], we downloaded georeferenced samples and filtered them for inaccurate and

ambiguous data (e.g., duplicate records, accessions clearly outside of known species ranges,

accessions with ambiguous taxonomy). The mean absolute latitude value for each species

was then calculated and used in downstream analyses. We tested the hypothesis that latitude is

correlated with pollen morphology in Myrtales using PGLS regression with the R package phy-

lolm [117]. Here we also compared the fit of the Brownian Motion (BM) and Ornstein-Uhlen-

beck (OU) evolutionary models. As with the other phylogenetic regressions, PGLS models

were constructed for the three phylogenies to test for sensitivity of topological uncertainty.

Results

Pollen size

Pollen grains from 293 and 468 species were measured for size from the literature for equato-

rial and polar views, respectively. Onagraceae have larger pollen grains than all other families

of Myrtales (Table 1, Fig 3). Myrtaceae have smaller pollen than other families in length of pol-

len in equatorial view, and Melastomataceae in pollen width in equatorial view (Table 1, Fig

3). These marked differences suggest shifts in pollen size along the stem lineages of some fami-

lies. Families in the CAP clade (Crypteroniaceae, Alzateaceae, Penaeaceae), as well as Combre-

taceae, Lythraceae, Melastomataceae and Vochysiaceae in general have relatively small pollen.

Pollen shape

The elliptic Fourier analysis (eFa) of outlines in equatorial view included pollen from 444 spe-

cies. 92.2% of the variation is explained in the first PC, and 4.2% in the second PC. In the first

component, pollen varies in equatorial view from oblate on one extreme to rounded on the

other extreme (Fig 4A and 4B). Variation in the second component describes a pronounced

central body of the pollen grains with narrow ends on one extreme, to grains that are wider

at the edges and narrower in the middle (Fig 4A and 4B). A multivariate analysis of variance

shows significant difference between the shapes of pollen grains in equatorial view among the

different families within Myrtales (F (6, 437) = 9.9, p =<0.001).

The elliptic Fourier analysis of outlines in polar view included pollen grains from 583 spe-

cies. 74.4% of the variation is explained in the first PC, and 10.1% in the second PC. In the

Table 1. Mean and standard deviation of pollen size in Myrtales (in microns). Letters in parentheses indicate significant difference between groups in

post hoc multiple comparison.

Equatorial view Polar view

Pollen length Pollen width Pollen length Pollen width

Clade n M SD M SD n M SD M SD

CAP 4 21.78 (ac) 7.47 22.03 (ab) 8.13 5 18.64 (ab) 5.35 20.84 (abc) 5.89

Combretaceae 25 20.29 (ac) 4.94 17.53 (ab) 5.27 24 18.21 (a) 5.36 20.05 (ab) 5.92

Lythraceae 68 23.78 (c) 11.34 20.36 (b) 10.38 43 23.87 (b) 11.25 24 (bc) 11.64

Melastomataceae 96 19.05 (a) 5.84 16.35 (a) 4.93 90 18.28 (a) 6.72 19.37 (a) 6.6

Myrtaceae 66 11.61 (b) 3.94 18.39 (b) 5.64 237 18.65 (a) 6.63 18.89 (a) 6.1

Onagraceae 28 55.25 (d) 25.58 85.19 (c) 45.95 62 74.11 (c) 30.02 68.48 (d) 40.16

Vochysiaceae 6 23 (ac) 8.23 24.11 (b) 8.59 7 25.75 (b) 8.49 27.86 (c) 8.4

https://doi.org/10.1371/journal.pone.0187228.t001
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first component of polar view, pollen varies from triangular, with the area between colpi being

sunken on one extreme of the variation, to more rounded pollen including a small indentation

in the are between the colpi on the other (Fig 4A and 4D). Variation in the second component

describes the pollen pores going from pointed on one extreme to sunken inward on the other

(Fig 4). A multivariate analysis of variance shows significant difference between the shape

of pollen grains in polar view among the different families within Myrtales (F (6, 576) = 12.8,

p = <0.001).

