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Abstract

We have developed a new computational framework for merging odor response data sets from heterogeneous studies,
creating a consensus metadatabase, the database of odor responses (DoOR). As a result, we obtained a functional atlas of all
available odor responses in Drosophila melanogaster. Both the program and the data set are freely accessible and
downloadable on the Internet (http://neuro.uni-konstanz.de/DoOR). The procedure can be adapted to other species, thus
creating a family of ‘‘olfactomes’’ in the near future. Drosophila melanogaster was chosen because of all species this one is
closest to having the complete olfactome characterized, with the highest number of deorphanized receptors available. The
database guarantees long-term stability (by offering time-stamped, downloadable versions), up-to-date accuracy (by including
new data sets as soon as they are published), and portability (for other species). We hope that this comprehensive repository of
odor response profiles will be useful to the olfactory community and to computational neuroscientists alike.
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Introduction

The aim of neuroscience is to understand the brain based on

empirically measured physiological data. The community,

therefore, relies on access to good experimental data, and

considerable effort is being made to create databases that of-

fer large, annotated data sets from physiological experiments

made across the world in many laboratories (Herz et al.
2008). However, a major difficulty lies in the comparability

of data that come from different places and times. Small

changes in experimental parameters can influence the out-

come of a physiological experiment, and even under similar

conditions, different groups might use other readout param-

eters for physiological activity. For example, stimulus

response intensity might be reported in spike counts, spike

rates, or calcium concentration changes.
Odors consist of volatile airborne molecules that can be per-

ceived by an organism. In the olfactory system, odors are rec-

ognized by a large family of odor receptors (ORs). In most

animals, including humans, mice, and the fruit fly Drosophila

melanogaster, each receptor cell expresses oneor a few receptor

proteins, which give that cell a specific odor response profile.

This profile can be represented by a function: to any given

chemical representing anodor stimuluswe canmap a response

intensity. Because most chemicals will elicit responses in more

than 1 receptor cell type, each odor elicits a combinatorial ac-

tivity pattern across these channels. It is this combinatorial na-

ture of olfaction that allows the brain to recognize and

remember thousands ormaybemillions of different odorswith
a limited number of receptor types: approximately 350 in

humans (Glusman et al. 2001), 1000 in mice (Buck and Axel

1991), and60 inD.melanogaster (Vosshall et al. 1999). In order

to understand how the brain perceives an odor, the ideal sit-

uation would be to know all response profiles of all receptors

for a given species. Because of technical difficulties, most re-

ceptor types are still orphans, that is, their ligands are un-

known. The most prominent exception to this is the fruit
flyD. melanogaster, where many studies have measured odor

response patterns in individual cells and in small groups of

cells, either in vivo or in vitro. These odor response profiles

in D. melanogaster come from different research groups,

which have used different techniques (e.g., heterologous ex-

pression, Smart et al. 2008; in situ recordings inwild-type sen-

silla, de Bruyne et al. 1999; in situ recordings in the ‘‘empty
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neuron,’’ Hallem et al. 2004; calcium imaging of cellular

responses, Pelz et al. 2006). Furthermore, the set of tested

odors differed across studies. As a consequence, it is difficult

to compare different studies numerically. Yet, no study has

covered all receptor cells so far, and given the resources
needed for such an enterprise, it would appear as a waste

to do so now, where many receptors have already been

deorphanized in great detail.

Exploiting this wealth of data available from the fruit fly,

we have therefore developed a new approach that allows us

to compare and combine odor response profiles from many

studies even when their physiological responses are hetero-

geneous due to different techniques used and when the odors
tested are only partially overlapping. As a result, we obtain

consensus profiles that are based on many studies and thus

are statistically more reliable than any single study. We have

developed a software platform that allows to extract odor

response profiles across chemicals for individual receptors

or to extract the entire combinatorial response pattern eli-

cited by a given chemical. The software is open source

and can be modified by the user. Although we will update
the database on a regular basis, the database includes a fea-

ture that allows for retrieving the state of the database at any

given time in the past. This is important to allow for com-

parative computational studies on reference data sets.

The database is suitable for further studies into the com-

binatorial nature of olfactory coding, into the logic of ligand

receptor interaction in olfactory receptors, and for other ap-

plications. Furthermore, the software can be used to create
similar databases for other species, including mice and hu-

mans, as soon as enough data will be available. Thus, it joins

related efforts for databases of olfactory receptor sequences

and their ligands (Crasto et al. 2002), as well as other data

repositories, for example, http://senselab.med.yale.edu/

senselab/ordb or http://gara.bio.uci.edu/. The database of

odor responses (DoOR) package is available from http:

//neuro.uni-konstanz.de/DoOR.

Materials and methods

Nomenclature

Receptors (e.g., dOr22a and Ir76b), receptor cells (e.g., ab3A

and ac3B), and corresponding glomeruli (e.g., DM2 and

VC3l) were labeled following the standards inD.melanogaster

literature (see Laissue et al. 1999 for glomerulus nomencla-

ture). ORs in D. melanogaster belong to 3 major families:

ORs, gustatory receptors, and ionotropic receptors (Larsson

et al. 2004; Kwon et al. 2007; Benton et al. 2009). Each odor is

given by its chemical name (e.g., 2-heptanone) and the unique
Chemical Abstracts Service number (http://www.cas.org).

Sources for published odor response profiles

Odor responses were taken from studies with at least 5 odors

tested for a given receptor. Each study enters the database

with its own name based on the author, the publication year,

and a short data descriptor. For example, the data fromHal-

lem (Hallem et al. 2004) enter the database as 2 data sets

called Hallem.2004.EN and Hallem.2004.WT. Here, EN

stands for an empty neuron recording, where receptor pro-
teins are ectopically expressed in an empty olfactory neuron,

whereas WT signifies a wild-type recording, that is, a record-

ing from an olfactory neuron that naturally expresses its re-

ceptor protein. A list of all studies with nomenclature and

details on the respective experiments is provided (Supple-

mentary Table S2). As most studies reported only one odor-

ant concentration level, no information about response

properties across concentration ranges is included in the
present version of the database.

