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Abstract
Purpose: The current knowledge on biological effects associated with proton therapy is limited. Therefore, we investigated the
distributions of dose, dose-averaged linear energy transfer (LETd), and the product between dose and LETd (DLETd) for a patient
cohort treated with proton therapy. Different treatment planning system features and visualization tools were explored.
Methods and Materials: For a cohort of 24 patients with brain tumors, the LETd, DLETd, and dose was calculated for a fixed relative
biological effectiveness value and 2 variable models: plan-based and phenomenological. Dose threshold levels of 0, 5, and 20 Gy were
imposed for LETd visualization. The relationship between physical dose and LETd and the frequency of LETd hotspots were
investigated.
Results: The phenomenological relative biological effectiveness model presented consistently higher dose values. For lower dose
thresholds, the LETd distribution was steered toward higher values related to low treatment doses. Differences up to 26.0% were found
according to the threshold. Maximum LETd values were identified in the brain, periventricular space, and ventricles. An inverse
relationship between LETd and dose was observed. Frequency information to the domain of dose and LETd allowed for the
identification of clusters, which steer the mean LETd values, and the identification of higher, but sparse, LETd values.
Conclusions: Identifying, quantifying, and recording LET distributions in a standardized fashion is necessary, because concern exists
over a link between toxicity and LET hotspots. Visualizing DLETd or dose £ LETd during treatment planning could allow for clinicians
to make informed decisions.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
The decreased integral dose of ion therapy with respect
to photon therapy, combined with recent technological
advances, contributed to the significant growth of particle
treatments in the last decades. Physically, the finite range
of protons and the Bragg peak, with a sharp dose falloff
after the target volume, enables better organ-at-risk
r
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(OAR) sparing and conformal dose around the target.
Biologically, protons cause cellular damage more effec-
tively than photons. Therefore, a conversion factor, rela-
tive biological effectiveness (RBE), is used for treatment
and comparison between modalities.1 However, biological
effects of proton therapy (PT), in particular those associ-
ated with RBE, are less understood than those of photons,
triggering discussions on its intrinsic uncertainty.2-4

Current clinical practice bases treatments on physical
dose and assumes a spatially invariant average RBE value
of 1.1.1 Extensive experimental evidence shows that RBE
is in fact variable, dependent on tissue, dose, radiation
quality, and other parameters.5-7 For the clinical energy
range, RBE and linear energy transfer (LET), a nonsto-
chastic quantity used to characterize the quality of a
beam, present a monotonic correlation, which increases
toward the distal edge of the Bragg peak, reaching a maxi-
mum at the falloff region. As energy decreases, energy
deposition occurs more densely around the protons’
tracks, which causes more confined and complex
damage.4,8

Several phenomenological RBE models exist but pres-
ent high uncertainties and large variability when com-
pared against each other.6,9-11 Although a constant
average value allows for ubiquitous treatment standardi-
zation and disregards RBE uncertainties, neglecting RBE
variation might lead to the underestimation of normal tis-
sue complication probability, because highly modulated
fields may result in inhomogeneous LET
distributions.12,13 Some studies have also suggested a
correlation between late normal tissue toxicity and LET
hotspots.14-18

LET is defined at a point and describes the average
energy transfer from electronic interactions per unit
length traveled by charged primary particles.19,20 Unre-
stricted LET is equivalent to electronic stopping power,
representing energy loss.19 Dose-averaged LET (LETd) is
a frequently used quantity that considers the stopping
power of each individual particle, weighted by its contri-
bution to the local dose.21,22 LETd combines different
beam qualities, contributing to damage in a single value,
and can be used as a predictor for RBE,23 considering a
suggested LET-RBE linear dependence.24-27 To avoid RBE
uncertainty while reducing biological variability in treat-
ment planning, metrics based on computable physical
parameters (eg, dose and LET-RBE dependence [as a
proxy for response]) have been suggested (eg, product
between dose and LETd [DLETd]).

25,26,28

In this retrospective study, we investigated the distri-
butions of LETd, dose (with different RBE models) and
DLETd in a cohort of patients with brain tumors treated
between 2019 and 2020 at our institute. Distributions
were quantified and analyzed focusing on hotspots adja-
cent to the clinical target volumes (CTVs) and inside the
OARs. The Monte Carlo (MC) engine from our treatment
planning system (TPS) was used for all calculations.
Although common practice, judging a physical dose is
less intuitive for LETd distributions. The lack of knowl-
edge and experience with this quantity (and its units)
pose an additional challenge. To interpret these results,
we propose various visualization tools to improve the per-
ception and acquaintance regarding the relationship
between treatment planning dose and LETd distribution.
Methods and Materials
Cohort of neurologic patients

A cohort of 24 patients with brain tumors who
received PT between September 2019 and July 2020 was
selected for this study. Institutional review board approval
(W-210700059) was obtained for this retrospective analy-
sis. Table 1 presents the characteristics of the cohort and
treatment planning parameters.