Phylogeny

The 12 region DNA matrix data set included 17507 characters representing 3346 tips and con-

tained 77% missing data. The 10 cpDNA regions represented 2262 species and contributed

14042 characters, and the two nrDNA markers represented 2774 species and was 3465 charac-

ters in length. The phylogenies resulting from analyzing cpDNA and nrDNA independently

both recover the order Myrtales as monophyletic as well as all the major families and the CAP

clade. In general both topologies lack support in the backbone of the trees. The ML phylogeny

resulting from the concatenated matrix recovered Myrtales and its major families as monophy-

letic but with low or no support for the main relationships among them. Although topology C

(see Fig 2) was recovered, the differential placement of Combretaceae among the three topolo-

gies had no support. The resulting phylogenies are available from the Dryad Digital Repository

(http://dx.doi.org/10.5061/dryad.j17pm).

Reconstructing pollen shape and size across Myrtales

The number of species in the pollen data set that matched tips in the phylogeny was 235 for

size, 173 for shape, and 112 for both shape and size. The family with the least matches was

Fig 3. Pollen size of Myrtales. Double box-plots of pollen size of Myrtales in equatorial (A) and polar (B) views colored by family. The

families Alzateaceae, Crypteroniaceae, and Penaeaceae are collectively included under the “CAP clade”.

https://doi.org/10.1371/journal.pone.0187228.g003
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Vochysiaceae. To improve this match we used Qualea rosea as a phylogeny place holder for

data available of Qualea cryptantha. A phylomorphospace in three dimensions including the

two axes of shape and one of size shows the exploration of morphological space by pollen of

Myrtales using phylogeny A (Fig 5). The Myrtaceae and Onagraceae individually extend into

similar shape space determined by the equatorial and polar views, but they do so in quite dif-

ferent regions of size morphospace, with Myrtaceae and Onagraceae having the smallest and

largest pollen, respectively, within Myrtales. The rest of the families are concentrated in a cor-

ner of morphospace and show little variation.

Fig 4. Morphospaces of pollen shape in Myrtales grouped by family. Morphospaces of pollen shape in Myrtales grouped by family. The

families Alzateaceae, Crypteroniaceae, and Penaeaceae are collectively included under the “CAP clade”. A: Empirical morphospace of

pollen shape variation in equatorial view. B: Theoretical morphospace of pollen shape variation in equatorial view. C: Empirical

morphospace of pollen shape variation in polar view. D: Theoretical morphospace of pollen shape variation in polar view.

https://doi.org/10.1371/journal.pone.0187228.g004
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Comparative tests

Correlation between equatorial and polar view and allometry

For PGLS regression a comparison of both BM and OU model fits by AIC revealed the best

model to be the OU in the three different trees for tests of allometry as well as developmental

constraint (Table 2). Both the test of the developmental constraint hypothesis as well as the

allometry hypothesis were significant across the three topologies (Table 2).

Modeling pollen evolution under an OU process

The maximum set number of 50 shifts was not reached in any of the three analyses (shape,

size, or shape and size together) with l1ou using the three phylogenies (9 analyses total). The

Fig 5. Phylomorphospace in three dimensions of Myrtales pollen traits using phylogeny A. Phylomorphospace in three dimensions

including 112 species of Myrtales with pollen size represented by log transformed pollen length in polar view and pollen shape in equatorial

and polar views represented by PC1 of each.

https://doi.org/10.1371/journal.pone.0187228.g005
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l1ou analysis of pollen shape detected the same 7 shifts on each of the three topologies (Fig 6,

S1 and S2 Figs). Across the three trees, the background regime involves species with more

rounded to pseudocolpate pollen that subsequently tends to shift to triangular pollen. Of the

few shifts on edges subtending larger clades, all three analysis detected a shift to more triangu-

lar pollen in the MRCA of Myrtaceae and the MRCA of Onagraceae. The three analyses also

detected convergent evolution to the same regime by Myrtaceae, Onagraceae, and Cuphea in

the Lythraceae. Another consistent shift across trees was detected in the MRCA of the tribe

Onagreae including the genera Clarkia and Oenothera, which evolved more concave areas in

between the pollen pores as well as flatter equatorial shape. Singleton shifts tomore triangular

pollen were detected in Trapa natans of the Lythraceae and Beaufortia orbifolia of Myrtaceae

and to more rounded, elliptical pollen in Syzygium sarangense. Bootstrap support for shifts in

shape were high with only the shift on the edge leading to Syzygium sarangense receiving less

than 80% support (Fig 6).