Sources for unpublished odor response profiles

We recorded odor response profiles for dOr13a, dOr67b, and

dOr92a. We used OrXX:GAL4 and UAS:G-CaMP flies and

recorded calcium responses using a CCD (charge-coupled

device) camera and a ·50 air objective through the intact an-

tenna cuticle as described in detail elsewhere (Pelz et al.

2006). Odors were diluted in mineral oil in decadic steps

(10–2, 10–3, . . .), with 1:100 (10–2) as the highest concentra-

tion, to measure complete odor response curves. Five milli-
liters of diluted odor was kept in sealed 20-ml vials filled with

nitrogen, and 2-ml headspace was used for each stimulation.

Odor delivery was automated using a headspace multisam-

pler adapted from gas chromatography (CombiPAL, CTC

analytics). For each odor stimulus, a train of 80 fluorescent

frames was recorded, with a sampling rate of 4 frames per

second. Odor stimuli were applied as 2 pulses, each 1-s long,

at time points 6 and 9 s in each measurement. Bleach-cor-
rected odor responses were converted into relative fluores-

cence changes as DF/F, with F being the background

fluorescence before odor stimulation. For each measure-

ment, odor response magnitude was quantified as the aver-

age calcium increase in DF/F during 4 s after first stimulus

onset. Maximum response magnitude varies across animals,

mostly due to difference in G-CaMP expression levels and

cuticle pigmentation darkness. Before averaging across ani-
mals, responses were therefore normalized within each ani-

mal by setting the response to a reference stimulus to 1 and

scaling all other responses accordingly. The reference odor

was 3-octanol (589-98-0) for dOr13a, 1-hexanol (111-27-3)

for dOr67b, and 2,3-butanedione (431-03-8) for dOr92a.

Preprocessing of odor response profiles

We transformed all data sets where values decrease for better

ligands (i.e., data reported as 50% effective concentration

(EC50) values of odor dilution) by inverting their values in

the database (e.g., in Pelz.2006.AntEC50 an EC50 value of
–4.13 is coded as +4.13 in the database) in order to complywith

our assumption that R1(a) < R1(b) 0 R2(a) < R2(b) for all

odors a,b (see Results). Before fitting an odor response vector,
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its values were all scaled to the range [0, 1] in order to avoid

unequal weighting of the 2 vectors in the fitting procedure.

Finding the best-fitting function

Take a data set of odor response profiles covering oA odors in

rA receptors. We write this data set as a matrix (see Supple-

mentary Figure S7). We have several such data sets from dif-

ferent studies, and each study may cover a different (but

overlapping) set of odors and a different (but overlapping)

set of receptors. Let there be s such studies, and let us denote

them A1, . . . As. Thus, the response to odor i in receptor j for
study k is Ak

ij . For better readability, where useful, we denote

columns by the corresponding receptor names and omit sub-

scripts where the entire range is intended. Thus, Ak
[Or22a]

contains the column of odor responses for receptor 22a in

the kth study. We will follow the Or22a example throughout

this section. The goal of the algorithm is to merge all avail-

able Ak in order to obtain a single consensus matrix

M 2 R
r · o, where r is the number of all receptors and o is

the number of all odors. Merging is done sequentially for

each receptor, and within each receptor, merging is done it-

eratively (Supplementary Figure S7). First, 2 data sets are

merged and then the resulting consensus data set is merged

to the next original data set. For small s (s may differ for

different receptors), all possible merging sequences can be

calculated. For large s, this exhaustive approach is not pos-

sible due to computing time constraints, and we follow a heu-
ristic instead (see below).

For each merging step, we first fit 5 different monotonic

functions to the pairs of data sets. The functions used are

linear, exponential, sigmoid, asymptotic, and asymptotic

with an offset (see Supplementary Figure S1 and user manual

on the DoOR homepage). Fitting is done using the R routine

nls(). This routine minimizes the square distance of the de-

pendent variable f(x) against the independent variable x.
Graphically this corresponds to the vertical distances from

each point onto that function. However, this is not the

optimal solution because there is no ‘‘dependent’’ and

‘‘independent’’ data set. The best solution would be to min-

imize not the vertical distances but the perpendicular projec-

tions onto the fitted function. However, there is no efficient

algorithm yet to do this calculation. Until such an algorithm

will be implemented, we have taken an alternative approach:
all 5 functions are also fitted flipping the 2 data sets, effec-

tively optimizing not the vertical projections on the fit but the

horizontal projections. In our algorithm, these are the

‘‘inverse’’ functions, so that effectively a total of 10 fitting

functions were tested.

For each of these 10 fits, we calculate the average orthog-

onal distance (unlike the fitting of best parameters, for a set

of given parameters this statistic is easily computed). We se-
lect the fitting function fbest(x) with the smallest average or-

thogonal distance (mean distance [MD]). This function is

only well defined within the data range of the 2 odor response

vectors that have been fitted, and an extrapolation beyond

that range would create unwarranted results. Therefore,

for values outside this range, we expand the function with

a linear function, f(x) = x + intercept, where intercept is cho-

sen to create a continuous function. Thus, the complete
fbest(x) consists of a linear function to the left, a fitted func-

tion in the center, and a linear function to the right.

Merging 2 data sets

For all odors present in both studies to be merged (or the

study to be merged into the consensus set), the location of

that odor on the trajectory of fbest(x) is calculated by orthog-
onal projection. All odors that are present in only one of the

2 studies are also projected onto the function.

