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ARTICLE

A Physiologically-Based Pharmacokinetic Model for the 
Prediction of Monoclonal Antibody Pharmacokinetics 
From In Vitro Data

Hannah M. Jones1,*, Zhiwei Zhang2, Paul Jasper2, Haobin Luo2, Lindsay B. Avery3, Lindsay E. King4, Hendrik Neubert4,  
Hugh A. Barton5, Alison M. Betts1 and Robert Webster1

Monoclonal antibody (mAb) pharmacokinetics (PK) have largely been predicted via allometric scaling with little considera-
tion for cross-species differences in neonatal Fc receptor (FcRn) affinity or clearance/distribution mechanisms. To address 
this, we developed a mAb physiologically-based PK model that describes the intracellular trafficking and FcRn recycling of 
mAbs in a human FcRn transgenic homozygous mouse and human. This model uses mAb-specific in vitro data together with 
species-specific FcRn tissue expression, tissue volume, and blood-flow physiology to predict mAb in vivo linear PK a priori. 
The model accurately predicts the terminal half-life of 90% of the mAbs investigated within a twofold error. The mechanistic 
nature of this model allows us to not only predict linear PK from in vitro data but also explore the PK and target binding of 
mAbs engineered to have pH-dependent binding to its target or FcRn and could aid in the selection of mAbs with optimal PK 
and pharmacodynamic properties.

Monoclonal antibodies (mAbs) represent a major class of 
therapeutics with more than 50  mAbs currently in late-
stage clinical studies.1 This success is mainly because of 
their high specificity and affinity for the therapeutic target of 
interest together with their long serum half-life (T1/2). This 
long T1/2 enables less frequent administration, which is ap-
pealing for some chronic indications. In preclinical stages, 
studies are performed to understand pharmacokinetic (PK) 
and pharmacodynamic (PD) properties to identify can-
didates with the highest chance of success in clinic, with 
dosing regimens that meet the target product profile.

Empirical approaches such as allometric scaling from 
nonhuman primates2–5 and more recently a transgenic 

homozygous human neonatal Fc receptor  (hFcRn) mouse 
(Tg32) model6 have been successfully used to predict mAb 
human PK. Many mAbs reaching the clinic have similar human 
PK, and it has been shown that a typical set of two-com-
partmental PK parameters can predict the human PK of the 
majority of mAbs, reducing the need for preclinical in vivo 
PK studies.7 Despite this, there are several recent reports 
where in vivo PK can vary considerably8–10 consequently 
affecting target engagement, dose, and dosing regimen. 
Unlike in small molecule drug discovery, early optimization 
screening has historically focused on affinity and potency, 
with assays to predict PK propensity only being used at later 
stages. The in vitro–in vivo correlations of PK properties are 
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Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
✔  There are a number of physiologically-based phar-
macokinetic (PBPK) models available in the literature to 
describe antibody pharmacokinetics (PK). There is no 
consensus with respect to model structure and model pa-
rameters, and these models rely heavily on in vivo data for 
application.
WHAT QUESTION DID THE STUDY ADDRESS?
✔  This study develops a framework to predict in vivo PK 
for antibodies a priori using in vitro data within a PBPK 
model and establishes excellent prediction accuracy for 
this approach.

WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
✔  This work seeks to understand whether in vitro data 
can be used in a PBPK model framework to predict in 
vivo PK for antibodies to more efficiently support the early 
phases of antibody discovery.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, 
DEVELOPMENT, AND/OR THERAPEUTICS?
✔  Our PBPK framework does not rely on the availability 
of in vivo PK data, which means that human PK data and 
possibly target engagement can be predicted from in vitro 
data and predicted PK properties can be factored into the 
lead selection process.
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mailto:
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therefore less well established. However, several physico-
chemical attributes, e.g., non-specific charge-based inter-
actions, self-association, and hFcRn binding affinity, have 
recently been shown to correlate with in vivo clearance 
(CL).11,12 One particular in vitro assay is the affinity-cap-
ture self-interaction nanoparticle spectroscopy (AC-SINS)  
assay.13–15 Avery et al.11 show a Spearman correlation coef-
ficient of 0.7 between AC-SINS and CL.

Physiologically-based PK (PBPK) models are routinely 
used prospectively to inform the selection of small mole-
cules for clinical studies.16,17 Large molecule PBPK models 
have typically been descriptive, relying on in vivo tissue dis-
tribution data and generally only describe neonatal Fc re-
ceptor (FcRn) mediated kinetics.18–20 These models are built 
using known physiology and account for the key processes 
involved in mAb disposition, including (i) non-specific up-
take via fluid-phase pinocytosis into vascular endothelial 
cells, (ii) pH-dependent binding to FcRn in the acidic en-
vironment of the endosome, (iii) proteolytic degradation of 
unbound mAb in the lysosome, (iv) pH-dependent release of 
bound mAb at the cell surface into the plasma or interstitial 
fluid via exocytosis, and (v) exit of interstitial mAb into the 
lymph via convective flow. The complex nature of mAb dis-
position together with the recent evolution of in vitro assays 
for mAb screening and the realization that mAb PK can vary 
in human provides an opportunity for predicting in vivo be-
havior using in vitro data in a PBPK framework analogous to 
small molecule approaches.

We have developed a PBPK model that we can use pro-
spectively early in the drug  discovery process to select 
mAbs with optimal PK and therefore the best chance of clin-
ical success. The core of the PBPK model used in this work, 
including organs, basic topology, and physiological pa-
rameters, was based on the model described by Shah and 
Betts.19 We have expanded the model to include a mech-
anistic description of FcRn–mAb dynamics within the en-
dothelial cell compartment and have included an additional 
CL mechanism to describe non-specific interactions within 
each organ compartment using AC-SINS data. The model 
was built for the Tg32 mouse and human using a training set 
of mAbs (15 in Tg32 mouse and seven in human) and then 
tested for prediction accuracy using a test set of mAbs (16 in 
Tg32 mouse and five in human).

