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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global
pandemic of novel coronavirus disease (COVID-19). Though vaccines and neutralizing
monoclonal antibodies (mAbs) have been developed to fight COVID-19 in the past year,
one major concern is the emergence of SARS-CoV-2 variants of concern (VOCs). Indeed,
SARS-CoV-2 VOCs such as B.1.1.7 (UK), B.1.351 (South Africa), P.1 (Brazil), and
B.1.617.1 (India) now dominate the pandemic. Herein, we found that binding activity
and neutralizing capacity of sera collected from convalescent patients in early 2020 for
SARS-CoV-2 VOCs, but not non-VOC variants, were severely blunted. Furthermore, we
observed evasion of SARS-CoV-2 VOCs from a VH3-30 mAb 32D4, which was proved to
exhibit highly potential neutralization against wild-type (WT) SARS-CoV-2. Thus, these
results indicated that SARS-CoV-2 VOCs might be able to spread in convalescent
patients and even harbor resistance to medical countermeasures. New interventions
against these SARS-CoV-2 VOCs are urgently needed.
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INTRODUCTION

As the causative agent of COVID-19, SARS-CoV-2 has caused a global pandemic with more than
211.28 million cases and 4.42 million fatalities as of August 24, 2021 (1). The SARS-CoV-2 utilizes
its spike (S) protein, including the surface subunit S1 and the transmembrane subunit S2, for
receptor binding and virus entry. Specifically, the S1 domain binds to the cellular receptor
angiotensin-converting enzyme 2 (ACE2) via its receptor binding domain (RBD). The
engagement of ACE2 with RBD further leads to the shedding of S1 subunit from S2 subunit,
which promotes S2-mediated virus–host membrane fusion and virus entry (2, 3). Given the critical
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role of RBD protein in initiating SARS-CoV-2 infection, it
becomes one primary target of neutralizing antibodies elicited
by both natural infection and vaccination (4–6).

However, one major concern is the emergence of SARS-CoV-2
variants of concern (VOCs), in particular, with mutation(s) located
in the RBD region (7, 8). These SARS-CoV-2 VOCs threaten efforts
to contain the COVID-19 pandemic and include B.1.1.7 (N501Y in
RBD) (9), B.1.351 (K417N, E484K, and N501Y in RBD) (10), P.1
(K417T, E484K and N501Y in RBD) (11), and B.1.617.1 (L452R
and E484Q in RBD) (12). Indeed, these SARS-CoV-2 VOCs harbor
transmission advantage over non-VOC variants and account more
than 90% of currently sequenced SARS-CoV-2 viruses (8). To
address the potential neutralization escape caused by these
mutations in RBD, we analyzed the binding activity and
neutralizing capacity of serum collected from a cohort of
convalescent patients with different clinical symptoms in early
2020 against SARS-CoV-2 VOCs as well as non-VOC variants. In
addition, we profiled the neutralizing capacity of one previously
reported VH3-30 monoclonal antibody (mAb) against SARS-CoV-
2 VOCs and non-VOC variants.
MATERIALS AND METHODS

Human Samples
We enrolled a cohort of 28 convalescent COVID-19 patients
with severe (n = 11), moderate (n = 9), and mild/asymptomatic
(n = 8) symptoms upon being admitted to Guangzhou Eighth
People’s Hospital. All COVID-19 patients were positive for
SARS-CoV-2 virus RNA qPCR test upon hospital admission.
COVID-19 patients were diagnosed as severe when meeting at
least one of the following conditions: (1) RR ≥ 30/min, (2) PaO2/
FiO2 ≤ 300 mmHg, (3) SpO2 ≤ 93%, and (4) imageological
evidence of significant progress (>50%) in 24–48 h. COVID-19
patients with moderate symptoms were diagnosed by respiratory
symptoms, fever, and imageological evidence of pneumonia. The
mild COVID-19 patients were diagnosed by inapparent clinical
symptoms and no imageological evidence of pneumonia. The
asymptomatic COVID-19 patients were those who show no
clinical symptoms. These patients were enrolled 15 to 32 days
after symptom onset (January to March 2020); the medium age
was 58 [43–64, interquartile range (IQR)] years; 60.7% were
female; serum was collected from patients during convalescence
and the time between symptom onset to serum sample collection
was 23 (15–32, IQR) days. Healthy control subjects were six adult
participants in the study. All the healthy control subjects were
negative for SARS-CoV-2 virus RNA qPCR test upon blood-
sampling collection (Supplementary Table S1). Sera were
collected from blood without sodium citrate treatment and
stored in aliquots at −80°C. The study received IRB approvals
at Guangzhou Eighth People’s Hospital (KE202001134).