The l1ou analysis of size data detected 10 shifts on topology A, 10 on topology B, and 9 in

topology C (Fig 7, S3 and S4 Figs). Across the three analyses, like in the shape data, the shifts

were consistent across the three trees containing the same taxa except that topology C lacked

the shift in the MRCA of the sister pair Thaleropia queenslandica and Tristania neriifolia in

Myrtaceae. Most shifts were on edges leading to singleton taxa or small clades, except for a

shift to smaller pollen detected in the common ancestor of Myrtaceae, and a shift to larger pol-

len in Onagraceae. An additional shift to even larger pollen was detected in the MRCA of the

genus Oenothera within Onagraceae. Bootstrap support for shifts in the size only data was gen-

erally moderate to high except notably in the shift to smaller size in the MRCA of Myrtaceae.

A few cases of convergence in the large size of pollen were detected, including Trapa natans
converging to the same regime with most of Onagraceae, and in two of the topologies also

with Octamyrtus pleiopetala.

Finally, the l1ou analysis with shape and size data included together detected 8 shifts on

topology A, 6 on topology B, and 10 in topology C (Fig 8, S5 and S6 Figs). In general the shifts

are similar than in the previous analyses with changes between them mostly seen in differences

in convergent regimes as well as bootstrap support. Notably on larger clades, shifts were

detected in the MRCA of the Myrtaceae to smaller, more triangular and oblate pollen, and in

Onagraceae to larger and more triangular and oblate pollen. In these analyses with all the data,

convergence was not detected between Myrtaceae and Onagraceae do to the size difference of

Table 2. Phylogenetic generalized least squares (PGLS) regression models of pollen traits. **, <0.005; ***, <0.001.

Test Phylogeny Model Slope estimate AIC t P-value

Allometry A BM -0.035 -396.303 -4.252 0.001***

OU -0.033 -415.832 -3.939 0.001***

B BM -0.045 -354.044 -4.563 0.001***

OU -0.038 -389.904 -4.039 0.001***

C BM -0.041 -383.142 -5.578 0.001***

OU -0.038 -407.107 -4.873 0.001***

Developmental constraint A BM 0.02 -379.48 0.46 0.643

OU 0.30 -409.95 9.70 0.001***

B BM -0.11 -344.48 -3.18 0.002**

OU 0.28 -401.56 8.90 0.001***

C BM -0.04 -356.30 -1.02 0.311

OU 0.30 -407.35 9.41 0.001***

https://doi.org/10.1371/journal.pone.0187228.t002
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the pollen between the two families. One difference in the analysis on topology C was the

detection of two shifts at the edges following the MRCA of the family Onagraceae instead of a

the edge preceding this MRCA. The bootstrap analysis on the other hand recovered support

for a shifts at this suspected, preceding edge. This result is not totally unexpected given shift

detection can suffer from identifiability problems (Fig 1 of [122] illustrates this issue). Addi-

tional shifts were detected in a few singleton taxa as well as in the MRCA of the genus

Oenothera. Bootstrap support for shifts was high except for some shifts nested deep within

Myrtaceae in topologies A and C.

Fig 6. Shifts in shape during the evolutionary history of Myrtales on topology. Shifts in shape during the evolutionary history of

Myrtales on topology A. The color of the edges of the tree and the bars of the bar plot indicate the regime number of that clade. Asterisks

highlight edges where shifts occurred and numbers at their side indicate bootstrap support for the corresponding shift.

https://doi.org/10.1371/journal.pone.0187228.g006
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Testing linkage of ecological space and pollen features

A total of 1,896,305 specimens were retrieved from GBIF. This number was reduced to

813,227 after cleaning. This data set resulted in mean latitude values for a total of 10,347 spe-

cies. The number of species for which there was a match between the latitudinal data, pollen

data and the phylogeny was 109. The distribution of mean absolute latitude with respect to

both axes of shape with the phylogeny projected inside shows the exploration of morphospace

mainly by the Myrtaceae and Onagraceae (Fig 9). Phylogenetic least squares regression under

the OU model was the best fitting model across the three phylogenies when comparing AIC

Fig 7. Shifts in size during the evolutionary history of Myrtales on topology. Shifts of size during the evolutionary history of Myrtales

on topology A. The color of the edges of the tree and the bars of the bar plot indicate the regime number of that clade. Asterisks highlight

edges where shifts occurred and numbers at their side indicate bootstrap support for the corresponding shift.

https://doi.org/10.1371/journal.pone.0187228.g007
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scores. PGLS regression tests of a correlation between latitude and pollen size were not signifi-

cant but those of shape were significant (Table 3).