METHODS
Antibody selection
MAbs were selected based on the availability of AC-SINS 
data, in vivo Tg32 mouse and/or clinical PK (plasma con-
centration-time profile data). Data were available for 31 
mAbs in the Tg32 mouse and 12 mAbs in human. Each 
data set was split into a training set and a test set. For the 
Tg32 mouse, the training and test set consisted of 15 (mAbs 
1–15) and 16 mAbs (mAbs 16–31), respectively. For human, 
the training and test set consisted of 7 (mAbs 1–3, 5–8) and 
5 mAbs (mAbs 11–14, 23), respectively.

In vivo PK studies (Tg32 mouse and human)
In vivo PK studies were conducted in the Tg32 homozygous 
mouse model as described by Avery et al.6 for mAbs 1–31. 
In brief, the studies were conducted at Pfizer and were 

designed and executed in accordance with the Animal 
Use Protocol and adherence to the Pfizer institutional an-
imal care and use committee regulations. MAbs were 
dosed intravenously at a saturating dose (5 or 10 mg/kg).  
A total of 4-6  mice were evaluated for each mAb. Serum 
samples were analyzed as described by Avery et  al.6 PK 
parameters (CL, volume of distribution at steady state 
(Vss), and terminal T1/2) were derived from individual an-
imal data using non-compartmental analysis (NCA) in 
Phoenix® WinNonlin® (version 6.3; Certara L.P. (Pharsight), 
Saint Louis, MO). A small proportion (<10%) of plasma con-
centration-time profiles showed a sharp drop in exposure 
(presumed as a result of anti-drug antibodies) and were 
excluded. Samples below the limit of quantification of the 
assay were set as 0 for data analysis.

Clinical PK data were available for 12 mAbs (mAbs 1–3, 
5–8, 11–14, and 23) from in-house or literature sources.6 
These studies were single-dose intravenous PK studies and 
were conducted in healthy volunteers or patients. For mAb 
11, only subcutaneous PK data were available; bioavail-
ability and absorption rate constants were assumed for the 
purposes of modeling. Reported PK parameters (as noted 
previously) were derived from NCA from saturating doses 
where the PK was linear. All clinical studies conducted at 
Pfizer were approved by the institutional review board of the 
research center and were conducted in compliance with the 
principles derived from the Declaration of Helsinki including 
all International Conference on Harmonization Good Clinical 
Practice guidelines and local regulatory requirements.

In vitro data (AC-SINS and FcRn affinity)
AC-SINS and FcRn affinity data were generated for all 
mAbs in the data  set (mAbs 1–31). The AC-SINS assay 
has been described in the literature.11,13 In brief, mAbs are 
captured by anti-human Fc antibodies coated on the gold 
nanoparticles. If a mAb tends to interact with itself, there 
is a clustering of the nanoparticles that leads to a red shift 
in the absorbance wavelength. This assay was used as a 
surrogate for non-specific CL. The methodology for FcRn 
affinity measurement was described by Avery et al.11

Overall model description
The core of the PBPK model used in this work was based on 
the model described by Shah and Betts.19 The model con-
tains a plasma compartment and 15 tissue compartments. 
Each tissue compartment is subdivided into a vascular 
compartment, a vascular-side membrane compartment, an 
endothelial cell compartment, an interstitial-side membrane 
compartment, an interstitial fluid compartment, and a cel-
lular space compartment. Within the endothelial cell com-
partment, a single-cell mechanistic model of FcRn-mAb 
dynamics has been constructed. The transit of mAb around 
the body and between organs is mediated via plasma flow 
into tissues and then returned via plasma flow except for 
the portion undergoing lymphatic drainage into a lymph 
node compartment, which then exits back into plasma. As 
described by Shah and Betts,19 both endogenous and ex-
ogenous immunoglobulin G (IgG) were modeled separately 
to account for any competition for FcRn in the endoso-
mal space. An additional non-specific CL mechanism was 
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included in each organ compartment. A schematic of the 
model is shown in Figure 1a–c.

Physiological parameters including organ volumes, 
plasma volume, interstitial volumes, cellular volumes, plasma 
flow rates, and lymphatic flow rates (0.2% of plasma flow 
rate) were taken from Shah and Betts.19 These values and all 
parameters and equations are summarized in Tables S1–S3.

The FcRn mechanistic model operates within the endo-
thelial cells located in each organ (Figure 1c). The model is 
composed of membrane proximal compartments for both 
apical (vascular side) and basolateral (interstitial side) mem-
branes that are in rapid equilibrium with plasma and inter-
stitial fluid and 3 well-mixed intracellular endosomal transit 
compartments: early endosome (pH 7.4), sorting endosome 
(pH 6.0), and recycling endosome (pH 7.4). This allows ex-
plicit modeling of mAb-FcRn kinetics as a function of pH 
and time.

A series of calibration steps were performed to develop 
the PBPK model using the training set of mAbs. Once com-
pleted, the a priori predictability of the model was tested 
using the test set of mAbs. These steps are described in 
detail below.

