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Abstract
Background: Vitamin D status is associated with muscle strength and maintenance of 
muscle fibers. However, which serum vitamin D biomarker better reflects sarcopenia 
remains unclear. The aim of this study was to investigate associations between vari-
ous serum vitamin D biomarkers (total 25-hydroxy vitamin D [25(OH)D], bioavailable 
25(OH)D, 24,25-dihydroxyvitamin D [24,25(OH)2D], and vitamin D metabolite ratio 
[VMR]) and sarcopenia.
Methods: The data for 83 hip fracture patients were finally included in the analysis. 
Sarcopenia was defined according to the Asia Working Group for Sarcopenia (AWGS) 
criteria. Measurements of 24,25(OH)2D and 25(OH)D were made using solid-phase 
extraction (SPE) and subsequent liquid chromatography-tandem mass spectrometry 
(LC-MS/MS). Vitamin D binding protein (VDBP) concentration was measured using 
an enzyme-linked immunosorbent assay. The VMR was calculated by dividing serum 
24,25(OH)2D by serum 25(OH)D and then multiplying by 100. Based on total 25(OH)
D, VDBP, and albumin concentrations, bioavailable 25(OH)D concentrations were cal-
culated using the equations from the other previous studies.
Results: Bioavailable 25(OH)D levels were significantly (p = 0.030) decreased in the 
sarcopenia group compared with the non-sarcopenia group. Results of ROC analy-
sis for the diagnosis of sarcopenia using serum level of bioavailable of 25(OH)D re-
vealed that the cutoff point for bioavailable 25(OH)D was 1.70 ng/ml (AUC = 0.649, 
p < 0.001). In the group with a bioavailable 25(OH)D less than 1.70 ng/ml, the inci-
dence of sarcopenia increased by 3.3 times (odds ratio: 3.33, p = 0.013).
Conclusion: We demonstrated that bioavailable 25(OH)D was associated with sarco-
penia among the various serum vitamin D biomarkers. Bioavailable vitamin D might be 
helpful for assessing the risk of sarcopenia.
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1  |  INTRODUC TION

Vitamin D is mainly synthesized in the skin of people exposed to 
sunlight, and some can also be obtained from the diet. Vitamin 
D needs a two-step hydroxylation (25-hydroxylation and 1α-
hydroxylation) to be in its biologically active form. The first hy-
droxylation, 25-hydroxylation, occurs in the liver. The product, 
25-hydroxy vitamin D [25(OH)D], is transported to the kidneys 
bound to vitamin D binding protein (VDBP). It is converted to 1α, 
25-dihydroxyvitamin D (1α, 25(OH)2D), an active form of vitamin 
D in the kidney.1,2

It is well known that vitamin D primarily plays a critical role in 
the regulation of calcium homeostasis. Skeletal muscles may require 
vitamin D and calcium for normal development and maintenance of 
function. It was previously reported that vitamin D deficiency and 
inactivating mutations in vitamin D receptor (VDR) are associated 
with muscle weakness in humans and mouse models.3-5

Sarcopenia is an age-related clinical condition characterized by a 
gradual and generalized loss of skeletal muscle mass with a decrease 
in strength and physical capacity.6 It is considered to be one of the 
risk factors for adverse events in older people, including delirium, 
disability, institutionalization, and even death.78 Nowadays, there is 
an increasing trend in the prevalence of sarcopenia, which is proba-
bly related to an increase in human life expectancy.9

Vitamin D deficiency is common among older people around the 
world. Older people are particularly prone to the development of vi-
tamin D insufficiency or deficiency for following reasons: a reduced 
cutaneous synthesis in the skin, decreased daily sun exposure, and 
chronic diseases of organs related to vitamin D metabolism.9-11 
Many prospective studies have examined the role of vitamin D in 
muscle strength and physical performance of older adults.12-14 Roles 
of vitamin D and VDR in muscles have been well described in numer-
ous studies and reviews.4,15,16

Several vitamin D biomarkers have been suggested for evalu-
ating vitamin D status in the body. Commonly, vitamin D status is 
assessed by one measurement of serum 25(OH)D concentration. 
Generally used criteria for the evaluation of vitamin D status are 
as follows: vitamin D deficiency, <20  ng/ml; vitamin D insuffi-
ciency, 20–30 ng/ml; and vitamin D sufficiency, >30 ng/ml.2,17,18 
However, some recent studies have suggested that 25(OH)D alone 
may not reflect accurate vitamin D status.19-22 As alternative indi-
cators for assessing vitamin D status, bioavailable 25(OH)D, serum 
24,25-dihydroxyvitamin D (24,25(OH)2D), and the ratio of serum 
24,25(OH)2D to 25(OH)D known as vitamin D metabolite ratio 
(VMR) have been proposed.