Discussion

We present here for the first time a study of pollen evolution across a broad group of seed

plants, the order Myrtales, using morphometric size measurements and elliptic Fourier analy-

sis to quantify shape variation from two-dimensional images of equatorial and polar views of

the pollen. We then couple these morphometric and morphospace approaches with a phyloge-

netic framework of Myrtales that is time-calibrated and assess pollen evolution across and

within the nine families. We utilize an Ornstein-Uhlenbeck process and test for shifts in pollen

shape and size evolution and examine convergent pollen evolution within Myrtales. And

finally, we examine the specific hypothesis that the latitudinal gradient which includes changes

in moisture and temperature going from tropical to temperate latitudes, may be important in

the evolution of pollen size and shape because of harmomegathy.

Two important aspects of this study that permitted this broad scale analysis of pollen fea-

tures should be highlighted. First, we used an indispensable data set of pollen images generated

by an array of palynologists and systematists [27, 50, 56, 58, 75, 100–102]. As the field of

Fig 8. Shifts of size and shape variables in the evolutionary history of Myrtales. Shifts of size and shape variables modeled together

during the evolutionary history of Myrtales on topology A. The color of the edges of the tree and the bars of the bar plot indicate the regime

number of that clade. Asterisks highlight edges where shifts occurred and numbers at their side indicate bootstrap support for the

corresponding shift. Only shifts with more than 50% bootstrap support are annotated. Bar plots next to the tree represent the trait values.

https://doi.org/10.1371/journal.pone.0187228.g008
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phylogenetics enters a new era of morphometric and morphospace analyses [15], the value of

detailed data and images from monographic works will be immense. Second, the development

of a large molecular phylogeny of the Myrtales was critical. The most extensive phylogenetic

sampling to date of the order in terms of species and gene regions was presented in [39], which

included 102 species and six gene regions across three genomes with 98% cell coverage. In

order to match tips on a Myrtales phylogeny to species with existing pollen images, a phylog-

eny with over 3300 tips from 12 gene regions was necessary but with resulting 77% missing

cell coverage. However, the relationships between and within families recovered in our large

phylogeny were essentially congruent with that from [39] except for the (weak) placement of

Combretaceae. Our subsequent down-stream analyses thus used three different phylogenetic

Fig 9. Phylomorphospace in three dimensions of Myrtales pollen shape traits and latitude. Phylomorphospace in three dimensions

including 109 species of Myrtales including latitude and pollen shape in equatorial and polar views represented by PC1 of each.

https://doi.org/10.1371/journal.pone.0187228.g009
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frameworks differing in the position of this family. The following discussion is largely based

on the phylogeny (topology A) placing Combretaceae sister to the rest of Myrtales given that

results across the three phylogenies were similar [39].

Evolution of pollen size in Myrtales

The results on pollen measurements highlight that most families in Myrtales (including the

Myrtales crown) have small pollen (Figs 3 and 5), a conclusion that is not surprising given

that pollen is under strong selective pressure to be small [130]. However, the size data analysis

under the OU process revealed that a shift in pollen size occurred in the stem of Onagraceae,

which have larger pollen grains than other families within the order (Fig 7), a result hinted at

[50]. In fact, one species of this genus, Oenothera biennis, was found to have the largest pollen

among extant plants in a recent survey of all pollen producing plants [130].

Several hypotheses have been put forth to explain evolutionary changes in pollen size. First,

it has been suggested that polyploidy and/or genome size is a predictor of pollen size and they

are linked to larger pollen [130, 131]. A recent study, however, found no relationship between

pollen size and genome size when controlling for phylogenetic history of 464 species spread

across seed plants [130]. The data available on genome sizes for species in Myrtales (available

at the Kew Plant C-Value Database; [132]) are limited. Combretaceae has the greatest variation

in C-value in this data set. Thus, more focused studies on Combretaceae, as well as on Melasto-

mataceae, with small pollen but many instances of polyploidy [43], and on Onagraceae (espe-

cially Onagreae), with large pollen and a fairly representative data set of C values [133–135],

may provide better tests of a correlation of pollen size and genome size.