Model calibration
The first calibration step involved estimating the whole-
body catabolic rate of the mAb in the absence and pres-
ence of FcRn. The catabolic rate in the absence of FcRn 
is a function of the total number of endothelial cells in the 
body (Nendo), the pinocytotic uptake rate of endothelial cells 
(CLup), and the probability of mAb degradation in the ab-
sence of FcRn binding (Prob_Deg). The catabolic rate in 
the presence of FcRn is a function of FcRn concentration 
(calculated from FcRn amount, CLup, endosomal transit 
time (Tendo), Nendo and volume of endosome (Vendo)), FcRn 
stoichiometry, and FcRn binding affinity. Several of these 
parameters were fixed (CLup, Prob_deg, Tendo, Vendo, equi-
librium constant for mAb-FcRn binding (Kd) pH 6.0, disso-
ciation rate constant for mAb-FcRn binding  (koff) pH 6.0, 

degradation rate of FcRn-mAb complex at pH 7.4 (kdeg_
FcRn_Ab)), and several were calibrated to in vivo observa-
tions based on uncertainty in their values (Nendo, second 
association rate constant  for mAb-FcRn binding (kon_2nd) 
and Kd pH 7.4/Kd pH 6.0 ratio). This process involved  
simultaneous fitting to plasma concentration-time data 
from FcRn−/− knockout mice (using mAbs 2, 6, and 16–22), 
humans with severely compromised FcRn function as a re-
sult of a mutation in the beta-2-microglobulin subunit21,22 
and mAb PK data from both Tg32 mice and human ex-
hibiting “typical PK” with terminal T1/2 values of ~17 and 
~20 days, respectively. MAbs 1, 2 (Tg32 mouse and human) 
and 11 (Tg32 mouse only) were used for this fitting process 
because non-specific interactions were not believed to 
contribute to their PK properties.

The CLup ranges from ~30 to ~667  nL/hour/1E6 cells 
across different cell types and studies,23–25 and in this analy-
sis we used an intermediate value of ~150 nL/hour/1E6 cells 
based on endothelial cell pinocytosis measurements.23 The 
CLup and recycling rate were divided between apical (vas-
cular side) and basolateral (interstitial side) membranes by 
means of a fractional multiplier (FR), where the apical recy-
cling fraction was set at 0.71519 and the basolateral fraction 
was set equal to the remainder (1-FR).19,26 Prob_deg was 
assumed to be 98% (>95% indicated by S. Ward, personal 
communication). Nendo is one of the most uncertain param-
eters within the model so was fit yielding values of 14.2E8 
and 0.86E12 in the Tg32 mouse and human, respectively. 
The values of 6.25E8 in a mouse and 2.54E12 in human have 
been reported in the literature.27–29

The Tendo was assumed to be 10.8 minutes consistent 
with previous estimates19,29 and was used to calculate 
total Vendo using the following equation: Vendo  =  CLup × 
Tendo. The FcRn concentration values used in the model are 
based on internal mass spectrometry measurements and 
are ~1.1430 and ~1,022 nMoles31 of FcRn per Tg32 mouse 
and human, respectively. To derive an intracellular FcRn 
concentration, we assumed FcRn concentration  =  FcRn 

Figure 1 Schematic of the physiologically-based pharmacokinetic (PBPK)  model: (a) full PBPK model, (b) organ-level model, (c) 
endosomal-level model. FcRn, neonatal Fc receptor; Ab, antibody; FR, volume fraction of pinocytosis from vascular space (apical); 
CLup, pinocytotic uptake rate of endothelial cells; 1-FR, volume fraction of pinocytosis from intestitial space (basolateral); kdeg_FcRn_
Ab, degradation rate of FcRn bound mAb; Prob_deg,  probability of mAb degradation in the absence of FcRn binding;  PS_KD, 
equilibrium constant for mAb-cell membrane site non-specific interactions.
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Total Amount (Moles per Body)/(Vendo × Nendo), yielding 
values of 29.7 μM (Tg32 mouse) and 44.1 μM (human). We 
made the assumption that FcRn was only expressed in en-
dothelial cells and its concentration was the same in every 
endothelial cell within each organ. To determine endothe-
lial cell allocation among the different organs, the fraction 
of total FcRn within each organ was used as a proxy of 
endothelial cell number.30,31 We assumed FcRn concen-
tration remains at steady state and thus did not include 
explicit synthesis and degradation terms.

Binding between FcRn and a mAb was allowed to occur 
with both 1:1 and 2:1 stoichiometry, the proportion of 
each being a function of binding affinities and free con-
centration. One would expect the two association rate 
constants to differ as the first binding involves a trans-
membrane anchored protein (FcRn) being approached 
by a freely diffusing mAb in solution, whereas the second 
binding involves the 1:1 membrane anchored complex 
only laterally diffusing in 2 dimensions  until contacting 
an additional molecule of membrane  anchored FcRn. 
Estimates of 2-dimensional  lateral diffusion rates are on 
the order of 10−9 − 10−11 cm2/second for transmembrane 
proteins,32 significantly slower that than of IgG freely dif-
fusing in solution at 4.9E-7 cm2/second,33 thus we would 
expect the two kons to differ by a factor of 10–1,000 fold. 

The first association rate constant for mAb-FcRn bind-
ing (kon_1st) event was set to 8.06E+7  1/M/hour (forming 
the 1:1 complex)19 and the second association constant 
was fitted, yielding a value of 9.63E+5 1/M/hour. The first 
dissociation rate constant for mAb-FcRn binding (koff_1st) 
was calculated from the first association rate constant for 
mAb-FcRn binding (kon_1st) and Kd. The second dissocia-
tion rate constant for mAb-FcRn binding (koff_2nd) was as-
sumed to be the same as koff_1st.