Bioavailable 25(OH)D is a free or albumin-bound form of 25(OH)
D that is not bound to VDBP. Its concentration is affected by 
serum VDBP, albumin concentration, and also VDBP encoding GC 
gene genotype. VDBP concentration can be altered under various 
conditions. VDBP is increased under hyper-estrogen state such as 
pregnancy, whereas it is decreased in certain disease states includ-
ing severe hepatic disease.23-26 The GC gene encodes VDBP and 
two single nucleotide polymorphisms (SNPs), rs7041 and rs4588, 

generating three major polymorphic isoforms of VDBP: Gc1f, Gc1s, 
and Gc2.27,28 Since the affinity of VDBP for vitamin D is isoform-
dependent, the GC genotype plays an important role in determining 
serum bioavailable 25(OH)D levels.25,26,28

24,25(OH)2D is the major product of catabolism of 25(OH)
D. Because enzymatic synthesis of 24,25(OH)2D is directly pro-
portional to the concentration of 25(OH)D substrate, concentra-
tions of both metabolites in circulation are strongly correlated.29 
Furthermore, expression of 24-hydroxylase enzyme (CYP24A1) that 
converts 25(OH)D to 24,25(OH)2D is regulated in part by vitamin D 
receptor activity.30,31 Since the production of 24,25(OH)2D is reg-
ulated by the concentration of 25(OH)D and feedback through the 
vitamin D receptor, concentration of 24,25(OH)2D might be a better 
indicator of vitamin D status than 25(OH)D itself.32 Recent findings 
have also suggested that the adequacy of vitamin D may be reflected 
by VMR.22,33 This ratio also depend primarily on CYP24A1 expres-
sion, which is downregulated in vitamin D deficiency. Therefore, 
VMR could also be an alternative indicator that accurately reflects 
vitamin D status.

It is well known that vitamin D status is associated with muscle 
strength and maintenance of muscle fibers. However, which serum 
vitamin D biomarker better reflects sarcopenia remains unclear. 
Therefore, the objective of the present study was to investigate 
the relationship between various vitamin D biomarkers including 
25(OH)D, bioavailable vitamin D, 24,25(OH)2D, and VMR through 
patients with sarcopenia control study in order to elucidate which 
biomarkers may better reflect sarcopenia.

2  |  MATERIAL S AND METHODS

2.1  |  Study subjects

Data of 213 patients after a hip fracture (HF) surgery from May 
2018 to December 2019 were collected. To diagnose sarcopenia 
according to Asian Working Group for Sarcopenia (AWGS) criteria, 
patients younger than 65 years (n = 57) and the patients who had 
no data for skeletal muscle mass (n  =  49) or hand grip strength 
(n = 24) were excluded. After these exclusions, a total of 83 HF 
patients (sarcopenia, n = 36; non-sarcopenia, n = 47) were finally 
included in the analysis. The study design is displayed in the flow 
diagram in Figure 1.

Demographic and laboratory data including age, sex, height, 
weight, serum albumin, calcium, parathyroid hormone, alkaline 
phosphatase, aspartate aminotransferase, and alanine amino-
transferase were collected from electronic medical records. At 
the time of study enrollment, blood samples including serum and 
whole blood were collected. Serum and leukocytes were then 
separated and stored at −80°C deep freezer until analysis. The 
study protocol was approved by the Institutional Review Board 
(IRB) of Gyeongsang National University Hospital (IRB number: 
2017-12-004). Written informed consent was obtained from all 
the participants.
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2.2  |  Diagnosis of sarcopenia

Body composition was measured using a whole-body dual X-ray ab-
sorptiometry (DEXA), for which a QDR 4500A apparatus (Hologic) 
was employed. Bone mineral content, fat mass, and lean soft tissue 
mass were measured separately for each part of the body, includ-
ing arms and legs. Lean soft tissue masses of arms and legs were 
almost equal to skeletal muscle mass. Absolute muscle mass is 
known to correlate with height. Thus, skeletal muscle mass index 
(SMI) was calculated with the following formula: lean mass (kg)/
height2 (m2), which was directly analogous to body mass index (BMI: 
weight [kg]/height2[m2]). Arm SMI was defined as (arm lean mass 
[kg]/height2[m2]). Leg SMI was defined as (leg lean mass [kg]/height2 
[m2]). Appendicular SMI was defined as the sum of arm and leg SMIs.