The MC algorithm of RayStation (RaySearch, Sweden)
was used for dose calculations with uncertainty set to 1%.
All plans were robustly optimized (voxel-wise-minimum-
maximum)29 with range uncertainty set to 3% and univer-
sal uncertainty to 1 mm. The TPS optimization for our
Mevion S250i Hyperscan PT system (Mevion, Littleton,
MA) allows for a number of proximal and distal energy
layers to be set. CTV coverage was evaluated on the
voxel-wise-minimum and -maximum doses to OAR and
on the voxel-wise-maximum and mean doses on the
nominal plan, considering constraints according to Lam-
brecht et al.30
Contouring

Target volumes were delineated by experienced radia-
tion oncologists according to national guidelines and
OARs according to the European Particle Therapy Net-
work neurocontouring atlas.31 The periventricular space
(PVS) and brain ventricles were also included in this anal-
ysis, although not yet contoured at our clinical practice.
Besides the CTV, a selection of critical OARs for dosimet-
ric analysis included the brain, brain stem, chiasm, pitui-
tary, left and right (LR) optic nerve, LR cochlea, LR
cornea, LR hippocampus, LR lacrimal gland, LR lens, and
LR retina. The OAR contours, dose, RBE, and LET distri-
butions were extracted from the TPS for further statistical
analysis.
LET and RBE calculations

LETd, DLETd, and RBE were calculated using the Rays-
tation-9AR-IONPG-Research with the MC engine
commissioned for our Mevion system and in-house



Table 1 Cohort description, including number of patients, treatment parameters, tumor type, and location

Patients Treatment

Total number 24 Prescription Dose, Gy Fractions Incidence

50.4 28 75.0%

Female 54.2% 54 30 4.2%

Male 45.8% 59.4 33 20.8%

Average age and range, y 44.5 (24-61) Number of beams 3 75.0%

Pathology 95.8% 4 25.0%

Chemotherapy 75.0% Dose per fraction, Gy 1.8

Treatment time, d 40.8 (37-50) Distal layers for Monte Carlo optimization 3

Tumor

Central nervous system WHO grade Location Frontal 62.5%

Type Oligodendroglioma 37.5% II (67%), III (33%) Parietal 12.5%

Astrocytoma 37.5% II (100%) Temporal 12.5%

Craniopharyngioma 4.2% II (100%) Overlapping 12.5%

Meningioma 20.8% I (20%), II (20%) Laterality Right 50.0%

60%: no pathology available Left 45.8%

Midline 4.2%

WHO Eastern Cooperative Oncology Group performance status

During radiation therapy 0 1 2 After radiation therapy 0 1 2

27.4% 64.0% 8.6% 30.0% 64.0% 6.0%

Abbreviation:WHO =World Health Organization.
Values were calculated considering the entire study population. The performance status grades from the WHO Eastern Cooperative Oncology Group correspond to (0) fully active, normal; (1) symptomatic
and ambulatory, cares for self; and (2) ambulatory >50% of the time; occasional assistance needed.
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developed scripts. LETd, the unrestricted mass stopping
power scored in the medium and normalized to unity
density, was calculated according to:

LETd zð Þ ¼
P

i

R 1
0 Siel Eð ÞDi E; zð ÞdE

P
i

R 1
0 Di E; zð ÞdE ð1Þ

where Siel is the unrestricted electronic stopping power, Di

the dose of the ion type i, E the kinetic energy of the ion, z
the position of the ion, and i the ion type. LETd was com-
puted for primary and secondary protons with its maxi-
mum displayed value set to 50 keV/mm. LETd was
calculated for all dose levels within the voxelized geometry
and, because high LETd at low planning doses is not clini-
cally relevant, 3 dose threshold levels were defined at 0, 5,
and 20 Gy. Here, LETd was calculated for the voxels with
a dose value above the threshold, otherwise LETd was set
to 0. DLETd was computed through the voxel-wise prod-
uct between the planning dose and LETd distribution
through scripting within the TPS.