The affinity between FcRn and a mAb is known to be pH 
specific, exhibiting tighter affinity at low pH (6.0) to allow 
binding within the acidified endosome and poorer affin-
ity at neutral pH (7.4) to allow release/recycling at the cell 
surface. It has been shown that FcRn-mAb affinity is cor-
related across pH,34 with a ratio of Kd pH 7.4 to Kd pH 6.0 
typically ranging from 20-fold to 250-fold.34,35 For mAbs 
with higher AC-SINS scores, FcRn affinity via Biacore  
(GE Healthcare, Chicago, IL) was tighter than anticipated; 
for these mAbs, we believed the assay was not specific 
and was also capturing non-specific interactions. To en-
sure we captured only the FcRn component, the model 
used a binding affinity value of 700 nM for pH 6.0 based 
on Biacore experimental values across a group of mAbs in 
the data  set exhibiting no non-specific interactions. The 
binding at pH 7.4 was estimated via fitting to be 220-fold 

Figure 2 Calibration results for Tg32 mouse and human (WT and KO) pharmacokinetic profiles. conc, concentration; hr, hour;. WT, 
wild-type; KO, knockout.
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Table 1 Fixed and calibrated parameters to describe whole-body catabolic capacity for antibody

Parameter Value Reference

Fitted

Tg32 endothelial cell number (Nendo) 14.2E8 In same range as literature reports27–29

Human endothelial cell number (Nendo) 0.86E12 In same range as literature reports27–29

kon ratio (FcRn binding #1/#2) 83.7 kon_2 10–1,000 fold slower due to limited membrane diffusion

Kd 7.4/Kd 6.0 ratio 220 Literature suggests values spanning 20×–250×34,35

Fixed

Transit time (Tendo) (minutes) 11 19,29

Uptake rate (CLup) (nL/hour/1E6 cells) 150 23

Prob_deg (%) 98 Assumed based on S. Ward personal communication (>95%)

FcRn tissue levels (nMoles) 1.1/1022 (Tg32 mouse/human)30,31

kdeg_FcRn_Ab (FcRn turnover; min−1) 0.062 11.1 hour half life 31

CLup, pinocytotic uptake rate of endothelial cells; FcRn, neonatal Fc receptor; Kd, equilibrium constant for mAb-FcRn binding; kdeg_FcRn_Ab, degradation 
rate of FcRn-mAb complex at pH 7.4; kon,  association rate constant for mAb-FcRn binding; Prob_deg, probability of mAb degradation in the absence of 
FcRn binding; Tendo, endosomal transit time.
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higher. The FcRn-mAb complex that does not release at 
pH 7.4 because of a high affinity binding at neutral pH was 
subject to degradation via an additional first-order clear-
ance term (kdeg_FcRn_Ab), which we assumed occurs at 
the natural turnover rate (11.1 hours) of FcRn.31 The ma-
jority of FcRn has been shown to exist intracellularly with 
only a small percentage on the cell surface.36,37 To reflect 
this in the model, we implemented a function (FcRn_recy-
cle_fraction, which was set to 0.99) where any free FcRn 
following mAb recycling was immediately returned to the 
endosomal FcRn pool, whereas recycling FcRn-mAb com-
plex moves to the cell surface, after which it could be re-
internalized upon the next pinocytosis event or degraded.

The results of the model calibration to mAb plasma con-
centration-time profiles are shown in Figure 2 and exhibit 
good agreement, suggesting that the model has the cor-
rect whole-body catabolic capacity required for both Tg32 
mouse and human. Fixed and calibrated parameter values 
are shown in Table 1.

The second calibration step involved incorporating the 
impact of non-specific interactions on PK. These were rep-
resented in the model as a non-specific charge-mediated 
binding (association rate constant for mAb-cell membrane 
site non-specific interactions (konPS) and  dissociation rate 
constant for mAb-cell membrane site non-specific interac-
tions (koffPS); konPS assumed equal to mAb-FcRn association 
rate constant for mAb-FcRn binding (kon)) between the mAb 
and the cell membrane (cell membrane site density that 
can bind to mAb (Cmem)). We hypothesized that the bound 
mAbs on the membrane would be internalized (internal-
ization rate of membrane-bound mAb due to non-specific 
interactions (kint_PS)) via pinocytosis and brought into the en-
dosome. These mAbs will become free in the sorting endo-
some and available to bind with FcRn. If unbound, they will 
be subjected to degradation (Prob_deg). Data from the AC-
SINS assay measuring mAb self-association were used as 
a basis for the affinity terms. The parameters (Cmem, kint_PS)  
were estimated from plasma concentration-time profiles 
for mAbs in the training set. The equation relating AC-SINS 
score to an affinity describing these non-specific interac-
tions is log10 Kd = exp (PS_a-PS_b × PS_Score), where 
PS_a and PS_b represent empirically fitted parameters to 
scale an AC-SINS score range (0–25) into a binding equilib-
rium constant Kd. The fitted values for PS_a, PS_b, Cmem, 

and kint_PS are shown in Table 2. Cmem in human was set to 
equal Cmem in Tg32 mouse. These fitted plasma concentra-
tion-time profiles are shown in Figure 3a,b for Tg32 mouse 
and human, respectively.

Model testing
Using the derived PBPK model in Tg32 mouse and human, 
the prospective prediction accuracy of the model was ex-
plored using the test set of mAbs where AC-SINS data were 
used as input to the model. Predicted PK parameters were 
calculated via NCA and compared with observed values.

Model coding
The model development, simulation, and control param-
eterization method were implemented in J2 Dynamic 
Modeling and Optimization Software (RES Group, Inc, 
Needham, MA). The model code has also been imple-
mented in Berkeley Madonna and can be found in the 
Supplemental Materials. 

RESULTS

The first calibration step involved estimating the whole-
body catabolic rate of the mAb in the absence and pres-
ence of FcRn. The results of the model calibration to mAb 
plasma concentration-time profiles are shown in Figure 2 
and exhibit good agreement between the observed and fit-
ted data, suggesting that the model has the correct whole-
body catabolic capacity required for both Tg32 mouse and 
human. Calibrated parameter values were in reasonable 
agreement with estimates from the literature where avail-
able and are shown in Table 1.