Muscle strength was assessed by handgrip strength using an 
analogue dynamometer (TK 5001 Grip-A; Takei). In a sitting po-
sition, grip with maximal strength was measured when the elbow 
was flexed at 90 degrees with the shoulder attached to the torso 
and the wrist maintaining a neutral posture (0 degrees). Sarcopenia 
was defined according to the AWGS criteria for low muscle strength 
(hand grip strength below 18 kg in women and 28 kg in men) and low 
muscle mass (SMI below 5.4 kg/m2 in women and 7.0 kg/m2 in men).

2.3  |  Vitamin D measurements

Measurements of 24,25(OH)2D and 25(OH)D were made using 
solid-phase extraction (SPE) and subsequent liquid chromatography-
tandem mass spectrometry (LC-MS/MS), as described by van den 
Ouweland et al.34 with slight modifications. Following the addition 
of the internal standard, stable isotope-labeled d6-24,25(OH)2D 
and d6-25(OH)D to 200 μl of serum sample, methanol was added, 

vortex-mixed, and then kept for 10 min at 4°C for protein precipita-
tion. After centrifugation at 4°C at 12,000 g for 10 min, the super-
natant was mixed with phosphate-buffered saline and loaded onto 
an SPE cartridge. After performing SPE, the elution fraction was 
evaporated under a vacuum. The dried residue was reconstituted 
in 75% methanol, and then, 5 μL was injected into the LC-MS/MS 
system for analysis. The LC-MS/MS system consisted of an Agilent 
1260 HPLC system (Agilent Technologies) with an Agilent 6460 tri-
ple quadrupole mass spectrometer (Agilent Technologies) equipped 
with an electrospray ionization (ESI) source. Kinetex® Biphenyl col-
umn (2.6 μm, 3.0 × 100 mm; Phenomenex) and Poroshell® 120 EC-C 
18 column (2.7 μm, 3.0 × 50 mm; Agilent Technologies) were used 
for HPLC separation of 24,25(OH)2D and 25(OH)D, respectively. 
The HPLC mobile phase consisted of 0.1% aqueous formic acid and 
methanol, and a gradient program was used at a flow rate of 0.4 ml/
min. The multiple reaction monitoring (MRM) detection method was 
used for the detection of analytes. Transitions monitored were m/z 
417 → 381 for 24,25(OH)2D, m/z 423 → 387 for d6-24,25(OH)2D, 
m/z 401 → 383 for 25(OH)D, and m/z 407 → 389 for d6-25(OH)D. 
The limits of quantitation of 24,25(OH)2D and 25(OH)D were 0.2 
and 2 ng/ml, respectively.

2.4  |  VDBP assay and GC genotyping

Vitamin D binding protein concentration was measured using an 
enzyme-linked immunosorbent assay (ELISA) kit (R&D Systems) ac-
cording to the manufacturer's protocol.

For GC gene genotyping, genomic DNA was isolated from periph-
eral blood leukocytes using a DNeasy Blood and Tissue Kit (Qiagen) 
according to the manufacturer's instructions. GC genotyping for 
rs7041 (c.1296T > G; p. Asp432Glu) and rs4588 (c.1307C > A; p. 
Thr436Lys) was performed using a TaqMan SNP Genotyping Assay 
(Thermo Fisher Scientific) and an ABI ViiA 7 Real-Time PCR System 
(Applied Biosystems) according to each manufacturer's instructions 
and described in the previous study.35

2.5  |  Calculation of VMR and bioavailable 25(OH)D 
concentration

Vitamin D metabolite ratio was calculated by dividing serum 
24,25(OH)2D by serum 25(OH)D and then multiplying by 100.