For the RBE calculation, 2 models were investigated
(Unkelbach [UNK]26 and McNamara [MCN]7), with the
ða=bÞx set to 2 Gy and fixed to all voxels. Although UNK
is a dose-scaling, nontissue, dependent model, MCN is a
phenomenological model that considers all published
RBE experimental measurements up to 2014.
Visualizing distributions

For each patient, the 3-dimensional distributions of
physical dose with RBE of 1.1 (RBE1.1), UNK and MCN
RBE maps and weighted dose, LETd (dose threshold of 0,
5, and 20 Gy), and DLETd were generated. The distribu-
tions were displayed as auxiliary doses or additional plans
within the TPS and further exported and processed
through scripting. To visualize and compare distributions
of similar quantities, raincloud plots were chosen to pro-
vide a transparent visualization of raw distributions com-
bined with probability density and statistics.32 Bivariate
histograms were used to map the relationship between
physical dose and LETd and to highlight the frequency of
the hotspots.
Results
RBE, LETd, and DLETd were calculated for all patients
considered in the cohort.
RBE models

Considering the entire population, MCN presented the
highest dose values for OARs, followed by UNK and
RBE1.1 (Fig. 1). For small structures (eg, chiasm and pitui-
tary gland), an average increase of 19.3% and 25.5% for
MCN and 5.2% and 7.3% for UNK, respectively, was
identified with respect to RBE1.1. For larger structures and
the CTV, the difference was less pronounced (eg, brain
and PVS: 2.9% and 18.3% for MCN, and 1.0% and 4.8%
for UNK, respectively). The mean RBE1.1, MCN, and
UNK CTV doses were 52.1 Gy (§2.5; range, 41.8-63.5),
52.1 Gy (§2.7; range, 42.4-67.6), and 57.2 Gy (§3.1;
range, 46.5-75.7), respectively.
LETd calculations

The choice of a clinically meaningful dose threshold
caused a substantial effect on the LETd results. The
avoidance of voxels with lower doses greatly affected
the LETd distribution in OARs. When no dose limit
was imposed, the distribution was steered toward
higher LETd values, which arose from very low treat-
ment doses (red plots [LET0] of Fig. 2). LET5 and
LET20 showed that the threshold magnitude affects
the mean LET values. Differences were found up to
26.0% (for the retina).

Although the largest average values were found for the
chiasm (LET20: 3.1 § 1.8 keV/mm; LET5: 3.5 § 1.8 keV/
mm; LET0: 4.4 § 2.1 keV/mm) and pituitary (LET20: 3.0
§ 2.2 keV/mm; LET5: 4.0 § 2.0 keV/mm; LET0: 4.8 § 1.7
keV/mm), the maximum LETd values were identified in
the brain, PVS, and ventricles (LET20: 8.6 § 1.0 keV/mm;
LET5: 10.5 § 1.5 keV/mm). For LET0, the maximum val-
ues coincided with the maximum displayed setting of 50
keV/mm for most structures.

Besides the skin, brain, CTV, PVS, and ventricles,
when a dose threshold was imposed, most patients exhib-
ited 0 LET distributions for all other structures (eg, for
left lacrimal gland, retina, and cochlea). Only 2 patients
presented LET distributions >0, and the entire cohort
presented a 0 LET distribution for the spinal cord, lenses,
and corneas. When considering all OARs, a mean organ-
wise LETd of 0.8 keV/mm (§0.9; range, 0.0-3.1 keV/mm),
1.26 keV/mm (§1.11; range, 0.0-4.0 keV/mm), and 4.12
keV/mm (§0.72; range, 2.9-5.6 keV/mm) was found for
the highest to lowest dose threshold and a consistent value
of 2.51 keV/mm (§0.4; range, 1.2-6.0 keV/mm) for the
CTV, independent of the threshold.
Dose-LETd relationships

Different dose cutoffs affected DLETd distributions to
a lesser extent, because this quantity prevents high LET
spikes in low-dose regions (Fig. 3). When considering
DLETd values >0 (Fig. 3), for the 20 Gy threshold, mean
DLETd results ranged from 74 Gy¢keV/mm (§27; range,
32-143 Gy¢keV/mm) to 174 Gy¢keV/mm (§28; range,
69-267 Gy¢keV/mm) for the right lacrimal gland and
brain stem, respectively. The maximum values were found



Figure 1 Relative biological effectiveness (RBE) dose distributions for a selection of organs at risk, calculated using the
constant clinical factor of 1.1 (red), McNamara’s model (green; a/b of 2 Gy), and Unkelbach’s model (blue). Both histo-
grams and bars present the frequency distribution (differential dose and number of voxels per unit of RBE dose). The box-
plots show the interquartile range, median, and outliers.
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in the PVS, ventricles, brain, skin, and CTV (306 § 28 to
354 § 45 Gy¢keV/mm).