Enzyme Linked Immunosorbent Assay
Fifty nanograms of SARS-CoV-2 RBD proteins of WT strain
(Sino Biological, 40592-V08H), B.1.1.7 (Sino Biological, 40592-
V08H82), P.1 (Sino Biological, 40592-V08H86), B.1.351 (Sino
Frontiers in Immunology | www.frontiersin.org 2
Biological, 40592-V08H85), and B.1.617.1 (Sino Biological,
40592-V08H88) as well as RBD proteins with point mutation
such as W436R (Sino Biological, 40592-V08H9), F342L (Sino
Biological, 40592-V08H6), V483A (Sino Biological, 40592-
V08H5), K458R (Sino Biological, 40592-V08H7), A435S (Sino
Biological, 40592-V08H4), N354D (Sino Biological, 40592-
V08H2), G476S (Sino Biological, 40592-V08H8), and V367F
(Sino Biological, 40592-V08H1) in 50 ml PBS per well was coated
on ELISA plates overnight at 4°C. Then, the ELISA plates were
blocked for 1 h with blocking buffer (5% FBS plus 0.05% Tween
20). Next, fivefold serially diluted mAbs or fivefold serially
diluted patient sera were added to each well in 50 ml of
blocking buffer for 1 h. After washing with PBST, the bound
antibodies were incubated with anti-human IgG HRP detection
antibody (Bioss Biotech) for 45 min, followed by washing with
PBST and then reacting with TMB (Beyotime). The ELISA plates
were allowed to react for 5 min and then stopped by 1 M H2SO4

stop buffer. The optical density (OD) value was determined at
450 nm. Concentration for 50% of maximal effect (EC50) was
calculated by using nonlinear regression.

ELISA-Based Receptor-Binding
Inhibition Assay
Two hundred nanograms of hACE2 protein (Sino Biological,
10108-H05H) in 50 ml PBS per well was coated on ELISA plates
overnight at 4°C. Then, the ELISA plates were blocked for 1 h
with blocking buffer (5% FBS plus 0.05% Tween 20); meanwhile,
threefold serial diluted mAbs or twofold diluted patient sera were
incubated with 0.2 mg/ml SARS-CoV-2 RBD protein for 1 h.
Then, the incubated mixtures were added to ELISA plates and
allowed to develop for 1 h, followed by PBST washing and anti-
His HRP antibody (Sino Biological, 105327-MM02T-H)
incubating for 45 min. Next, the ELISA plates were washed
with PBST and added with TMB (Beyotime). After 5 min, the
ELISA plates were stopped and determined at 450 nm. The half
maximal inhibitory concentration (IC50) was determined by
using four-parameter logistic regression.

SARS-CoV-2 Pseudovirus Neutralization
Assay
For neutralization experiments, SARS-CoV-2 pseudotype
particles were pre-incubated with serial diluted convalescent
sera or mAbs for 1 h at 37°C. Then, hACE2-expressing HEK-
293T (hACE2/293T) cells were incubated with the mixtures
overnight and then cultured with fresh media. At 48 h after
the mixture incubation, the luciferase activity of SARS-CoV-2
typed pseudovirus-infected hACE2/293T cells were measured by
a luciferase reporter assay kit (Promega, E1910).

Statistics
The SARS-CoV-2 RBD antibody titers, the virus neutralizing
function of the sera belonging to patients, and the virus
neutralizing function of mAb 32D4 were compared with the
one-way ANOVA test. p-values less than 0.05 were defined as
statistically significant. GraphPad Prism version 6.0 software was
used for statistical analysis.
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RESULTS