The second calibration step involved incorporating 
the impact of non-specific interactions on PK. The equa-
tion relating AC-SINS score to an affinity describing these 
non-specific interactions is described in the Methods sec-
tion, and the fitted parameters from this equation are shown 
in Table 2. The fitted plasma concentration-time profiles are 
shown in Figure 3a,b for the Tg32 mouse and human, re-
spectively. In general, the fitted plasma concentration-time 
profiles were in good agreement with the observed plasma 
concentration-time profiles, indicating that the model was 
specified correctly.

Using the final model, the Tg32 mouse and human 
plasma concentration-time profiles were simulated using 
AC-SINS data as input. The simulated plasma concen-
tration-time profiles for the test set of mAbs are shown in 
Figure 4a,b for Tg32 mouse and human, respectively. In 
general, the predicted plasma concentration-time profiles 
were in good agreement with the observed plasma con-
centration-time profiles. In particular, the model was able 
to accurately predict the trend in PK properties across the 
mAbs and was able to correctly categorize those mAbs 
with poor in vivo properties. Predicted vs. observed PK 
parameters are shown in Figure  5. In general, there is a 
good degree of prediction accuracy with 90%, 71%, and 
90% of the predicted parameters being within twofold of 
the observed parameters for terminal T1/2, CL, and Vss, 
respectively.

Table 2 Estimated parameters to predict in vivo non-specific 
interaction-related clearance from affinity-capture self-interaction 
nanoparticle spectroscopy scores

Parameter Tg32 mouse Human

PS_a 0.739 1.81

PS_b −0.0409 −0.262

Cmem (μM) 18.5

kint_PS (1/hour) 0.290 0.0380

Cmem, cell membrane site density that can bind to mAb; kint_PS, internaliza-
tion rate of membrane-bound mAb due to non-specific interactions; PS_a, 
empirical parameter a to scale an AC-SINS score to a binding equilibrium 
constant; PS_b, empirical parameter b to scale an AC-SINS score to a bind-
ing equilibrium constant.
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Figure 3 Physiologically-based pharmacokinetic model calibration of non-specific interaction clearance mechanism using the 
training set in (a) Tg32 mouse (n = 17) and (b) human (n = 9). AC-SINS, affinity-capture self-interaction nanoparticle spectroscopy; 
conc, concentration; hr, hour; mAb, monoclonal antibody.
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Figure 4 Physiologically-based pharmacokinetic model simulations vs. observed data using the test set in (a) Tg32 mouse (n = 19) 
and (b) human (n  =  5). AC-SINS, affinity-capture self-interaction nanoparticle spectroscopy; conc, concentration; hr, hour; mAb, 
monoclonal antibody.

Pl
as

m
ac

on
c 

(μ
g/

m
l)

0 200 400 600 800 1000

(ii)  mAb 17: AC-SINS = 3

0.1

1

10

100

1000

0 200 400 600 800 1000

(vi)  mAb 21: AC-SINS = 0 

1E-1

1E+0

1E+1

1E+2

1E+3

0 200 400 600 800 1000

(x)  mAb 25: AC-SINS = 20

1E-1

1E+0

1E+1

1E+2

1E+3

0 200 400 600 800 1000

(iii)  mAb 18: AC-SINS = 0 

0.1

1

10

100

1000

0 200 400 600 800 1000

(vii)  mAb 22: AC-SINS = 3

0.1

1

10

100

1000
(viii)  mAb 23: AC-SINS = 25

0.1

1

10

100

1000

0 200 400 600 800

(xii)  mAb 27: AC-SINS = 7

1E-1

1E+0

1E+1

1E+2

1E+3

0 200 400 600 800 1000

(xi)  mAb 26: AC-SINS = 19

1E-1

1E+0

1E+1

1E+2

1E+3

0 200 400 600 800 1000

(xv)  mAb 30: AC-SINS = 18

0.1

1

10

100

1000

0 200 400 600 800 1000

(i)  mAb 16: AC-SINS = 3

0

1

10

100

1000

0 200 400 600 800 1000

(v)  mAb 20: AC-SINS = 1 

0.1

1

10

100

1000

0 200 400 600 800 1000

(ix)  mAb 24: AC-SINS = 7

1E-1

1E+0

1E+1

1E+2

1E+3

0 200 400 600 800 1000

(xvi)  mAb 31: AC-SINS = 22

1E-1

1E+0

1E+1

1E+2

1E+3

0 200 400 600 800 1000

(xiv)  mAb 29: AC-SINS = 19

0.1

1

10

100

1000

0 200 400 600 800 1000

(xiii)  mAb 28: AC-SINS = 18

Time (hr) Time (hr) Time (hr) Time (hr)

Pl
as

m
ac

on
c 

(μ
g/

m
l)

Pl
as

m
ac

on
c 

(μ
g/

m
l)

Pl
as

m
ac

on
c 

(μ
g/

m
l)

Pl
as

m
ac

on
c 

(μ
g/

m
l)

0.1

1

10

100

1000

0 500 1000 1500 2000
1E-1

1E+0

1E+1

1E+2

1E+3

0 500 1000 1500 2000
1E-1

1E+0

1E+1

1E+2

1E+3

0 500 1000 1500 2000
1E-1

1E+0

1E+1

1E+2

1E+3

0 500 1000 1500 2000

0.1

1

10

100

1000

0 500 1000 1500 2000

(i)  mAb 11: AC-SINS = 0 (ii)  mAb 12: AC-SINS = 2 (iii)  mAb 13: AC-SINS = 5 (iv)  mAb 14: AC-SINS = 1

(v)  mAb 23: AC-SINS = 25

Pl
as

m
ac

on
c 

(μ
g/

m
l)

Time (hr) Time (hr) Time (hr)

Time (hr)

(a)

(b)

0.1

1

10

100

1000

0 200 400 600 800

(iv)  mAb 19: AC-SINS = 0 



745

www.psp-journal.com

PBPK Model for Monoclonal Antibody PK Prediction
Jones et al.