A second hypothesis proposes that pollen grain size is the result of biotic and abiotic polli-

nator preference and fluid dynamics [136]. Pollen grain size may be influenced by pollinator

preference in the broad sense (i.e., wind versus animal pollination). Support for this hypothe-

sis, for example, is found in the pollen of the clusioid clade of Malpighiales [25]. Within this

order, great variability in pollen size and other characters in Clusiaceae appear correlated to

high levels of diversity in floral morphology, pollination mechanisms, and pollinators. In con-

trast, pollen size in related Podostemoideae is relatively uniform consistent with them being

water pollinated, aquatic plants. At a finer scale, no relationship between pollinator type (bees

versus birds) and pollen size was found across angiosperms [137]. Interspecific pollen size

variation more probably reflects differences in conditions for pollen germination, pollen-tube

Table 3. Phylogenetic generalized least squares (PGLS) regression models of pollen traits and absolute latitude. ***, <0.001.

Phylogeny Model Slope estimate AIC t P-value

Shape A BM -0.002 73.924 -0.851 0.396

OU -0.005 -153.009 -4.821 0.001***

B BM -0.001 66.237 -1.010 0.314

OU -0.005 -155.797 -4.665 0.001***

C BM -0.001 37.990 -0.933 0.352

OU -0.005 -163.062 -4.867 0.001***

Size A BM 0.004 475.141 0.819 0.414

OU 0.006 450.727 1.247 0.214

B BM 0.002 489.263 0.411 0.681

OU 0.005 459.261 1.049 0.295

C BM 0.006 519.770 1.196 0.233

OU 0.008 482.486 1.701 0.09

https://doi.org/10.1371/journal.pone.0187228.t003
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growth and ovule fertilization [137]. In the case of Myrtales, only a few comparisons have been

made among closely related species. Pollen size differences between the closely related genera

Duabanga and Sonneratia have been suggested not to be the result of pollinator mediated

selection, since both are bat pollinated [138]. Taken together with the results obtained here of

few shifts in pollen size during the evolutionary history of Myrtales, it seems likely that pollen

size evolution in Myrtales might best be explained by phylogenetic constraints or by factors

that are themselves phylogenetically constrained, but not by pollinator selection. More studies

including sister species with different pollinators are needed to further understand the possible

role of pollinators in the evolution of pollen size at these finer evolutionary scales.

A third hypothesis, related to the former, is that pollen size is correlated with pistil size

and three reproductive processes that are related to the evolution of pollen size can be distin-

guished [31]. These include: (1) resource allocation to male function (trade-off between pollen

grain size and number), (2) pollination (pollen removal, transport and deposition, pollinator

type, etc.), and (3) post pollination processes (pollen germination and tube growth, fertiliza-

tion, and pistil characteristics). In the future, careful selection of taxa throughout the Myrtales

would permit testing of Torres’s hypothesis. At a first glance, however, it appears unlikely pol-

len size is related to style length in Myrtales because most clades have small pollen yet style

length can vary significantly within clade.

Evolution of pollen shape in Myrtales

The continuous morphological approach to reconstruct pollen grain shape in Myrtales using

the Ornstein-Uhlenbeck process with l1ou [122] recovered as a background regime the pseu-

docolpate and prolate pollen grains common in Combretaceae, Melastomataceae and the CAP

clade with subsequent shifts to more triangular and oblate grains in Myrtaceae and Onagra-

ceae (Fig 6). This approach elucidated convergent evolution in pollen shape between the Myr-

taceae and Onagraceae, a similarity previously noted [50]. This result provides evidence for the

hypothesis that Onagraceae and Myrtaceae have distinctly “more or less oblate” pollen shape

in equatorial view as previously suggested [53] and later mapped onto the phylogeny of the

order as a discrete character [55]. Here we present the first quantitative test of the latter

hypothesis. Perhaps not surprisingly, the results support correlative change between the shapes

of pollen grains in equatorial and polar view throughout the evolution of Myrtales and suggest

that forces of developmental constraint are present during pollen development. Importantly,

although Myrtaceae and Onagraceae have independently achieved their unique and similar

pollen shape, the 3-D phylomorphospace projection (Fig 5) clearly indicates they occupy dis-

tinct regions of the morphospace when pollen size is also factored in. Also, as seen in Fig 8,

there is no convergence detected when pollen size is analyzed simultaneously with pollen

shape with l1ou.