The odor response values of the newly merged set are cal-

culated by measuring the distances along fbest(x). Specifi-

cally, given a data point p1 = (x1, y1), we compute the

distance from pmin = (xmin, ymin) to p1 as follows:

dðpmin; p1Þ=
Zx1
xmin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

�
f #bestðxÞ

2
�r
dx:

This step is followed by scaling the whole range to [0, 1].

Now the complete data set, for this receptor, has 1 study less,

and the procedure is iterated (Supplementary Figure S7).

Data set merging order and data set exclusion

When the number of data sets to be merged is large, not all

merging orders can be tested. In this case, we first calculate

merging quality (in terms of mean orthogonal distance) for

all possible pairs and merge the 2 data sets that yield the best

merging quality. This procedure is iterated until all data sets

have been matched.

There are cases where no match is possible, and these data
sets are excluded. First, the minimum overlap requested (in

terms of common odors of both studies) is 4. Fewer overlap-

ping odors do not give sufficient degrees of freedom to fit the

monotonic functions. Second, only pairs that result in amean

orthogonal distance below 0.1415 (which corresponds to

10% of the maximum possible distance) are merged.

Global scaling

For comparison of responses across receptors (see Figure

3b), we developed a global scaling introducing a weighting

factor wj for each receptor, making use of the information

in studies that contain more than 1 receptor. Because stud-

ies that include many odors and receptors contain more

across-receptor information, they are weighted more. Thus,

for a study k, let n.reck be the number of receptors covered
and n.odok the number of odors recorded. For each receptor

j, in that study, we calculate Rk
j as the maximum odor re-

sponse within that receptor, and for that study, Sk is the
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maximum odor response across all receptors (in the units of

that study, e.g., spikes per second). We then calculate:

wj =

Ps
k = 1

n:reck:
Rj

k

Sk +
Ps
k = 1

n:odok:
Rk

j

Sk

Ps
k = 1

n:reck +
Ps
k = 1

n:odok

:

Implementation and availability

All methods used in this work are implemented in the open

source statistical environment R (R Development Core

Team 2009). Apart from the source codes, the DoOR pack-

ages for R comprise the original data sets and a precomputed
model response matrix. With a few R commands, the user

can add data, compute his or her own model response ma-

trix, and reproduce the plots from this paper. R can be ob-

tained from www.r-project.org. The DoOR package is

available from http://neuro.uni-konstanz.de/DoOR. A help

file with detailed instructions can also be downloaded from

that site.

For users who just wish to query the database without us-
ing the R package, we provide a web interface for the latest

version of the database including 2D and 3D visualizations

of the response patterns at http://neuro.uni-konstanz.de/

DoOR.

Results

Fitting 2 data sets onto each other

Different odor response profile data sets can have very dif-

ferent qualities and data ranges. For example, studies

reporting spike counts may have discrete values, for exam-

ple, ranging from 0 to 500 spikes per second. Data based on

calcium imaging may have percentage of fluorescence
change values ranging from negative values (for inhibitory

responses) to positive values (e.g., –5 to +18 DF/F). Meas-

urements that report receptor sensitivities calculated from

entire dose response curves report data as the effective odor

concentration that elicit half-maximal responses (EC50),

with values ranging from, say, –6.0 to –2.0 (corresponding

to log-based odor dilutions). Unlike the first 2 cases, better

ligands have a lower value when expressed as EC50. With
this heterogeneity in the qualitative nature of different data

types, how could we combine them? Which is the property

of odor response profiles that is, in theory, consistent across

all data sets? We start with the observation that all odor

response profiles of a particular receptor must be based

on the same monotonic relationship. Given 2 odors

a and b, we denote their responses with method 1 as

R1(a) and R1(b) and with method 2 as R2(a) and R2(b).
Our postulate states that R1(a) < R1(b) 0 R2(a) < R2(b)

for all a,b of a given odor response profile. Because all

measurements have noise, this postulate will not be true

in all real data sets, but the basic principle is that a better

ligand in 1 data set should also be a better ligand in another

data set.

We mapped data sets onto each other as pairs. In order to

avoid toomany free parameters, we selected 5 possible fitting
models and their inverse (see Materials and methods):

a linear model, an exponential, a sigmoid model, and 2 types

of asymptotic nonlinear functions, 1 with an offset and 1

without (see Supplementary Figure S1). We show the merg-

ing of 2 data sets for dOr22a in Figure 1. This receptor has

a broad response pattern, that is, many chemicals elicit re-

sponses (Figure 1a). Responses are plotted against each

other for all odors that were measured in both sets (Figure
1b); note that values in Pelz.2006.AntEC50 range from 2 to 7

(negative logarithm of odor dilution necessary to elicit the

half-maximal response), whereas responses in Hallem.

2006.EN range from 0 to 250 (these are response frequencies

in spikes per second, compare with Figure 1d). Different di-

mensionalities along the axes influence the fitting procedure

(e.g., deviation along the spike axis would weigh more

because the value ranges are larger). Therefore, each
data set was linearly scaled to a common range [0, 1] before

mapping (compare the axes in Figure 1b and c). A clear

monotonic relationship (plus noise) is apparent between

the 2 data sets.

Next, we mapped each point onto the regression function

(Figure 1c). Because in these regressions both data sets are

equal (i.e., there is no dependent variable), mapping is done

by perpendicular projection, that is, we projected each data
point onto the closest point on the regression function. Some

odors were measured only in 1 of the 2 data sets. These odors

were also projected onto the regression line. We did not ex-

trapolate the fitting function beyond the data range covered

by the 2 data sets. Rather, we projected values outside this

range onto a unitary line (45� slope), thus leaving that range

of the data set unaltered. Finally, we gave each point on the

regression a value by calculating its position on the curve,
scaled to the range [0, 1]. The resulting odor response profile

was not the average of the 2 data sets but a fitted consensus

set (Figure 1d). A comparison of the consensus set with the 2

original sets showed a good correspondence but also showed

that for some odors the information in 1 set differed from the

information in the other set. In no case, we attempted to

weigh data sets based on our judgment of their quality:

the more data sets are integrated the more individual outliers
should become irrelevant.