Throughout the population, an inverse relationship
between LETd and dose was observed. For some struc-
tures (eg, chiasm and pituitary), this relationship was
more evident (Fig. 4). These structures abut the CTV and
several distal layers are used for treatment optimization;
thus, higher LETd regions may arise beyond the OARs in
regions not considered during optimization, such as the
PVS.

Figure 4B presents an overview of the relationship
between LETd and dose. Additional frequency informa-
tion was visualized using the dose and LETd, on a struc-
ture (Fig. 5) or patient (Fig. 6) basis. Such enhanced
visualization allows for the identification and interpreta-
tion of clusters, which steer the mean LETd values and
identification of the higher, but sparse, LETd values. For
this cohort (Fig. 5), LETd values exceeding 6 keV/mm
were only present for half of the investigated OARs and
always <5% of the structure’s voxels (1.2% on average).
Although the pituitary presented 4.2% of its voxels >6
keV/mm (mean, 6.3 § 0.2; range, 6.0-6.9 keV/mm, corre-
sponding to a mean dose of 27.2 § 3.5 keV/mm), the PVS
and brain presented with 0.7% (mean, 6.5 § 0.5, 6.0-8.6;
mean dose, 29.2 § 5.3 keV/mm) and 0.2% (mean, 6.5 §
0.4, 6.0-8.6; mean dose, 28.4 § 5.1 keV/mm), respectively.

As a patient-based approach, planning quality for indi-
vidual anatomies promoted an organ-based visualization
of LET gradients (Fig. 6). Similar histograms associated
with each OAR (eg, PVS) promoted the identification of
variation within the cohort and the identification of out-
liers and higher LETd distributions.
Discussion
An approach was presented for visualization and
explorative investigations of RBE-weighted doses, LETd,



Figure 2 Dose-averaged linear energy transfer (LETd) distributions for a selection of organs at risk, calculated using dose
thresholds of 0 Gy (red), 5 Gy (blue), and 20 Gy (green). Both histograms and bars present the frequency distribution, or
the number of voxels per unit of LETd value. The boxplots show the interquartile range, median, and outliers according to
the individual distribution.
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and DLETd for multiple OARs of patients with tumors in
different regions of the brain. For the considered RBE
models, MCN values were consistently higher than UNK,
which has been shown in other studies.6,16 For brain
structures associated with cognition, the average RBE val-
ues of 1.54 (0.13) and 1.09 (0.02) found for MCN and
UNK, respectively, agree with the reported values of 1.21
and 1.09.16 Although UNK performs LET optimization
based on objective functions evaluated for DLETd (scaled
down by a factor and considered as a measure of the addi-
tional biological dose caused by high LET), MCN is a vari-
able phenomenological model.

For simplicity and consistency (a/b) was defined as 2
Gy. This assumption possibly affected the MCN results,
which predict the highest RBE for low (a/b) values. More-
over, brain tumors likely have high (a/b) values,33 and
variable models7,34,35 predict large RBE differences when
the difference in (a/b) is large between adjacent struc-
tures. A recent review reported ða=bÞx target values
between 3.1 and 12.5 Gy for glioma and 3.3 and 3.8 Gy
for meningioma, as well as for OAR endpoints between 2
and 3 for chiasm (loss of vision), optic nerve (neuropa-
thy), and brain (necrosis).36

Besides the investigated models, many others exist
with various levels of complexity, regression techni-
ques, and experimental data sets. However, the correla-
tion between RBE variation and outcome data are still
impaired by a lack of current in vivo data with up-to-
date fractionation schedules, modulation techniques,
and evidence from randomized clinical trials.2 Recent
reviews highlight considerable variability among mod-
els, predominantly in normal tissues.6,24,36 Moreover,
RBE is intrinsically a quantity conceived for compar-
ing radiation qualities. Thus, the conservative clinical
recommendation of using the 1.1 constant factor still
simplifies clinical routine, ensures tumor control, and
promotes clinical consistency and shared experience
across the PT field.5