Reduced Titer of Sera Antibodies Specific
for SARS-CoV-2 VOC RBD in Individuals
Recovered From WT SARS-CoV-2
Infection
Firstly, we examined the binding activity of antibodies that
specifically bind to the RBD protein of WT SARS-CoV-2 strain
and the mutated RBD proteins of SARS-CoV-2 VOCs (including
B.1.1.7, B.1.351, P.1, and B.1.617.1) (Figure 1A) in the
convalescent sera of WT SARS-CoV-2-infected patients (early
2020) by IgG ELISA. Notably, we found a significantly lower
binding activity of antibodies specific for B.1.351, P.1, and
B.1.617.1 RBDs but not B.1.1.7 RBD when compared to those
of the WT one in the group of convalescent COVID-19 patients
with severe illness (Figure 1B). This feature was less pronounced
when extended to convalescent COVID-19 patients with
moderate or mild/asymptomatic illness (Figures 1C–E), which
might be due to the suboptimal tonic RBD-specific antibodies in
these patients (4, 13). Consistently, binding ability of
convalescent sera from COVID-19 patients with severe illness
Frontiers in Immunology | www.frontiersin.org 3
against SARS-CoV-2 VOCs, albeit blunted, was superior to those
of COVID-19 patients with moderate or mild/asymptomatic
illness (Supplementary Figures S1A–E). Therefore, these
results suggest a crucial role of residues N501, E484, L452, and
K417 in epitope regions of high-affinity antibodies specific for
SARS-CoV-2 RBD.

Reduced Neutralization Against SARS-
CoV-2 VOCs by Convalescent Sera Elicited
by WT SARS-CoV-2 Infection
We then assessed the neutralizing capacity of convalescent sera
from WT SARS-CoV-2-infected patients with severe illness by
ELISA-based RBD-ACE2 binding inhibition assays and
pseudovirus neutralization assays as previously described (4,
14). Neutralization against B.1.1.7 by convalescent sera was
slightly less efficient as compared to that against WT
(Figures 1F, G), which might be due to higher ACE2 binding
ability observed in B.1.1.7 (Figure 1H). However, the
neutralizing potency of convalescent sera against B.1.351, P.1,
and B.1.617.1 was significantly reduced when compared to that
against WT (Figures 1F, G). Given the comparable ACE2
A B
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FIGURE 1 | Neutralization of SARS-CoV-2 VOCs by convalescent sera. (A) Schematic diagram showing the location of mutations of SARS-CoV-2 VOCs in the
context of RBD protein domain. RBD, receptor binding domain; RBM, receptor binding motif; TD, transmembrane domain. (B–E) ELISA binding assay of COVID-19
convalescent patient sera (B–D) or healthy donor sera (E) to ELISA plate coating of RBD proteins of SARS-CoV-2 and its mutated variants as indicated. AUC, area
under the curve. (F) COVID-19 convalescent patient serum-mediated inhibition of indicated RBD proteins binding to ACE2 protein by ELISA. NT50, neutralizing titer
50. (G) COVID-19 convalescent patient serum-mediated neutralization of indicated SARS-CoV-2 pseudoviruses. NT50, neutralizing titer 50. (H) ELISA binding assay
of ACE2 to indicated RBD proteins. EC50, concentration for 50% of maximal effect. The data are representative of at least two independent experiments. *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001. Not significant, ns. Error bars in (H) indicate SD.
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binding ability between WT and VOCs (including B.1.351, P.1,
and B.1.617.1) (Figure 1H), the noticeable resistance of these
VOCs to convalescent sera was likely caused by the lack of
binding ability to the RBD with E484K, L452R, and K417N/T
mutations (Figure 1B). Thus, SARS-CoV-2 VOCs may partially
evade the neutralization by antibodies elicited by the WT
strain infection.

Similar Binding Activity and Neutralizing
Capacity of Convalescent Sera for
SARS-CoV-2 Non-VOC Variants
Considering a substantial transmission disadvantage of
SARS-CoV-2 non-VOC variants in the COVID-19 pandemic
(15), we next sought to analyze the neutralizing potency of
convalescent sera against non-VOC variants with a different
RBD mutation, including F342L, N354D, V367F, A435S,
W436R, K458R, G476S, and V483A (Figure 2A). We found it
of particular interest that the binding and neutralizing ability of
specific antibodies in convalescent serum for the RBD of SARS-
CoV-2 non-VOC were not weaker than those for the WT RBD
(Figures 2B, C). This finding indicates minimal influences of
these mutations to the neutralizing activity of SARS-CoV-2
RBD-targeted mAbs and also excludes the possibility that the
SARS-CoV-2 pandemic shifts to these non-VOC variants.