Note that scaling to the [0, 1] interval might cause prob-

lems, for example, in case of a data set consisting only of

weak ligands when compared with a data set with mostly

strong ligands or when several receptors are compared.

The first problem is addressed by not extrapolating the fitting

function but using a unitary line beyond the range of each

study. For the second case, we employed a global scaling
to enable across-receptor comparisons (see Materials and

methods and below).
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Merging multiple data sets

Ideally, each receptor has been recorded in several studies

giving rise to several data sets, with many overlapping odor

responses. Merging data sets was done by iteration. To this
end, we performed pairwise data set mapping with each of

the fitting functions, and the function with the fit perfor-

mance (lowest ‘‘MD’’) was noted. This results in a fit-quality

matrix of all data sets, from which a cluster dendrogram can

be derived for visualization when fit quality is interpreted as

similarity (Figure 2a). Note that this data set is also influ-

enced by how many odors overlap between 2 data sets. In

the extreme case, 2 sets with an overlap of just 2 odors would

have a perfect fit even though they would not share any in-

formation about the odor response profile. Therefore, to cre-
ate the dendrogram, we did only use those pairs that had at

least 4 common values.

Next, the pair with the best-fit performance was merged. In

Figure 2a, this corresponds to joining the 2 data sets with the

highest node.As a result, the complete data contained 1 set less

altogether. In the next step, the created merged set was taken

as reference, and its fit performancewith all other data sets was

measured (Figure 2b). The data set with the lowest MD was
merged into the reference, and this procedure was iterated un-

til either all sets were merged into the consensus set or the

breakout criterion was reached (see Materials and methods).

With increasing number of studies, the reference set contains

an increasing number of odor responses. Figure 2c shows the

whole procedure for dOr22a, which is the receptor for which

most studies were available. Because the sequence of merging

studies slightly influences the outcome of the consensus data
set, in cases where computationally feasible, we merged the

data calculating all possible merging sequences and selected

the best sequence on the basis of the mean deviation of the

merged sequence to each original data set.

Validation and rescaling

As a result, we obtained a consensus odor response profile as

shown for a subset of odors with dOr22a in Figure 2d. How

reliable are the individual values? We ran the merging pro-

cess as many times as there were data sets, with each time 1

data set being dropped from the list. Therefore, for each

odor, we obtained several data points, that is, as many as

the number of studies that covered that odor and obtained

error bars as shown in Figure 2d. These error bars confirmed
that our approach yields reliable values.

Although remapping of odor responses to [0, 1] is useful for

theoretical analysis of olfactory coding, in an experimental

setting, odor responses are more useful if they are given in the

same unit as the experiments themselves. Therefore, the

package can be used to back project the merged data set onto

the experimental data sets. Most importantly, the back-

projected data set contained data points that were not mea-
sured in the original study but that can be directly compared

with their numerical value (see Supplementary Figure S2).

SFR denotes ‘‘spontaneous firing rate,’’ which is not an

odor response but background activity in the absence of

a stimulus. If upon stimulation with an odor firing rate drops

below SFR this indicates an inhibitory response. Not all

studies reported the SFR value, and some techniques have

no access to this value. For example, calcium-imaging stud-
ies cannot measure uniform spontaneous activity (bursty

spontaneous activity can be measured, Galan et al. 2006).

In calcium-imaging studies, however, inhibitory responses

Figure 1 Merging 2 response data sets for 1 receptor. (a) Tuning breadth
of odor response profiles for dOr22a taken from 2 published sets:
Pelz.2006.AntEC50 (Pelz et al. 2006) (top, ordinate units are percentage
of calcium responses) and Hallem.2006.EN (Hallem and Carlson 2006)
(bottom, ordinate values are spikes per second). Responses are arranged
with strongest odor at the center in order to show the broad odor response
profile confirmed in both studies, irrespective of the recording technique.
Pelz reported EC50 values based on calcium responses from dose response
profiles. Hallem reported action potential frequencies in the empty neuron
preparation. (b) Plotting odor responses to substances that were measured
in both data sets against each other shows a strong correspondence. Note
that the values differ: spikes range (abscissa) from approximately 0 to 250
(spontaneous rate was not subtracted) and EC50 (ordinate) ranges from 1 to
7 (negative logarithm of odor dilution). (c) Generation of a consensus data
set. Vertical projections from the circles as in (b) to a fitted regression
function yield the consensus odor response. Odors that were measured only
in 1 study are projected from the respective axis onto the regression curve
(blue lines for Pelz and yellow lines for Hallem). Consensus responses are
calculated from the position along the regression curve. (d) Comparison of
odor response profiles of the overlapping odor set for the model responses
and the 2 original data sets (EC50 and spikes per second, respectively). The
model responses were arranged in decreasing order, whereas the other 2
data sets were ordered by matching the odors to the model response plot.
The model response covers the normalized range [0, 1].
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are visible as calcium concentration decreases, as opposed to

the responses to control, air or mineral oil, which generally

give no responses. In our procedure, as explained so far, the

merged data were scaled to the range [0, 1]. SFR, air, and

solvent were always treated as if they were stimuli, and thus,
inhibitory responses could be recognized as values smaller

than the SFR value. However, this is not always satisfactory,

in particular when comparing different receptors that might

have different levels for SFR. Therefore, data can be linearly

rescaled to have the range SFR to maximum map into the

range [0,1], and negative values as large as dictated by the

linear fitting.