DISCUSSION

The first publications on the topic of PBPK models for bio-
therapeutics appeared in the literature in the 1980s and 
1990s.38,39 These early models have been expanded to in-
clude the interaction of mAbs with FcRn in the endosomal 
compartment of tissues18,40 and to incorporate pH-depen-
dent FcRn binding and tissue-specific FcRn mRNA expres-
sion data.29 Urva and coauthors26 added a compartment to 
represent cells expressing the target receptor in the tissue, 
and recent publications by Glassman and Balthasar20,41 
illustrate the application of PBPK models for predicting 
target-mediated disposition and the effect of “catch and 
release” mAbs.

However, despite these literature reports, the use of 
PBPK modeling for mAbs in the pharmaceutical industry 
is still limited. Most PBPK models published have relied 
on in vivo data for fitting as there have been few predic-
tive in vitro assays described and few in vitro–in vivo rela-
tionships established.12,18–20 Although these models can 
fit the experimental data, the models are heterogeneous, 
and different groups have used not only different physi-
ological parameters but also different representations of 
physiology to fit the data.42,43 Recent reports indicating a 
linkage between a number of physicochemical attributes 
and in vivo PK could enable mAb PBPK models to be used 
to support mAb discovery analogous to those established 
for supporting small molecule drug discovery. In particular, 
poor PK has been reported for mAbs with high positive 
charge10 and a correlation has been established between 
self-association (as measured by the AC-SINS assay) and 
in vivo CL.11

In this work we developed a PBPK model that we be-
lieve can be used prospectively in a drug discovery setting 
to predict human PK of mAbs with differing properties. The 
core of the PBPK model used in this work, including or-
gans, basic topology, and physiological parameters was 
based on the model described by Shah and Betts.19 We 
have expanded the model to include a mechanistic de-
scription of FcRn and mAb dynamics across a pH range 
within the endothelial cell compartment. Unlike others, we 
have included an additional non-specific CL mechanism 
within each organ compartment using readily available 

in vitro AC-SINS data. This additional feature allows us 
to move beyond FcRn-dependent mechanisms, allowing 
us to predict from in vitro data, the range of PK seen in 
vivo for mAbs as a result of non-specific processes. Other 
groups have accounted for this by fitting of empirical co-
efficients to modulate the rate of endosomal uptake and 
the vascular reflection coefficient in their PBPK models.29 
However, the reliance on in vivo fitting in this case limits 
the a priori application of such models. In addition, our 
model explicitly accounts for the binding of the mAb to 
FcRn at both acidic and neutral pH values and assumes 
a fixed affinity ratio between pH 6 and 7.4, which could 
allow for the prediction of mAbs with atypical FcRn affinity 
characteristics.34,35 Given the increased use of engineer-
ing approaches to either improve the affinity of mAbs to 
FcRn at acidic pH or to reduce the affinity of mAb to anti-
gen at acidic pH (“catch and release” mAbs), this could be 
an important feature of the model to enable in vitro–in vivo 
scaling early in discovery and to explore potential solu-
tions to poor PK or target coverage.

Our PBPK model and in vitro–in vivo scaling approach 
were built in a systematic manner for both the Tg32 mouse 
and human using a training set of Pfizer mAbs and then 
tested for prediction accuracy using a test set of mAbs. In 
general, there is a good degree of prediction accuracy with 
90%, 71%, and 90% of the predicted parameters being 
within 2-fold of the observed parameters for terminal T1/2, 
CL, and Vss, respectively. In addition, for a separate set 
of mAbs, the model was able to accurately predict tissue 
concentrations (data not shown). There is a trend toward an 
increase in CL and Vss and a decrease in terminal T1/2 as 
AC-SINS score is increased. The model is able to capture 
this trend and correctly rank mAbs based on PK parameters 
(Figure 5). Generally, those mAbs with low AC-SINS score 
are predicted accurately. There is a slight trend toward 
over-prediction in exposure for those mAbs with high AC-
SINS score (mAbs 26–28 in Tg32 mouse); however, these 
mAbs were still correctly categorized as high CL mAbs. It 
is possible for these high AC-SINS score mAbs that other 
factors are playing a role. The prediction accuracy we have 
observed is comparable to that obtained by more tradi-
tional allometric scaling approaches.2–6 However, in con-
trast, our PBPK framework does not rely on the availability 

Figure 5 Physiologically-based pharmacokinetic model predicted vs. observed (a) half life, (b) clearance, and (c) volume of distribution 
at steady state in human (open circles) and Tg32 mouse (closed circles). Vss, volume of distribution at steady state.
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of preclinical in vivo PK data, which are often not available 
until later in the preclinical development process, which 
means predicted PK properties can be factored into the 
lead selection process.

We believe that the work described herein represents 
the first attempt to predict mAb in vivo PK from in vitro 
data using a mechanistic PBPK model framework. This 
approach offers the potential to screen out mAbs with 
poor PK properties earlier in the drug discovery process 
compared to current approaches that rely heavily on in 
vivo data. To date the in vitro–in vivo relationships between 
AC-SINS and in vivo PK have been established based on 
a relatively small set of mAbs. Further work should focus 
on increasing the number of mAbs in this data  set and 
on finding more mechanistic relationships between in vitro 
and in vivo CL. The mechanistic nature of this PBPK model 
allows for a more informed translational strategy across 
species and offers a framework to incorporate additional 
processes such as target binding, “catch and release” tar-
get binding, and enhanced FcRn binding. Such applica-
tions should be explored further.