Shifts in pollen shape and size in Myrtales using OU process

The results of the l1ou analyses also shed light on the shape and size of the common ancestor

of the group. In all three tested Myrtales topologies, shifts are observed from the small hetero-

colpate grains present in Combretaceae, the CAP clade and Melastomataceae to more triangu-

lar grains in the Myrtaceae, Onagraceae and some Lythraceae. This result is in accord with the

attribution of great importance to the presence of pseudocolpi, suggesting they had phyloge-

netic significance [52]. Within Onagraceae, an additional shift is consistently detected in the

MRCA of the sampled of the tribe Onagreae to even larger grains with the area between the

pores more concave. Lastly one of the most consistent shifts in a singleton taxon corresponded

to that detected in Trapa natans. This shift was detected to be convergent with that at the edge

Pollen evolution in Myrtales

PLOS ONE | https://doi.org/10.1371/journal.pone.0187228 December 6, 2017 17 / 27

https://doi.org/10.1371/journal.pone.0187228


leading to the MRCA of Onagraceae in the size only analysis, but not it the all data one. This

convergence between the pollen of the genus Trapa and the Onagraceae was previously noted

[50], in particular to the genus Ludwigia.

The detection of shifts in the evolution of pollen shape and size in the common ancestor of

both Onagraceae and Myrtaceae with no to few subsequent shifts within and outside these

families suggests these traits are conserved in the two families as they are in most other Myr-

tales. Based on the chronogram presented here [39], the pollen shifts in these two families

occurred about the same time, ca. 85 Mya. The evolutionary origin of two characters previ-

ously hypothesized as significant during the diversification of the Myrtales, namely the

appearance of syncolporate pollen in Myrtaceae and viscin threads in Onagraceae, may thus

represent independent evidence of an important past event towards the close of the Cretaceous

that simultaneously affected pollen diversification at the crown radiation of both families. The

subsequent convergent shift in Onagraceae and Myrtaceae may thus be the result of contingent

evolution on the origin of earlier pollen traits such as viscin threads in the Onagraceae and

syncolpae in the Myrtaceae.

Harmomegathy: Does Myrtales pollen evolution track latitude?

The last and perhaps the strongest hypothesis to explain the “form, composition, organization

and architecture” of pollen grains argues that these changes are mostly a result of dealing with

harmomegathic stress [32, 138, 139]. Harmomegathy, a term first used by Wodehouse [32] to

indicate changes in pollen volume accommodation in response to water loss, is considered

essential for life on land [33]. Pollen grains are usually exposed to dry environmental condi-

tions once they are released from the pollen sacs, and thus have evolved the ability to fold

themselves in ways that avoid dehydration [32, 33, 138, 140, 141]. Harmomegathy has only

been examined in a few species within a genus or family [142, 143], including some species of

Lythraceae [144]. Our study constitutes the first to evaluate the evolution of harmomegathy at

the ordinal level, and in a phylogenetic context. Transition from the prolate, pseudocolpate

type to the oblate, triangular types in Myrtaceae and Onagraceae appears to involve a shift

from pollen that folds at the pseudocolpae when dehydrated in the case of most prolate grains,

to a loss of this ability in Myrtaceae and Onagraceae which lack pseudocolpae. Importantly,

the latitudinal distribution of the predominantly temperate families Myrtaceae and Onagra-

ceae indicate that shifts in pollen shape are correlated to latitudinal shifts in both families (Fig

9). Additionally, these events are also linked to inferred long distance dispersal events between

continents and exposure to a wider range of more xeric conditions during the crown radia-

tions of both families [39]. It remains to be documented in more taxa and experimentally

tested if the convergent shapes observed in Myrtaceae and Onagraceae have evolved to resolve

harmomegathic stress by folding in similar ways.