32 
Bioavailable 25(OH)D concentrations were calculated using the 
equations reported in previous studies with serum 25(OH)D, VDBP, 
albumin concentrations, and GC genotype.35,36

2.6  |  Statistical analysis

The sample size was calculated to be 66 considering an expected 
sensitivity of 90%, an expected specificity of 50%, a disease prev-
alence of 35%, an acceptable precision of 15%, and a significance 

F I G U R E  1 Flow diagram of patients involved in the study
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level of 0.05. Finally, we decided to recruit more than 83 subjects, 
considering a dropout rate of 20%.37

To compare means and proportions of each group, Student's t 
test and chi-squared (χ2) test were employed. The Pearson correla-
tion test was used for correlation analysis. A receiver operating char-
acteristic (ROC) curve analysis was also performed to identify the 
cutoff value for diagnosis of sarcopenia using bioavailable 25(OH)
D. All statistical tests were two-tailed. Statistical significance was 
defined at p < 0.05. All statistical calculations were performed using 
SPSS Statistics V.22 (SPSS Inc.) and software R (v 3.1.0; The R 100 
Foundation).

3  |  RESULTS

3.1  |  Demographic characteristics and laboratory 
test results

A total of 83 patients were enrolled (35 in the sarcopenia group 
and 48 in the non-sarcopenia group). The age of patients was 
74.1  ±  12.3  years in the sarcopenia group and 70.7  ±  10.0  years 
in the non-sarcopenia group. The male-to-female ratio was 0.59 in 
the sarcopenia group and 0.33 in the non-sarcopenia group. Among 
demographic characteristics, age, sex, height, and weight were not 
significantly different between the two groups (sarcopenia vs. non-
sarcopenia). Among laboratory test results, serum levels of albumin, 
calcium, alkaline phosphatase, aspartate aminotransferase (AST), 
and alanine aminotransferase (AST) were not significantly differ-
ent either between the two groups (sarcopenia vs. non-sarcopenia). 
However, parathyroid hormone (PTH) was significantly higher in 
the non-sarcopenia group than in the sarcopenia group (p = 0.015). 
Demographic characteristics and laboratory test results of patients 
are shown in Table 1.

3.2  |  Comparison of serum vitamin D biomarkers 
by the presence of sarcopenia

Bioavailable 25(OH)D levels were significantly (p = 0.030) decreased 
in the sarcopenia group than in the non-sarcopenia group (Table 2). 
Levels of 24,25(OH)2D were decreased with marginally significance 
(p = 0.087) in the sarcopenia group than in the non-sarcopenia group. 
Total 25(OH)D, VDBP, and VMR were not significantly different be-
tween the two groups (sarcopenia vs. non-sarcopenia) (Table 2).

3.3  |  Vitamin D status according to total 25(OH)D

Based on total 25(OH)D level, the status of vitamin D by deficiency, 
insufficiency, and sufficiency was evaluated in total, non-sarcopenia, 
and sarcopenia groups (Figure 2). In total patients, numbers of pa-
tients with vitamin D deficiency, insufficiency, and sufficiency were 
46 (55.4%), 24 (28.9%), and 13 (15.7%), respectively. In the sarcopenia 

group, numbers of patients with vitamin D deficiency, insufficiency, 
and sufficiency were 22 (62.9%), 8 (22.9%), and 5 (14.3%), respec-
tively. In the non-sarcopenia group, numbers of patients with vita-
min D deficiency, insufficiency, and sufficiency were 24 (50.0%), 16 
(33.3%), and 8 (16.7%), respectively. The ratio of vitamin status was 
not significantly (p = 0.485) different between the two groups.

3.4  |  Correlation analysis of variables associated 
with sarcopenia

Correlation analysis was performed with indicators related to sar-
copenia and various vitamin D biomarkers. Results are shown in 
Figure 3. There were no statistically significant correlations between 
indicators related to sarcopenia and vitamin D biomarkers.