Figure 3 Product between dose and dose-averaged linear energy transfer (DLETd) distributions for a selection of organs
at risk, calculated using 0 Gy (red), 5 Gy (blue), and 20 Gy (green) relative biological effectiveness dose threshold. Both his-
tograms and bars present the frequency distribution, or the number of voxels per unit of DLETd value. The boxplots show
the interquartile range, median, and outliers according to the individual distribution.
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Although the invariant factor is clinically reasonable,
experimental evidence indicates increased RBE toward
the distal edge of the treatment field.1,2,14,33 In this region,
as proton energies decrease, denser energy deposition
clusters and more complex DNA damage are expected.21

Therefore, higher LET values and an extension of the
treatment range beyond the target are also possible.34 A
thorough RBE review presented average values of 1.1,
1.15, 1.35, and 1.7 at the entrance, center, distal edge, and
distal falloff of the spread-out Bragg peak, respectively.24

This consideration is relevant for neurologic cases,
because increased tissue homogeneity, positioning accu-
racy, less range straggling, and shallower tumors promote
sharper dose distributions; thus, OARs close to the target
could be affected.2,35

A preliminary analysis showed that the majority of
patients presented herein reported little or no acute toxic-
ity and normal performance during and up to 2 years
after treatment. However, 2 years could be too early to
detect any observable toxicities. Although PT radiation-
induced brain lesions have been associated with increased
RBE and LET values,17,33,37 comparable results have been
observed for photon treatments, where the LET effect is
much less pronounced.38-40 Further outcome investiga-
tions (eg, periodic functional imaging to track changes in
brain anatomy), along with cognitive tests for protons,
photons, and correlation with LETd distributions for large
patient cohorts selected with specific criteria could
improve the current knowledge. However, a full analysis
of the current visualization techniques related to treat-
ment side effects is outside of the scope of the current
study and subject to further analysis.

Additionally, there is a lack of consensus or guidelines
on what configures LET hotspots. LET values of typical
beam arrangements have been reported of approximately
2 to 4 keV/mm in the center of the beam, from the



Figure 4 (A) Example patient with planning dose, dose-averaged linear energy transfer (LETd), and product between
dose and dose-averaged linear energy transfer (DLETd) distributions with the optic chiasm contoured in yellow. (B) Distri-
bution of dose and LETd values for the chiasm (orange) and pituitary (blue) for all patients (N = 24) in the study. (C, D)
Relationship between mean values of dose, LETd, and DLETd (for dose threshold of 20 Gy) for the chiasm and pituitary
gland. Dose, LETd, and DLETd are represented by the blue, red, and green axes, respectively.
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proximal to distal target regions, and >10 keV/mm at the
distal falloff.24,35 However, intensity modulated PT deliv-
ers highly inhomogeneous dose distributions outside of
the target volume, and dose−response data has been
reported for a broad range of LET values, which may not
consider dose threshold and incorporate low-energy pro-
tons with increased LET.41

Although high LET values in low-dose regions are
reported to not be clinically relevant,24,42 to the best of
our knowledge, no agreement exists on cutoff doses below
which no LET should be evaluated. MC methods
unavoidably result in a number of voxels with few interac-
tions and high statistical uncertainty. The choice of a 0-Gy
threshold exemplifies this effect in low-dose and out-of-
field regions. In this study, different thresholds were eval-
uated (Fig. 2) and, considering prescription dose and
OAR constraints, the highest threshold (20 Gy) is likely to
be more clinically relevant. Individual OAR radiosensitiv-
ity could also be considered to specify a constraint,
because 20 Gy can be prohibiting for some OARs (eg, eye
lenses). On the other hand, as we also consider stochastic
nature radiation effects and a general unfamiliarity with
underlying causes of late effects, a threshold becomes rele-
vant for instant visualization, but full data should be pre-
served for future outcome analyses.

The chiasm (3.1 § 1.8 keV/mm) and pituitary (3.0 §
2.2 keV/mm) presented the largest averaged LETd values.
For these and other small structures (eg, optic nerve and
cochlea), decreasing LETd values with increasing dose
were observed. Due to the limitations of this study (eg,
cohort size and heterogeneous tumor sites and beam ori-
entations), different OARs, and especially the smaller
ones, received little or no dose. This aspect was considered
in the statistical analysis but does not explain the larger