Comparisons across receptors

Up to this point, all procedures were applied to each receptor

per se without any comparison to responses in other recep-

tors. Tuning breadth displays for 6 different receptors are

shown in Figure 3a: for example, Or67a had a broad re-

sponse profile, whereas Or59b had a sharp response profile.
Note also that for some receptors, only few odor responses

were known (e.g., Or59c). For each receptor, the maximum

response was set to 1 and SFR was set to 0, making negative

responses immediately visible.

However, the very nature of olfactory coding is combina-

torial, and for the olfactory system as a whole, no response in

a single receptor neuron type contains information without

a comparison to other receptors (with the possible exception
of very few labeled line systems). Assume, for example, that

a receptor, dOrX, has so far only been measured with very

weak ligands (i.e., no better ligand is as yet known). In this

case, the procedure above would still give the best odor in the

test set a value of 1, which when compared across receptors

would be misleading. In order to compare receptors, it was

therefore necessary to rescale them (see Materials and meth-

ods).
For the 6 receptors shown in Figure 3a, the rescaled results

are shown in Figure 3b (see also Supplementary Figure S6).

Figure 2 Mapping many response sets for 1 receptor. (a) Hierarchical
cluster dendrogram based on best-fit values of 10 data sets from 8 studies
(de Bruyne et al. 2001; Dobritsa et al. 2003; Stensmyr et al. 2003; Hallem
et al. 2004; Pelz 2005; Hallem and Carlson 2006; Pelz et al. 2006; Schmuker
et al. 2007) with odor responses for dOr22a. The 2 sets with the best
pairwise fit are Dobritsa.2003.EN and Schmuker.2007.TR. These 2 sets are

then merged and create the first model response. (b) Best fit of the
remaining 8 data sets with this modeled response (merged_data) shows that
Bruyne.2001.WT is the next best match (smallest MD). This set is now merged
with merged_data. This procedure is iterated for all sets that match merging
criteria (see text). (c) Iterative sequence for dOr22a showing how for each step
a different mapping function might be best. Here, Dobritsa.2003.EN is first
merged to Schmuker.2007.TR (see a) using inv.sigmoid as function, yielding
merged_data1. Each of the next frame gives the fitting function used, the
number of odors common to both sets (n), and indicates new odors added
into merged_datai+1 by yellow vertical lines and odors present in merged_-
datai but not in the data set by blue horizontal lines. (d) Responses to 19
selected odors in dOr22a, as calculated from all available data sets. Ethyl
hexanoate and methyl hexanoate are the best ligands in this subset. The
numbers under the bars indicate how many studies contribute to the given
value. For example, ethyl butyrate or 1-hexanol were covered in 9 studies,
whereas ethyl hexanoate or benzaldehyde were only measured in 4 studies.
Gray bars give the consensus values. White box plots right to the gray bars
give median, quartiles (where available), and outliers (oval circles) obtained by
using a leave-one-out strategy.
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Note that the pattern changes somewhat for Or59a and

changes dramatically for Or59c and Or65a. The most likely

explanation is that for these receptors, the best ligands have

not yet been found. Studies including more odors might find

a better ligand, and targeted studies that exploit the combi-
natorial knowledge from the entire database might help.

Nevertheless, it might also be that some receptors never

reach the same strong responses as other receptors. In such

cases, even though the individual best ligand has been found,

the elicited response might still be weak as compared with

maximal responses in other cells. With the globally scaled

responses, it was possible to create response breadth plots

for each single odor (Figure 3c), similar to the tuning breadth
plots shown above. 2-Heptanone elicited responses in many

receptors, some of which were negative. Methyl salicylate in

contrast showed a very sharp profile evoking strong re-

sponses only in a few receptors.

Scaling odor responses across receptors is also a prerequi-

site for the creation of spatial odor response maps. In the

Drosophila olfactory system, axons of sensory cells that ex-

press a given receptor converge stereotypically onto 1 glo-
merulus of the antennal lobe (AL), and thus, an activity

map across receptor cells results in an activity map across

olfactory glomeruli. These maps can be recorded directly,

for example, using calcium imaging (Fiala et al. 2002; Wang

et al. 2003; Silbering andGalizia 2007; Silbering et al. 2008).

With the database presented here, virtual spatial activity

maps in the antennal lobe can be generated; the map for

2-heptanone is shown in Figure 3d. On the webpage, the
map for any of the odors in the database can be down-

loaded. The map visualizes activated glomeruli in shades

of red, inhibited glomeruli in shades of blue, and indifferent

glomeruli in white. Some glomeruli correspond to receptors,

for which there is no response data; yet, in the case of 2-

heptanone, these are the glomeruli D, DA1, and DC3 (see

Figure 3d, light gray glomeruli). Other glomeruli do not have

a value because themorphological mapping of these glomeruli
onto a receptor is as yet unclear (e.g., glomerulus DP1m).

Thus, the graphical display of these functional antennal lobes

can also be used to earmark gaps in our knowledge of the

D. melanogaster olfactome, gaps that need to be filled by

targeted measurements. Interactive 3D renderings of these

AL maps are also available from the Web site. A ball plot

of OR response profiles is shown in Figure 3e for a subset

(see also Supplementary Figure S8). Note that many entries
are still missing, that is, unknown.