Supporting Information. Supplementary information accompa-
nies this paper on the CPT: Pharmacometrics & Systems Pharmacology 
website (www.psp-journal.com).

Supplementary Tables S1–S3 and PBPK Model Equations.
Model Code.

Acknowledgments. The authors wish to thank Denise M O’Hara, 
MengMeng Wang, and Laura Lin for useful discussions and/or oversight. 
The authors thank Amy Tam and Amy King for generating the AC-SINS 
data. The authors would also like to thank Joe Balthasar for useful dis-
cussions on this work while visiting Pfizer.

Funding. No funding was received for this work.

Conflict of Interest. H.M.J., A.M.B., R.W., L.B.A., L.E.K., H.N., and 
H.A.B. are (or were at the time this work was conducted) employees 
of Pfizer Inc. Z.Z., P.J., and H.L. are employees of RES Group Inc and 
conducted part of this work under contract with Pfizer Inc. All authors 
declared no other competing interests for this work.

Author Contributions. H.M.J., Z.Z., and P.J. wrote the manu-
script. All authors designed the research, performed the research, and 
analyzed the data.

 1. Kaplon, H. & Reichert, J.M. Antibodies to watch in 2018. MAbs 10, 183–203 
(2018).

 2. Deng, R., Iyer, S., Theil, F.P., Mortensen, D.L., Fielder, P.J. & Prabhu, S. Projecting 
human pharmacokinetics of therapeutic antibodies from nonclinical data: what 
have we learned? MAbs 3, 61–66 (2011).

 3. Dong, J.Q. et al. Quantitative prediction of human pharmacokinetics for monoclonal 
antibodies: retrospective analysis of monkey as a single species for first-in-human 
prediction. Clin. Pharmacokinet. 50, 131–142 (2011).

 4. Oitate, M. et al. Prediction of human pharmacokinetics of therapeutic monoclonal 
antibodies from simple allometry of monkey data. Drug Metab. Pharmacokinet. 26, 
423–430 (2011).

 5. Ling, J., Zhou, H., Jiao, Q. & Davis, H.M. Interspecies scaling of therapeutic mono-
clonal antibodies: initial look. J. Clin. Pharmacol. 49, 1382–1402 (2009).

 6. Avery, L.B. et al. Utility of a human FcRn transgenic mouse model in drug discovery 
for early assessment and prediction of human pharmacokinetics of monoclonal 
antibodies. MAbs 8, 1064–1078 (2016).

 7. Betts, A. et al. Linear pharmacokinetic parameters for monoclonal antibodies are 
similar within a species and across different pharmacological targets: a compari-
son between human, cynomolgus monkey and hFcRn Tg32 transgenic mouse using 
a population-modeling approach. MAbs 10, 751–764, (2018).

 8. Sampei, Z. et al. Identification and multidimensional optimization of an asymmetric 
bispecific IgG antibody mimicking the function of factor VIII cofactor activity. PLoS 
ONE 8, e57479 (2013).

 9. Wu, H. et al. Development of motavizumab, an ultra-potent antibody for the preven-
tion of respiratory syncytial virus infection in the upper and lower respiratory tract. 
J. Mol. Biol. 368, 652–665 (2007).

 10. Kelly, R.L. et al. Target-independent variable region mediated effects on antibody 
clearance can be FcRn independent. MAbs 8, 1269–1275 (2016).

 11. Avery, L.B. et al. Establishing in vitro in vivo correlations to screen monoclonal anti-
bodies for physicochemical properties related to favorable human pharmacokinet-
ics. MAbs 10, 244–255 (2018).

 12. Chung, S. et al. An in vitro FcRn- dependent transcytosis assay as a screening tool 
for predictive assessment of non-specific clearance of antibody therapeutics in 
humans. MAbs 11, 942–955 (2019).

 13. Liu, Y. et al. High-throughput screening for developability during early-stage an-
tibody discovery using self-interaction nanoparticle spectroscopy. MAbs 6, 483–
492 (2014).

 14. Kelly, R.L. et al. High throughput cross-interaction measures for human IgG1 anti-
bodies correlate with clearance rates in mice. MAbs 7, 770–777 (2015).

 15. Jain, T. et al. Biophysical properties of the clinical-stage antibody landscape. Proc. 
Natl Acad. Sci. USA 114, 944–949 (2017).

 16. Jones, H.M., Parrott, N., Jorga, K. & Lave, T. A novel strategy for physiologically based 
predictions of human pharmacokinetics. Clin. Pharmacokinet. 45, 511–542 (2006).

 17. Jones, H.M. et al. Simulation of human intravenous and oral pharmacokinetics of 
21 diverse compounds using physiologically based pharmacokinetic modelling. 
Clin. Pharmacokinet. 50, 331–347 (2011).

 18. Garg, A. & Balthasar, J.P. Physiologically-based pharmacokinetic (PBPK) model to 
predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J. Pharmacokinet. 
Pharmacodyn. 34, 687–709 (2007).

 19. Shah, D.K. & Betts, A.M. Towards a platform PBPK model to characterize the 
plasma and tissue disposition of monoclonal antibodies in preclinical species and 
human. J. Pharmacokinet. Pharmacodyn. 39, 67–86 (2012).

 20. Glassman, P.M. & Balthasar, J.P. Physiologically-based pharmacokinetic modeling 
to predict the clinical pharmacokinetics of monoclonal antibodies. J. Pharmacokinet. 
Pharmacodyn. 43, 427–446 (2016).