Future applications of pollen morphometric analyses

We have demonstrated the utility of morphometric approaches in clarifying the evolution of

both pollen size and shape across the 116 Mya history of Myrtales. This history involved both

conservatism but also remarkable evolutionary convergence in pollen features as the order

diversified following shifts in both biogeography and climate. Whether pollen can be evaluated

in a similar fashion in all seed plant clades and at all taxonomic scales remains to be seen. We

note, however, that issues of homology may be problematic if pollen analysis is extended out

from Myrtales to encompass other rosid orders. For example, Geraniales is likely the closest

sister order to Myrtales [39, 145, 146], but Geraniales pollen is so distinctive [147] compared

to that of Myrtales that they will be difficult to compare across so distantly related species.
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Perhaps not coincidentally, Geraniales, like Myrtales, have undergone a remarkable radiation

in response to both climate and pollinators on an inter-continental scale [148].

Finally, we see an important role of these morphometric tools in the identification and

phylogenetic placement of fossil pollen within extant clades. As microfossils generally are

seen in greater abundance and earlier than macrofossils within plant fossil records, fossil

pollen can be important for calibrating DNA phylogenies [102]. Like other fossils, both the

taxonomic identity and the placement of fossil pollen onto branches or nodes of the tree can

be contentious [146, 149–153]. The objective fashion in which elliptic Fourier analysis treats

shape variables lends itself to perhaps more objective handling of fossil pollen for tree cali-

bration. The phylogenetic framework provided here for Myrtales should allow more rigor-

ous testing of the placements of fossil pollen recently used within the order and the family

Myrtaceae [27, 39, 56, 154]. Indeed, these methods may soon more elegantly narrow down

the taxonomic identity and placement of important, unknown pollen fossils, such as those

found in the stomach of the Eocene (47 Mya) Pumiliornis, the earliest known flower visiting

bird [155].

Supporting information

S1 Fig. Shifts in pollen shape variables during the evolutionary history of Myrtales on

topology B. The color of the edges of the tree and the bars of the bar plot indicate the regime

number of that clade. Asterisks highlight edges where shifts occurred and numbers at their

side indicate bootstrap support for the corresponding shift. Only shifts with more than 50%

bootstrap support are annotated. Bar plots next to the tree represent the trait values.

(TIF)

S2 Fig. Shifts in pollen shape variables during the evolutionary history of Myrtales on

topology C. The color of the edges of the tree and the bars of the bar plot indicate the regime

number of that clade. Asterisks highlight edges where shifts occurred and numbers at their

side indicate bootstrap support for the corresponding shift. Only shifts with more than 50%

bootstrap support are annotated. Bar plots next to the tree represent the trait values.

(TIF)

S3 Fig. Shifts in pollen size during the evolutionary history of Myrtales on topology B. The

color of the edges of the tree and the bars of the bar plot indicate the regime number of that

clade. Asterisks highlight edges where shifts occurred and numbers at their side indicate boot-

strap support for the corresponding shift. Only shifts with more than 50% bootstrap support

are annotated. Bar plots next to the tree represent the trait values.

(TIF)

S4 Fig. Shifts in pollen size during the evolutionary history of Myrtales on topology C. The

color of the edges of the tree and the bars of the bar plot indicate the regime number of that

clade. Asterisks highlight edges where shifts occurred and numbers at their side indicate boot-

strap support for the corresponding shift. Only shifts with more than 50% bootstrap support

are annotated. Bar plots next to the tree represent the trait values.

(TIF)

S5 Fig. Shifts of size variables and shape variables modeled together during the evolution-

ary history of Myrtales on topology B. The color of the edges of the tree and the bars of the

bar plot indicate the regime number of that clade. Asterisks highlight edges where shifts

occurred and numbers at their side indicate bootstrap support for the corresponding shift.

Only shifts with more than 50% bootstrap support are annotated. Bar plots next to the tree
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represent the trait values.

(TIF)

S6 Fig. Shifts of size variables and shape variables modeled together during the evolution-

ary history of Myrtales on topology C. The color of the edges of the tree and the bars of the

bar plot indicate the regime number of that clade. Asterisks highlight edges where shifts

occurred and numbers at their side indicate bootstrap support for the corresponding shift.

Only shifts with more than 50% bootstrap support are annotated. Bar plots next to the tree rep-

resent the trait values.

(TIF)
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