Matching neurons, receptors, and glomeruli

Odor response profiles in D. melanogaster have been mea-

sured in several ways: sensory cells that were identified mor-

phologically, without knowing what receptor they expressed,
expression of ORs in other receptor cells or heterologously,

expression of calcium sensors in the receptor cells, and

measurement of odor responses either in the dendrites or

in the axon terminals. This diversity is possible because of

a basic mapping property in this system: 1 receptor, 1 class

of receptor cells, and 1 glomerulus. There are some excep-

tions to this scheme: some cells express more than 1 receptor,

and some of the glomerular mapping strategies are more
complex. Therefore, we included these cases into the data-

base. The simplest one is given by dOr22a, which is coex-

pressed with dOr22b: because no function for dOr22b

is known, only dOr22a has been mapped to the neuron

ab3A and the glomerulus DM2. In cases where 2 receptors

are coexpressed and each contributes to the odor response

profile, we created a separate mapping for ORs (ligand-

binding properties) and for receptor cells (odor response
properties). For example, dOr85e and dOr33c are coex-

pressed in the receptor neuron pb2A (Goldman et al.

2005). The database contains 3 entries, but only the entry

for pb2A is matched with glomerulus VC1 in the visualiza-

tion of the antennal lobe. In this case, the functional rele-

vance is high because the 3 odor response profiles differ.

Mapping unlabeled response profiles into database

In some cases, the mapping of receptor cell and receptor is

not yet known. Here, the database can be used to find an

appropriate match. To test this procedure, we used the da-

tabase to find the receptor cell that expresses dOr13a. We ex-

pressed the calcium indicator G-CaMP under the control of

the dOr13a promoter (Figure 4a,b) and recorded calcium
odor responses to a total of 111 odors at a dilution of

1:100 (selected responses in Figure 4c, full results in Supple-

mentary Table S3). For all odors that elicited responses, we

further decreased the dilution in decadic steps until no re-

sponses were left. The best ligand was 1-octen-3-ol, and fur-

fural elicited a calcium decrease (Nissler 2007). At this stage,

the odor response profile of dOr13a was known, but the cor-

responding receptor cell was not.We thus used the consensus
database to calculate how well the recorded response profile

matched each of the known consensus response profiles.

Data set ab6A had the best match (Figure 4d), which is a re-

ceptor neuron that had been characterized previously (de

Bruyne et al. 2001) but for which the expressed receptor

was not yet known. We also used a recently published data

set in which odor responses in dOr13awere recorded (Kreher

et al. 2008) and confirmed our result (data not shown). To
confirm our link of dOr13a with ab6A, we mapped the area

on the antenna where dOr13a is expressed (Figure 4a) and

found that area to match the published location of ab6A

(de Bruyne et al. 2001). The glomerulus that is innervated

by neurons expressing dOr13a is DC2 (Couto et al. 2005)

(Figure 4b). Thus, we conclude that ab6A expresses dOr13a,

correcting previous suggestions that dOr13a might be ex-

pressed in intermediate sensilla (Couto et al. 2005). Taken
together, we used a comparison between physiological re-

cordings and the consensus database to find amatch between

receptor cells and receptor proteins and confirmed this by
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Figure 3 The complete consensus data set. (a) Tuning breadth plots (compare with Figure 1a) for 6 receptors based on the respective consensus data set.
Note the pointed shape and negative responses in Or59b and Or65a and the broader profiles in Or67a and Or67b. Only few odor responses are available for
Or59c. n Gives the number of odors but not the number of studies merged. Each receptor has been calculated separately and was therefore scaled
independently of the other receptors. (b) Same as (a) but normalized across receptors (see text). Or59a, Or59c, and Or65a do not reach strong responses,
indicating that these receptors have a different physiology or that the best ligands have not yet been identified. See Supplementary Figure S6 for additional
plots. (c) Response breadth plots for 6 odors, that is, plotting responses against Or. Note that odors differ in their response breadth, for example, broad range
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neuroanatomical analysis. A similar procedure might also be

useful for interspecific studies, finding functionally homolo-

gous receptors across species.

Estimating unknown receptor responses

As shown above, evenwith this comprehensivemeta-analysis,
our current knowledge of the D. melanogaster olfactome is

quite incomplete. Thus, the database might lead to targeted

studies toward a more complete olfactome. However, in sev-

eral instances, it would be useful to have an estimate for an

odor response even if none has been measured yet. Could the

DoOR database be used for this purpose?We used local least

squares imputation (Kim et al. 2005), which is a method for

estimating missing values in a matrix (Supplementary Figure
S4). As an example, Supplementary Figure S5a shows esti-

mated responses in red. However, validating this approach

using the leave-one-out technique, we found that this impu-

tation technique is only reliable for a subset of odor responses

(Supplementary Figure S5b,c; Wilcoxon test, P = 0.5616).

Future studies will need to develop more appropriate algo-

rithms for response estimation, possibly including external

information such as chemical odor similarity.

Relating olfactory space with other data

The D. melanogaster olfactome as it will be available with

increasingly complete versions of the DoOR database can

be used to answer several important questions in olfactory

coding. As a teaser, we mention 4.

(1) Odor response properties can be mapped onto chemical

space (Schmuker and Schneider 2007). In this ap-
proach, large data sets of chemical descriptors are used

for characterizing chemicals, and multivariate statistics

is used to extract those chemical descriptors that have

the highest predictive values for odor responses of in-

dividual receptors or receptor families. This approach

yields 2 very important results: first, it can be used to

predict better ligands and/or unknown ligands for par-

ticular receptors (see above). Second, knowing which
chemical properties best predict a receptor odor re-

sponse profile can be used to understand mechanisms

of ligand receptor interactions.

(2) Bioinformatic analysis of OR sequences. Mathemati-

cally, we have a similar approach as before, in which
2 related but distinct multidimensional spaces are com-

pared and analyzed with respect to which parameters/

factors are most predictive for the interaction of the 2

spaces. Specifically, such a comparison might yield

which sequence positions of the genes are correlated

with odor response properties and which are not, thus

generating hypotheses for odor-binding sites. Similar
approaches have been taken for individual receptors,

for example, the mouse MOR42 subfamily and could

be tested experimentally (Abaffy et al. 2007).