3.5  |  Receiver operating characteristic curve 
analysis for the diagnosis of sarcopenia using 
bioavailable 25(OH)D

Receiver operating characteristic curve analysis was performed 
for the diagnosis of sarcopenia using serum levels of bioavailable 
of 25(OH)D. Results of ROC curve analysis showed that the cut-
off point for bioavailable 25(OH)D was 1.70 ng/ml (AUC =  0.649, 
p < 0.001) (Figure 4). ROC curve analysis produced an AUC of 0.649 
(95% confidence interval: 0.23–0.47; p  =  0.021). The cutoff value 
of bioavailable 25(OH)D for maximum sensitivity (62.50%) and 
specificity (68.60%) was 1.70 ng/ml (Figure 4). In the group with a 

TA B L E  1 Patient demographics and laboratory test results for 
the two study groups

Sarcopenia
(n = 35)

Non-sarcopenia
(n = 48)

p 
Value

Age (years) 74.1 ± 12.3 70.7 ± 10.0 0.169

Sex

Male 13 (37.1%) 12 (25.0%) 0.234

Female 22 (62.9%) 36 (75.0%)

Height (cm) 154.6 ± 21.7 155.6 ± 10.1 0.770

Weight (kg) 53.6 ± 8.3 56.7 ± 9.9 0.142

BMI (kg/cm2) 23.1 ± 3.3 27.1 ± 31.9 0.082

Albumin (g/dl) 4.0 ± 0.5 4.2 ± 0.5 0.111

PTH (pg/ml) 33.9 ± 44.3 44.3 ± 20.6 0.015

Calcium (mg/dl) 7.1 ± 7.9 7.9 ± 3.5 0.343

ALP (U/L) 105.8 ± 42.2 104.4 ± 49.9 0.894

AST (U/L) 21.7 ± 8.1 21.7 ± 8.1 0.995

ALT (U/L) 14.4 ± 6.8 15.6 ± 7.5 0.480

Note: Data were presented as mean ± standard deviation or number 
(percentage).
Abbreviations: ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; BMI, body mass 
index; PTH, parathyroid hormone.
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bioavailable 25(OH)D less than 1.70 ng/ml, the incidence of sarcope-
nia increased by 3.3 times (odds ratio: 3.33; 95% confidence interval: 
1.32–8.39; p = 0.013).

3.6  |  Genotype and allele frequencies of GC gene 
encoding VDBP

In total study subjects, Gc1f-1f (n = 25, 30.1%) was the most geno-
type, followed by Gc1s-1f genotype (n  =  22, 26.5%) and Gc2-1f 
genotype (n = 19, 22.9%). The three most frequent genotypes were 
in the order of Gc1s-1f > Gc1f-1f > Gc2-1f in the sarcopenia group 
and Gc1f-1f > Gc2-1f > Gc1s-1f in non-sarcopenia group. There was 
no significant difference in genotype distribution and frequency be-
tween the two groups (p = 0.532; Table 3). In total study patients, 
Gc1f (n = 91, 54.8%) was the most common allele, followed by Gc1s 
(n = 40, 24.1%) and Gc2 (n = 35, 21.1%) The three most frequent 

alleles were in the order of Gc1f > G1s > Gc2 in both sarcopenia and 
non-sarcopenia groups. There was no significant difference in allele 
distribution between the two groups (p = 0.785; Table 3).

4  |  DISCUSSION

In addition to the currently commonly used total 25(OH)D, various 
other biomarkers have been suggested as an indicator for evaluating 
vitamin D status. The newly proposed vitamin D biomarkers include 
bioavailable vitamin D, 24,25(OH)2D, and VMR.

25,29 Many previ-
ous studies have evaluated serum vitamin D levels with sarcopenia. 
However, these studies analyzed correlations of serum total 25(OH)
D with sarcopenia.38-40 In this study, associations between vari-
ous serum vitamin D biomarkers, including 25(OH)D, bioavailable 
vitamin D, 24,25(OH)2D, and VMR, and sarcopenia were analyzed. 
Results demonstrated that bioavailable vitamin D was associated 
with sarcopenia and could be the best biomarker reflecting sarcope-
nia among all serum vitamin D biomarkers tested. To the best of our 
knowledge, the present study is the first research to analyze various 
serum biomarkers simultaneously in sarcopenia patients.