Neutralization Sensitivity of a VH3-30 mAb
32D4 to SARS-CoV-2 Variants
Finally, we set out to determine the neutralizing capacity of 32D4
mAb on these SARS-CoV-2 variants. The 32D4 mAb, isolated
from memory B cells of WT SARS-CoV-2-infected patients, is
one of the first identified human neutralizing mAbs that target
SARS-CoV-2 RBD (14). As analyzed by IMGT (16), the 32D4
Frontiers in Immunology | www.frontiersin.org 4
mAb is encoded by the IGHV3-30 gene (Figure 3A), which is
one of the most enriched IGHV genes used by RBD-targeting
antibodies and thus characterizes one binding mode of RBD-
targeting antibodies (17). As shown, the 32D4 mAb showed high
binding affinity for SARS-CoV-2 VOCs, with EC50 values of
0.0207 mg/ml for B.1.1.7, 0.0153 mg/ml for B.1.351, and 0.0161
mg/ml for P.1 (Figure 3B). However, the binding affinity of 32D4
for B.1.617.1 was severely blunted and the EC50 value was
increased to 1.9450 mg/ml (Figure 3B), indicative of a key role
of the residue L452 for the 32D4 binding epitope. Besides, 32D4
was less effective in inhibiting B.1.1.7, B.1.351, and P.1 to engage
with ACE2 as compared to the WT one and completely failed to
block interaction between B.1.617.1 and ACE2 as evidenced by
functional ELISA assays (Figure 3C) . Consistently,
neutralization of mAb 32D4 against SARS-CoV-2 B.1.351
pseudoviruses was also blunted (Figure 3D). Along with our
finding, recent studies also found that the neutralizing activity of
several mAbs, including those being approved or in the late
clinical stage, was abolished by SARS-CoV-2 VOCs (8, 18–20).
In contrast, the binding and neutralizing ability of 32D4 mAb for
SARS-CoV-2 non-VOC variants were largely unaffected
(Figures 3E, F). Thus, these results suggest that neutralizing
mAb targeting the SARS-CoV-2 WT protein sequence might be
re-examined whether they are suitable as prophylaxis or
treatment for individuals infected with SARS-CoV-2 VOCs.
DISCUSSION

The circulating SARS-CoV-2VOCs, including B.1.1.7, B.1.351, P.1, and
B.1.617.1, have takenamajor toll on theglobal control of theCOVID-19
pandemic. Indeed, accumulating evidence suggested reduced
A B

C

FIGURE 2 | Neutralization of SARS-CoV-2 non-VOC variants by convalescent sera. (A) Schematic diagram presenting the location of mutations of non-VOC variants
in the context of RBD protein domain. (B) ELISA binding assay of sera originated from COVID-19 patients with severe illness to ELISA plate coating of RBD proteins
of WT RBD and its mutated variants as indicated. (C) COVID-19 convalescent patient serum-mediated inhibition of indicated RBD proteins binding to ACE2 protein
by ELISA. The data are representative of at least two independent experiments. Not significant, ns.
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neutralizationagainst SARS-CoV-2VOCsby convalescent sera elicited
by SARS-CoV-2D614G variant (20, 21) or SARS-CoV-2 B.1.1.117
variant (22), sera from mRNA-1273- or BNT162b2-vaccinated
individuals (5, 20, 21, 23), and FDA-approved neutralizing mAbs
(8, 18). In the study, we also found attenuated neutralization
capacity against SARS-CoV-2 VOCs, especially B.1.351, P.1, and
B.1.617.1, by sera collected from convalescent patients in the early
2020 or by a VH3-30mAb 32D4 isolated from thememory B cells
of these convalescent patients.

Neutralization resistance of B.1.1.7 to convalescent sera and
mAb 32D4 was not noticeable as compared to that of other
VOCs in our study. This dichotomous neutralization resistance
was also reported by other studies (24, 25) and seems paradoxical
to the increased affinity between the B.1.1.7 RBD with a single
N501Y mutation and ACE2 observed in our study and previous
studies (17, 26). However, we and another group (23) found that
SARS-CoV-2-specific mAbs show partial or complete loss of
binding to RBD with E484K substitution but not N501Y
substitution. Besides, diminished neutralization capacity
of convalescent sera and neutralizing mAbs was mainly caused
Frontiers in Immunology | www.frontiersin.org 5
by single mutation at residue E484 but not N501 (18, 23, 25).
Thus, RBD E484 residue is a crucial binding site for mAbs and
VOCs with mutation at E484 (E484K for B.1.351 and P.1; E484Q
for B.1.617.1) show enhanced neutralization resistance.