(3) Odor response properties can be mapped onto the be-

havioral meaning of odors: repellent or attractive odors
(Semmelhack andWang 2009) or pheromones and non-

pheromones. Using the spatial representation of odor

response patterns in the antennal lobe that can be gen-

erated from the DoOR package, it is possible to answer

questions as whether behaviorally relevant odor re-

sponses are clustered and/or concentrated in particular

antennal lobe areas or whether they are distributed and

compare these results with experimental data.

(4) The logic of spatial arrangement of odor response prop-

erties in the antennal lobe can be analyzed. Supplemen-

tary Figure S3a shows an odor response similarity

matrix for all glomeruli in the antennal lobe: some glo-

meruli have very similar odor response profiles (shown
with dark red squares) and others are anticorrelated

(blue). Is there a relationship between the spatial dis-

tance of glomeruli in the antennal lobe (Laissue et al.

1999) and their physiological similarity? We found

the relationship to be significant, with a tendency of

similar glomeruli to be closer neighbors (Supplemen-

tary Figure S3b), except when only cases with small

odor counts (6:31) are considered. However, the slope
of this relationship is small, accounting for 0.28 corre-

lation value difference across the entire antennal lobe.

We conclude that functional odor response properties

have only a limited influence on the spatial location of

glomeruli in the D. melanogaster antennal lobe, a con-

clusion that has significant implications for models

of interglomerular computations in the antennal lobe

(Galizia and Menzel 2001).

Discussion

The use of a functional atlas

Here, we create a functional atlas of odor responses for ol-

factory receptors, receptor cells, and olfactory glomeruli of

for 2-heptanone and isopentyl acetate and narrow range to methyl salicylate. n Gives the number of receptors included. (d) Physiological antennal lobe
response to the odor 2-heptanone. By mapping each receptor to the glomerulus it innervates, we generate a fictive spatial response pattern in the antennal
lobe. Excitatory responses are given in red and inhibitory responses in blue in 4 consecutive slices through the antennal lobe. UM, unmapped glomeruli,
where the respective receptor is not yet known; NA, nonavailable glomeruli, where no odor responses have been measured for the corresponding receptor;
BG, background material used for the shape of glomeruli beneath the indicated plane; D, dorsal; V, ventral; M, medial; L, lateral. Antennal lobe figure
modified from Vosshall and Stocker (2007). (e) Plot of normalized odor responses across all available receptors, for a set of odors, including odors often used
in behavioral studies in Drosophila melanogaster. Negative responses are given as empty circles. The complete table is in Supplementary Figure S8.
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the fruit fly D. melanogaster. This functional atlas represents

a consensus data set combining all available data. It will

serve as a reference work for olfactory physiologists, but
it also represents a new approach of how to map different

data sets onto each other. The only strict assumption made

is that of a monotonic odor response function.

Most odors elicit a combinatorial pattern of activity across

olfactory receptors, resulting in a stereotypical combinato-

rial pattern of activated glomeruli in the primary olfactory
center (the mammalian bulb or the insect antennal lobe)

(Galizia and Menzel 2001). In such a combinatorial system,

the effect of removing individual receptors is difficult to

Figure 4 Mapping response profiles to ORs. (a) Left panel: Confocal picture of the antenna of Or13a:GAL4;UAS:G-CaMP shows expression in a small
number of olfactory sensilla. The location corresponds to that published for ab6A sensilla. Right upper panel: Anatomical picture of the antenna as seen in
wide-field microscopy for calcium imaging. Right lower panel: False color–coded spatial response pattern to 3-octanol shows focalized responses. (b)
Confocal picture of the antennal lobes of a Or13a:GAL4;UAS:G-CaMP fly shows fluorescence in 1 glomerulus for each antennal lobe (arrows), indicating that
this Gal4 line targets a single receptor neuron population. The lower panel shows a magnification of the boxed area in the upper panel. ES, esophagus; D,
dorsal; V, ventral. (c) Left: 24 selected odors that evoked calcium responses. S3h.butanoate, (S)-(+)-3-hydroxybutanoate; R3h.butanoate, (R)-(�)-3-
hydroxybutanoate; E2h.acetate, E2-hexenyl acetate; Z3h.acetate, Z3-hexenyl acetate; h.methanoate, hexyl methanoate; m3h.hexanoate, methyl 3-
hydroxyhexanoate; e3h.hexanoate, ethyl 3-hydroxyhexanoate; pb.lactone, gamma-propyl-gamma-butyrolactone; right: plotting the data measured knowing
the receptor gene by calcium imaging (left ordinate) and electrophysiological recording (right ordinate) against the response data measured from ab6A
(abscissa). (d) Pearson’s correlation of the response profile over 111 odors measured by calcium imaging in Or13a:GAL4;UAS:G-CaMP flies to each known
model response of antennal receptors. The best match was found with RP.ab6A.
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predict. For example, silencing dOr22a in D. melanogaster

did not lead to a behavioral deficit in the response to any

of the better ligands of this receptor, but it did create a deficit

in response to a weak ligand (Keller and Vosshall 2007). This

example shows that it is not sufficient to know the response
of a single receptor class. Hence, the goal of this functional

atlas is to generate the full olfactome of a species, in this case

D. melanogaster. The data currently available do not yet in-

clude all receptors (see Supplementary Table S1), but the

framework is open to new additions and will grow as more

data will be collected by different laboratories.

Based on the complete olfactome, it will be possible to un-

derstand and to model the combinatorial nature of olfactory
coding. In particular, the biological ‘‘olfactory space’’ can be

derived from the data, that is, a description of how similar and

dissimilar different odors are at the level of primary receptor

input. At a later stage, when a similar database will be created

for other species, it will be possible to compare these olfactory

spaces for different species and thus to understand for what

odors individual species have evolved higher resolution either

in terms of discrimination capacity or in terms of sensitivity.