 21. Waldmann, T.A. & Terry, W.D. Familial hypercatabolic hypoproteinemia. A disor-
der of endogenous catabolism of albumin and immunoglobulin. J. Clin. Invest. 86, 
2093–2098 (1990).

 22. Wani, M.A. et al. Familial hypercatabolic hypoproteinemia caused by deficiency of 
the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc. 
Natl Acad. Sci. USA 103, 5084–5089 (2006).

 23. Davies, P.F. & Ross, R. Mediation of pinocytosis in cultured arterial smooth muscle and 
endothelial cells by platelet-derived growth factor. J. Cell Biol. 79, 663–671 (1978).

 24. Griffiths, G., Back, R. & Marsh, M. A quantitative analysis of the endocytic pathway 
in baby hamster kidney cells. J. Cell Biol. 109, 2703–2720 (1989).

 25. Chow, S.E., Lee, R.S., Shih, S.H. & Chen, J.K. Oxidized LDL promotes vascular 
endothelial cell pinocytosis via a prooxidation mechanism. FASEB J. 12, 823–830 
(1998).

 26. Urva, S.R., Yang, V.C. & Balthasar, J.P. Physiologically based pharmacokinetic model 
for T84. 66: a monoclonal anti-CEA antibody. J. Pharm. Sci. 99, 1582–1600 (2010).

 27. Bianconi, E. et al. An estimation of the number of cells in the human body. Ann Hum 
Biol 40, 463–471 (2013).

 28. Hahnfeldt, P., Panigrahy, D., Folkman, J. & Hlatky, L. Tumor development under 
angiogenic signaling: a dynamical theory of tumor growth, treatment response, and 
postvascular dormancy. Cancer Res. 59, 4770–4775 (1999).

 29. Chen, Y. & Balthasar, J.P. Evaluation of a catenary PBPK model for predicting the in 
vivo disposition of mAbs engineered for high-affinity binding to FcRn. AAPS J. 14, 
850–859 (2012).

 30. Fan, Y.Y., Avery, L.B., Wang, M., O'Hara, D.M., Leung, S. & Neubert, H. Tissue ex-
pression profile of human neonatal Fc receptor (FcRn) in Tg32 transgenic mice. 
MAbs 8, 848–853 (2016).

 31. Fan, Y.Y., Farrokhi, V., Caiazzo, T., Wang, M., O'Hara, D.M. & Neubert, H. Human 
FcRn tissue expression profile and half-life in PBMCs. Biomolecules 9, 373 (2019).

 32. Lauffenburger, D.A.L.J. Receptors: Models for Binding, Trafficking, and Signaling 
(Oxford University Press, New York, NY, 1993).

 33. Gagnon, P. Purification Tools for Monoclonal Antibodies (Validated Biosystems, 
Tucson, AZ, 1996).

 34. Yeung, Y.A. et al. Engineering human IgG1 affinity to human neonatal Fc receptor: 
impact of affinity improvement on pharmacokinetics in primates. J. Immunol. 182, 
7663–7671 (2009).

 35. Borrok, M.J. et  al. pH-dependent binding engineering reveals an FcRn af-
finity threshold that governs IgG recycling. J. Biol. Chem. 290, 4282–4290 
(2015).



747

www.psp-journal.com

PBPK Model for Monoclonal Antibody PK Prediction
Jones et al.

 36. Antohe, F., Radulescu, L., Gafencu, A., Ghetie, V. & Simionescu, M. Expression 
of functionally active FcRn and the differentiated bidirectional transport of IgG in 
human placental endothelial cells. Hum. Immunol. 62, 93–105 (2001).

 37. Ghetie, V., Hubbard, J.G., Kim, J.K., Tsen, M.F., Lee, Y. & Ward, E.S. Abnormally 
short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur. J. 
Immunol. 26, 690–696 (1996).

 38. Covell, D.G., Barbet, J., Holton, O.D., Black, C.D., Parker, R.J. & Weinstein, J.N. 
Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. 
Cancer Res. 46, 3969–3978 (1986).

 39. Baxter, L.T., Zhu, H., Mackensen, D.G. & Jain, R.K. Physiologically based pharma-
cokinetic model for specific and non-specific monoclonal antibodies and fragments 
in normal tissues and human tumor xenografts in nude mice. Cancer Res. 54, 
1517–1528 (1994).

 40. Ferl, G.Z., Wu, A.M. & DiStefano, J.J. 3rd. A predictive model of therapeutic mono-
clonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann. 
Biomed. Eng. 33, 1640–1652 (2005).

 41. Glassman, P.M. & Balthasar, J.P. Application of a catenary PBPK model to predict 
the disposition of “catch and release” anti-PCSK9 antibodies. Int. J. Pharm. 505, 
69–78 (2016).

 42. Jones, H.M., Mayawala, K. & Poulin, P. Dose selection based on physiologically 
based pharmacokinetic (PBPK) approaches. AAPS J. 15, 377–387 (2013).

 43. Fuhrmann, S., Kloft, C. & Huisinga, W. Impact of altered endogenous IgG on 
unspecific mAb clearance. J. Pharmacokinet. Pharmacodyn. 44, 351–374 
(2017).

© 2019 The Authors. CPT: Pharmacometrics & Systems 
Pharmacology published by Wiley Periodicals, Inc.   
on behalf of the American Society for Clinical 
Pharmacology and Therapeutics. This is an open ac-
cess article under the terms of the Creative Commons 
Attribution-NonCommercial License, which permits 
use, distribution and reproduction in any medium, 
provided the original work is properly cited and is not 
used for commercial purposes.

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/