The VH3-30 gene is one of the most-enriched IGHV genes
used by RBD-targeting neutralizing mAbs elicited by natural
infection (17, 27) and vaccination (28). SARS-CoV-2-specific
neutralizing mAbs with VH3-30 gene, exemplified by
REGN10987 (17, 29), C002 (17), and 32D4 in the study, are
characterized by a similar binding mode to some extent (17, 30)
and consequent mutational escape of SARS-CoV-2 variants.
REGN10987 is suggested to be escaped by SARS-CoV-2
variants with mutations ranging from N439 to N453 within
RBD, especially K444Q and V445A (31). The L452 residue is a
key recognizing site for C002 (17). Here, we also found the losing
binding and neutralization of 32D4 to B.1.617.1 variant with
L452R substitution. In addition to B.1.617.1, other VOCs (e.g.,
B.1.1.7, B.1.351, and P.1) also partially escape neutralization by
32D4. The mechanism underlying the escape of VOCs to 32D4-
mediated neutralization awaits further structural analysis.
A B

D

E F

C

FIGURE 3 | Neutralization of SARS-CoV-2 variants by a VH3-30 mAb 32D4. (A) IMGT Collier de Perles for 32D4. (B) ELISA binding assay of mAb 32D4 to RBD
proteins of WT and VOCs. EC50, concentration for 50% of maximal effect. (C) ELISA analysis of mAb 32D4-mediated inhibition of WT and VOC RBD proteins
binding to ACE2 protein. IC50, half maximal inhibitory concentration. (D) 32D4-mediated neutralization of indicated SARS-CoV-2 pseudoviruses. IC50, half maximal
inhibitory concentration. (E) ELISA binding assay of mAb 32D4 to RBD proteins of WT and non-VOC variants. EC50, concentration for 50% of maximal effect. (F)
ELISA analysis of mAb 32D4-mediated inhibition of WT and non-VOC RBD proteins binding to ACE2 protein. IC50, half maximal inhibitory concentration. *p < 0.05,
**p < 0.01, ***p < 0.001, and ****p < 0.0001. The data are representative of at least two independent experiments. Error bars in (B–D, F) indicate SD.
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Convalescent plasma or sera transfusion has been highlighted
as a promising therapy in fighting newly emerged viral infections.
Indeed, transfusion of convalescent plasma harvested from
recovered COVID-19 patients is reported to be beneficial in
treating critically ill patients with SARS-CoV-2 infection (32–35).
Given the neutralization resistance of SARS-CoV-2 VOCs to
convalescent sera collected from individuals infected with WT
SARS-CoV-2 infection in early 2020, transfusion of these
convalescent sera might not be suitable in treating COVID-19
patients infected with SARS-CoV-2 VOCs. Consistently, Cele et al.
found that the B.1.351 variant was poorly neutralized by plasma
from individuals infected with non-VOC B.1.1.117 (22). By
contrast, cross-neutralization of non-VOC B.1.1.117 by plasma
from those infected with B.1.351 was more effective (22). These
results suggest the potential neutralization of plasma from SARS-
CoV-2 VOC-infected individuals to WT, other VOCs, and non-
VOC variants, which awaits further investigation.

As with other RNA viruses such as influenza and HIV, SARS-
CoV-2 is also characterized by antigenic drift (17). In addition to
E484K, L452R, and K417N/T mutations, numerous RBD
mutations (including F342L, N354D, V367F, A435S, W436R,
K458R, G476S, and V483A) have also been detected in non-VOC
variants (36, 37). Though these RBD mutants show significantly
increased affinity to hACE2 (36, 37), we found largely unaffected
neutralizing potencies of convalescent sera and mAb 32D4
against SARS-CoV-2 variants with relevant RBD mutation.
These results might explain the rare cases of these non-VOC
variants during the COVID-19 pandemic and further indicated a
crosstalk between human host immune pressure and SARS-
CoV-2 variant selection.

Taken together, our study presents the comparison of
sensitivity of SARS-CoV-2 VOC and non-VOC variants to
neutralization by convalescent sera and a VH3-30 mAb from
convalescent patients in the early 2020. Although these results
are based on functional ELISA assays and pseudovirus assays and
await confirmation with authentic SARS-CoV-2, the ELISA/
pseudovirus assays have been proven to be free of biosafety
issue but as reliable as the canonical plaque assay with authentic
SARS-CoV-2 (4, 38–41). The results suggest that SARS-CoV-2
VOCs might be able to spread in convalescent patients and even
harbor resistance to medical countermeasures. Indeed, we
observed evasion of SARS-CoV-2 VOCs from the 32D4 mAb,
which was proved to exhibit highly potential neutralization
against WT SARS-CoV-2. Thus, containment of these
SARS-CoV-2 VOCs by medical interventions (e.g., next-
generation vaccines, pan-neutralizing mAbs) is in urgent need.
Frontiers in Immunology | www.frontiersin.org 6
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