In this study, the enrolled patient group was classified into two 
groups, sarcopenia and non-sarcopenia, and various vitamin D bio-
markers were compared in the two groups. Total 25(OH)D levels 
showed no significant difference between sarcopenia and non-
sarcopenia groups. However, bioavailable 25(OH)D level was signifi-
cantly lower in the sarcopenia group. The bioavailable vitamin D is 
either free or weakly bound to albumin, not bound to the vitamin D 
transporter, VDBP. Therefore, bioavailable vitamin D is considered 
to be a vitamin D that exhibits an immediate response of vitamin 
D because it is relatively easier to move into the nucleus of target 
cells by binding to vitamin D receptors than in the form combined 
with VDBP.23,24 This mechanism of action was asserted by the “free 
hormone hypothesis” suggested by the mechanism of action of 
other steroid hormones having a steroid structure such as vitamin 
D. According to this hypothesis, most of the steroid hormones are 
bound to the binding proteins that act as transporters in the blood; 
thus, they do not exhibit biological activity, and free hormones that 
do not bind to the binding proteins represent biological impor-
tance.41,42 Results of the present study may support this free hor-
mone hypothesis about vitamin D. In addition, our findings suggest 
that it would be more appropriate to evaluate the vitamin D status 
in patients with suspected sarcopenia, not as bioavailable vitamin D, 
rather than total 25(OH)D.

Considering results of previous studies on the role of vitamin D 
in the differentiation and maintenance of muscle fibers,43,44 it could 
be assumed that low concentration of bioavailable vitamin D may 
influence the onset of sarcopenia. Therefore, concentration of bio-
available vitamin D could be used to assess the risk of sarcopenia. 
Studies on the usefulness of bioavailable 25(OH)D in many different 
diseases are actively underway; however, the reference range for 
using bioavailable 25(OH)D as a clinical indicator or the cutoff value 
for diagnosis of specific diseases has not been established. In the 

TA B L E  2 Level of serum vitamin D biomarkers by presence of 
sarcopenia

Sarcopenia
(n = 35)

Non-sarcopenia
(n = 48)

p 
Value

Total 25(OH)D 
(ng/ml)

19.21 ± 10.82 22.31 ± 10.15 0.185

VDBP (µg/ml) 258.22 ± 84.66 281.64 ± 90.84 0.236

Bioavailable 
25(OH)D 
(ng/ml)

1.70 ± 0.87 2.18 ± 1.06 0.030

24,25(OH)2D 
(ng/ml)

0.91 ± 0.73 1.21 ± 0.77 0.087

VMR 4.21 ± 2.04 4.36 ± 2.03 0.741

Note: Data were presented as mean ± standard deviation.
Abbreviations: 24,25(OH)2D, 24,25-dihydroxyvitamin D; 25(OH)D, 
25-hydroxy vitamin D; VDBP, vitamin D binding protein; VMR, vitamin 
D metabolite ratio.

F I G U R E  2 Proportion of subjects according to vitamin D status 
based on total 25(OH)D concentration; sufficient (≥30 ng/ml); 
insufficient (20–29 ng/ml); and deficient (≤20 ng/ml). 25(OH)D, 
25-hydroxy vitamin D
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present study, we suggested bioavailable vitamin D concentration 
of 1.70  ng/ml as a cutoff value for assessing the risk of develop-
ing sarcopenia. In fact, in our study, when odds ratio analysis was 
performed based on bioavailable 25(OH)D concentration, it was 
confirmed that the relative risk for sarcopenia increased by 3.3 
times compared with 1.70 ng/ml or more for less than 1.70 ng/ml. 
However, in ROC curve analysis with bioavailable 25(OH)D 1.70 ng/
ml as cutoff for the diagnosis of sarcopenia, AUC was only 0.649. 
Therefore, bioavailable 25(OH)D alone has limitations in diagnosing 
sarcopenia. However, it implies that it could be used as an auxiliary 
criterion to predict the risk of sarcopenia. However, it is difficult to 
draw a conclusive conclusion that is clinically useful based on find-
ings of this study alone. More well-designed and large-scale studies 
will be required.

In the present study, VDBP concentration was 271.74 ± 88.52 µg/
ml (mean ±  SD) for all subjects enrolled, which was significantly 
(p  <  0.0001) higher than that in a previously reported VDBP 

concentration of 166.47 ± 36.36 µg/ml in healthy people.35 VDBP is 
an acute-phase reactant. Its concentration is known to increase after 
trauma due to increases in cytokine and glucocorticoid.45 Therefore, 
it was thought that VDBP level was increased in patients with hip 
fractures as participants of our study than that in the healthy control 
group. In fact, in our study, serum VDBP levels did not show statisti-
cally significant differences between sarcopenia and non-sarcopenia 
groups, although bioavailable 25(OH)D levels were different be-
tween the two groups. It was known that factors affecting bioavail-
able 25(OH)D level were serum total 25(OH)D, albumin, VDBP level, 
and VDBP genotype.35,36 However, in the present study, these fac-
tors were not significantly different between the two groups (sarco-
penia vs. non-sarcopenia). Other factors not yet known might have 
influenced bioavailable 25(OH)D level. Therefore, further research is 
needed to clarify finding of the present study.