Figure 5 Dose and dose-averaged linear energy transfer (LETd) histograms of a selection of investigated structures for a
single patient. Dose and LETd values are represented on the x- and y-axes, respectively, for each subplot. Next to each
structure name, the percentage of voxels >0 is indicated, as used for the graph. The color bar on the right indicates the fre-
quency in the same scale for all plots.
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differences found for smaller structures compared with
the larger structures. Multiple distal layers are used during
treatment optimization; thus, high LET values possibly
fall beyond critical structures when they adjoin the CTV.
These regions likely coincide with the ventricles and PVS,
for which no clinical dose constraints are considered dur-
ing optimization and where the maximum global LETd

values were identified (8.6 § 1.0 keV/mm).
Different studies have associated late radiation-

induced brain lesions in regions of increased LETd, RBE,
and radiosensitivity at the PVS.14,15,43 Our study also
highlights this structure, considering that treatment plan-
ning strategies to neutralize increased RBE (or LET) focus
on placing the distal edge outside OARs, which coincide
with the periventricular region. A recent survey showed
that, even though all European PT centers use a constant
RBE factor of 1.1, they also apply measures to counteract
variable RBE effects (ie, avoid beams stopping inside or in
front of an OAR)44, disregarding the PVS.

Considering the uncertainties on RBE models and the
difficult interpretation of LET alone, the LET−RBE
dependence has been used as a proxy for biological
response (eg, in the product between dose and
LET).2,6,14,25,26,45 Logically, a dose cutoff is not so relevant
when the product itself attends the effect of LET spikes in
low-dose regions. To avoid LET overestimation, McMa-
hon et al. added a factor to LET-weighted doses, which
performed well compared with several RBE models.25

Although a thorough analysis might still be necessary,
this factor represents a simple approach to readily identify
high LET without the influence of low-dose values. Addi-
tional tools to promote a better visualization of the rela-
tionship between LET and dose are also helpful to
estimate its magnitude, identify hotspots, and compare



Figure 6 (A) Clinical target volume (CTV; gray color map) and periventricular space (PVS; multiple colors) dose-aver-
aged linear energy transfer (LETd) distribution spatial representation. (B) Dose−LETd histograms of the PVS for different
patients. Dose and LETd values are represented on the x- and y-axes, respectively, for each subplot. The color bar on the
right indicates the frequency in the same scale for all plots.
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and characterize treatment planning quality considering
inter- and intrapatient LET distributions.

The heat maps presented in this study show a low fre-
quency of higher LET values in regions restricted to lower
doses below known tolerances. This effect should become
less pronounced when different treatment uncertainties
are also considered, such as range straggling, imaging
uncertainty, and treatment variation in anatomy, posi-
tioning, motion, setup, dose distribution, and tissue
heterogeneity.13,33,46 Nevertheless, LET-guided robust
optimization is a growing field that focuses on maximiz-
ing LET to the target while minimizing LET in OARs,
minimally affecting the clinical goals of the treatment
plan.15,42,47-50 This approach is supported by the TG-256
study, which suggests LET assessment and LET-based
optimization.1 Besides optimization, adaptation of treat-
ment techniques (eg, splitting the target) has also been
reported.51,52

Because the effect of high LET in normal tissue is not
fully understood, there is growing concern over its man-
agement, as LET visualization and optimization tools are
not yet fully implemented in clinical TPSs. This study
presents visualization strategies to quantify OAR and
patient treatment quality based on the relationship
between dose and LET. Investing in such visualization
tools and standardization of LET reporting is necessary41

and could assist clinicians to identify and characterize
hotspots in regions susceptible to damage, as well as
examine LET distributions for new techniques (eg, proton
arc).
Conclusion
From the analysis of RBE models, LETd, and DLETd

derived from our TPS for patients with brain tumors,
strategies were proposed to assess treatment quality con-
sidering regions with increased LETd. For clinical practice,
identifying, quantifying, and recording LET distributions
is important, because concern exists over a link between
normal tissue toxicity and LET hotspots. LET calculation
and reporting requires standardization. The lack of a uni-
form approach was exemplified by the effect of establish-
ing dose thresholds, which modifies LET reporting, and
should be considered with a clinical rationale. Visualizing
the dose and LETd space during treatment planning can
provide a prompt check of high-LET regions and allow
for the clinician to decide if changes in the planning tech-
nique are necessary. Finally, systematically acquiring clin-
ically relevant data for treatment and outcomes is
necessary for a robust clinical analysis and comparison
with photon treatments, as well as provide guidance on
how to incorporate this information in clinical decision
making.
Supplementary materials
Supplementary material associated with this article
can be found in the online version at doi:10.1016/j.
adro.2022.101128.
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