The need of new mathematical tools

In principle, 2 approaches can be taken to create a complete

functional atlas. In 1 approach, a mass screen using a dedi-

cated technique would be used to create a homogeneous data

set that results in a functional atlas. For example, in the vi-
sual system, the spectral response properties of photorecep-

tors can be mapped in great detail by electrophysiological

recordings and once done the description is complete. Al-

though attractive, this approach is not feasible in the olfac-

tory system where the number of receptors is high in all

species (D. melanogaster being among the most tractable)

and the number of odors is infinite: every single study will

always grasp but a partial view of the olfactome. Therefore,
it is necessary to take the second approach, that is, to merge

different data sets. Because these data sets differ in many re-

spects, new mathematical tools are necessary. We have

created a framework which allows for merging data sets

of any kind as long as a single assumption is fulfilled: that

the relationship be monotonic, that is, that better ligands

in 1 study are expected to be better ligands in all studies (give

or take variability).
This approach might also be useful in other studies where

heterogeneous data sets need to be merged into metadata-

bases. Our entire package is open source. Without any change

in the code, it can be adapted to the olfactory systems of other

species: the only thing to do is to feed the data into a spread-

sheet, create a graphical template for the antennal lobe output

(if necessary), and a consensus database can be created. Thus,

as soon as sufficient data will be available, the same platform
will be usable to create olfactomes for other species, for exam-

ple, mice or humans. With appropriate changes, the software

could also be used for nonolfactory systems.

Although conceptionally and practically attractive, a data-

base that is constantly evolving and including new data also

creates problems: computational studies, for example, need

to access standardized data sets because a change in the data

set creates a situation where different results cannot be
attributed unambiguously to a different model any more.

Therefore, we will make older versions available indefinitely:

the ‘‘DoOR 1.0’’ or ‘‘DoOR 2.0’’ will represent different

stages in the publicly available data, such that computational

studies will be able to consistently use a single reference

olfactome, allowing for creating statistical or computational

benchmarks.

Limitations of the database

From a biological–physiological point of view, the data set

presented here has 3 major drawbacks: it lacks information

about 1) odor concentration, 2) complex stimuli, and 3) tem-

poral response profiles. First, at the current stage, no infor-

mation about responses to odor concentrations is included.
This is a serious drawback because odor concentration is

a fundamental parameter in olfaction. Some studies have

measured odor responses across concentrations for all odors

tested: in these cases, receptor responses can be coded as

odor dilution that elicits half-maximal response strength

(Pelz et al. 2006). In other studies, dose response curves were

only measured for a subset of odors or not measured at all.

For ligands with high affinity, this can create distortions in
the database: for example, ethyl hexanoate and methyl hex-

anoate are currently the best-known ligands for dOr22a (Pelz

et al. 2006). At high concentrations, however, the responses

to these substances decrease due to fast receptor adaptation.

Thus, in some studies that did not include dose response

curves but tested many odors at high concentrations, these

odors erroneously appear to be good, but not exceptional

ligands. Some receptors have complex dose response curves
for particular odors, further complicating the concentration

aspect. Currently, there are not enough published data sets

to include odor concentration into the database, but with an

increasing number of studies, this will be possible. Including

odor concentration as a parameter into the database will add

1 difficulty: measuring absolute odor concentration of a stim-

ulus at the receptor cell in an experimental situation is not

trivial. Thus, a concentration of 1:100 in 1 laboratory
may not correspond to a concentration of 1:100 in another

laboratory. Relative concentrations are less problematic: the

relationship of 1:100 to 1:1000 will be 1:10 in all laboratories.

Additional mathematical tools will be necessary to allow for

automatic dose response curve shifts for data from different

laboratories.

Second, complex stimuli are not covered in the database.

These include odor mixtures but also other properties. For
example, in a dynamical situation where odors are given as

turbulent plumes, responses to some odors can be quite dif-

ferent as compared with the response to the same odor as
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a single odor pulse (Schuckel et al. 2009). A related aspect

needs to be considered for negative responses: many recep-

tors respond to some odors with an activity decrease mea-

sured as a drop in firing rate or a decrease in intracellular

calcium. However, some receptors have almost no spontane-
ous activity but might show inhibitory responses if activated

beforehand. Here, an odor response is no longer a simple

stimulus response property but rather dependent on previous

activation. Such complexities cannot be covered in a func-

tional atlas that is, in essence, a lookup table of simplified

odor responses. However, these complexities are certainly

important for the olfactory system and need to be considered

in our quest to understand olfactory coding at large by gen-
erating dedicated physiological data sets.

Third, this functional data set maps odors to single values,

disregarding the fact that odor responses are temporally struc-

tured at the level of olfactory receptors already. Response on-

sets to an odor have different time lags in different receptors,

a property that could be included into the database as more

data become available. Including more temporal information

(e.g., phasic, phasic–tonic, tonic, or complex response pat-
terns) will require additional tools. Temporal properties are

more dependent on recording techniques than response mag-

nitude: calcium imaging, intracellular recordings, or sensilla

recordings might all reveal different aspects of the temporal

complexity in a receptor neuron. Thus, including temporal in-

formation at the current stage would reduce the available data

too much to make a consensus database useful.

Taken together, we present an open access software to as-
semble the complete olfactome of a species—here D. mela-

nogaster. We hope that this service to the community will

be of use for many further studies into olfaction of this

and other species, and we will update the database as new

odor response profiles become available.

Supplementary material

Supplementary material can be found at http://www.chemse

.oxfordjournals.org/. Additional material and the online ver-

sion of DoOR is available at http://neuro.uni-konstanz.de

/DoOR.
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