Vitamin D deficiency is common in the older population all over 
the world. Older patients are particularly vulnerable to the develop-
ment of vitamin D insufficiency or deficiency for some causes such 
as a reduced cutaneous synthesis, decreased daily sun exposure, 
and/or various diseases such as chronic renal failure and gastroin-
testinal malabsorption.10 In this study, the elderly with an average 
age of 72.1 years showed a high rate of vitamin D deficiency or de-
ficiency of 84.3% in all patients. In the sarcopenia group, the rate of 
subjects with vitamin D deficiency was higher than that of the non-
sarcopenia group, although the difference between the two was not 
statistically significant (82.8% vs. 83.3%, p = 0.173).

Major GC genotype and allele frequencies are known to vary 
among ethnicities.28 GC allele frequencies in Koreans have been re-
ported in 203 patients with chronic obstructive pulmonary disease 
and 157 control subjects.46 In the present study, Gc1f-Gc1f (30.1%) 
was the most frequent genotype, followed by Gc1s-Gc1f (26.5%), 
Gc2-Gc1f (22.9%), and Gc2- Gc1s (12.1%), consistent with frequen-
cies observed in the previous study.46 GC genotype and allele fre-
quency failed to have any significant correlation with the presence 
or absence of sarcopenia.

F I G U R E  3 Correlogram of variables 
associated with sarcopenia. 24,25(OH)2D, 
24,25-dihydroxyvitamin D; 25(OH)D, 
25-hydroxy vitamin D; VDBP, vitamin 
D binding protein; VMR, vitamin D 
metabolite ratio

F I G U R E  4 ROC curve analysis for the diagnosis of sarcopenia 
using bioavailable 25(OH)D. 25(OH)D, 25-hydroxy vitamin D; ROC, 
receiver operating characteristic
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The association between vitamin D and sarcopenia has been 
explored in various ways in many studies.4,47-50 The mechanism of 
action of vitamin D on target cells, including skeletal muscle cells, 
can be divided into two stages.51 The first stage is the stage until 
vitamin D present in the general circulation binds to VDR of the tar-
get cell, and the second stage is the downstream action stage that 
occurs after binding to the VDR. The present study analyzed the 
association between serum vitamin D levels and sarcopenia, the first 
of the two stages above. Research on the second stage is also being 
actively performed. Studies have shown that VDR levels in skeletal 
muscle of older adults decrease with age and are lower than those 
of younger peoples.47,48 Furthermore, it has also been reported that 
the polymorphism of VDR gene is associated with sarcopenia.48,52 To 
further clarify the relationship between vitamin D and sarcopenia, 
both steps mentioned above should be considered due to the mech-
anism of action of vitamin D on skeletal muscle cells.

The present study has three main limitations. First, since all 
enrolled study subjects were patients with hip fractures, the in-
fluence of vitamin D–related factors by fracture could not be ex-
cluded. Therefore, subjects may not represent general sarcopenia 
patients. Second, environmental factors that could affect vitamin D 
concentration, including food, outdoor activity period, use of sun-
screen, and vitamin D supplement intake, were not surveyed. Third, 
our study enrolled a total of 83 patients, including 35  sarcopenia 
patients, with a relatively small number of subjects. Because of the 
small sample size, it might not be possible to clarify the association 
between VDBP polymorphic isoform and sarcopenia. Due to these 
limitations, it was impossible to eliminate all confounding factors in 
the analysis of various vitamin D status biomarkers. Despite these 
limitations, this was the first report showing that bioavailable 25(OH)
D was associated with sarcopenia. It could better reflect sarcopenia 
than other vitamin D biomarkers.

In summary, among various serum vitamin D biomarkers, bio-
available 25(OH)D was associated with sarcopenia. Thus, bioavail-
able vitamin D might be used as an auxiliary marker for assessing the 
risk of sarcopenia.
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