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Purpose: To implement the classification of fundus diseases using deep convolutional
neural networks (CNN), which is trained end-to-end from fundus images directly, the
only input are pixels and disease labels, and the output is a probability distribution of a
fundus image belonging to 18 fundus diseases.

Methods: Automated classification of fundus diseases using images is a challenging
task owing to the fine-grained variability in the appearance of fundus lesions. Deep
CNNs show potential for general and highly variable tasks across many fine-grained
object categories. Deep CNNs need large amounts of labeled samples, yet the avail-
able fundus images, especially labeled samples, are limited, which cannot satisfy the
training requirement. So image augmentations such as rotation, scaling, and noising are
implemented to enlarge the training dataset. We fine-tune the ResNet CNN architecture
with 120,100 fundus images consisting of 18 different diseases and use it to classify the
fundus images into corresponding diseases.

Results: The performance is tested against two board-certified ophthalmologists. The
CNN achieves performance on par with the experts for the classification accuracy.

Conclusions: Deep CNN is capable of predicting fundus diseases given fundus images
as input, which can enhance the efficiency of diagnosis process and promote better
visual outcomes. Outfitted with deep neural networks, mobile devices can potentially
extend the reach of ophthalmologists outside of the clinic and provide low-cost univer-
sal access to vital diagnostic care.

Translational Relevance: This article implemented automatic prediction of fundus
diseases that was done by ophthalmologists previously.

Introduction

Many diseases manifest in the retina that affect
a large proportion of the population,1,2 and if left
untreated these diseases may cause poor patient
outcomes such as permanent vision loss. The cost-
effectiveness of regular retinal screenings has been well
established,3 but because of the lack of sufficient eye
care practitioners trained in retinal images explana-
tion, the screening efficiency is low, and the screen-
ing result is also subjective, so it is difficult to imple-
ment widespread retinal screenings. To solve these
problems, we developed a computational method that
may allow the practitioners to track fundus lesions

earlier. By creating a novel fundus disease taxonomy
and a training class–generation algorithm that maps
fundus images into balanced training classes, a deep
learning system for automated fundus disease classifi-
cation can be built.

Because of insufficient data and standard-
ized photographic equipment that generate highly
standardized images, previous work in fundus image
classification based on computer method1–7 lacked
the generalization capability of eye care practitioners.
Photographic images (e.g., smartphone images) exhibit
variability in factors such as zoom, angle, and lighting,
making classification substantially more challeng-
ing.8,9 We overcome this challenge by using a data-
driven approach; the fundus images are augmented by
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Figure 1. Deep ResNet CNN layout. Fundus image is sequentially warped into a probability distribution over clinical classes of fundus
diseases using ResNet50 architecture fine-tuned on our own dataset of 120,100 images with 18 different diseases. Inference class is more
general whose probability is calculated by summing the probabilities of the training classes according to taxonomy structure (seeMethods).

rotating, zooming, noising, and shifting to generate
large amount of pre-training and training images
which makes classification robust to photographic
variability. Many previous techniques require exten-
sive preprocessing, lesion segmentation, and extraction
of domain-specific visual features before classification.
In contrast, the proposed system in this article does
not require hand-crafted features, and it is trained
end-to-end directly from image labels and raw pixels,
which can accept both photographic and standardized
images as input and give disease classification results as
output. Previous literature about these kinds of work
uses small datasets of typically less than a thousand
images of fundus disease to train the network, which
do not generalize well to new images. By data augmen-
tationmentioned above, the labeled dataset for training
has 120,100 clinical images, including 2174 standard-
ized images, and our system demonstrate generalizable
classification performance on these images.

Deep learning algorithms, powered by advances in
computation and very large datasets,10 have recently
been shown to exceed human performance in visual
tasks such as playing Atari games,11 strategic board
games like Go12 and object recognition.13 In this paper,
based on transfer learning,14 we fine-tune a ResNet
convolutional neural networks (CNN) architecture
which was pretrained on approximately 1.28 million
images (1,000 object categories) from the 2015
ImageNet Large Scale Visual Recognition Challenge,13
and train it with our fundus dataset tomake theResNet

Figure 2. A schematic illustration of the taxonomy and examples
of test set images. The tree-structured taxonomy of fundus disease
contains 18 types of diseases. Yellow indicates DR (diabetic retinopa-
thy) which belongs to vascular disease, blue indicates vascular
diseases, green indicates OD diseases, and black indicates macular
diseases.

suitable for the fundus disease classification. Figure 1
shows the working system. The CNN is trained using
the 18 fundus disease classes from our datasets which
are composed of ophthalmologist-labeled images
organized in a tree-structured taxonomy, whose
leaf node is the individual fundus disease. Figure 2
shows the full taxonomy. We split our dataset into
118,000 training and validation images and 2100 test
images.
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Table 1. Training Class–Generation Algorithm

Inputs
Taxonomy: the disease taxonomy
MaxClassSize(int): maximum images in a training class

Output
Training Class Set (list of Training Classes): organize the images into correct disease classes

Procedure CHILDREN_NODE(node)
Return {node} ∪ {CHILDREN_NODE(child) for child in node.children}

Procedure IMAGESIZE(nodes)
Return SUM(SIZE(node.images) for node in nodes)

Procedure ORGANIZE_IMAGES(node)
Class ← CHILDREN_NODE(node)
If IMAGESIZE(class)<maxClassSize then Add class to Training Class Set
Else
For child in node.children do
ORGANIZE_IMAGES (child)

Training Class Set ← []
ORGANIZE_IMAGES(taxonomy.root)
Return Training Class Set

To make use of fine-grained information contained
within the taxonomy structure, an algorithm (Table 1)
is created to partition the labeled fundus images
into fine-grained training classes (e.g., mild non-
proliferative diabetic retinopathy (NPDR), moder-
ate NPDR, severe NPDR, and proliferative diabetic
retinopathy (PDR)). The CNN is then fine-tuned with
these training images, which outputs a probability
distribution over these fine classes. To get the probabil-
ity of the inference classes (e.g., vascular diseases, optic
disc (OD) diseases, macular diseases, diabetic retinopa-
thy (DR)), we sum the probabilities of their descen-
dants (see Methods and Fig. 6 for more details).

The effectiveness of the method is validated in
two ways by ninefold cross-validation as shown in
Table 2. First, we validate the algorithm using a
three-class disease classification—the first-level nodes
of the taxonomy, which represent vascular diseases,
OD diseases, macular diseases. For this inference class
classification task, the CNN achieves 85.2% ± 0.7%
(mean ± SD) overall accuracy (the average of individ-
ual inference class accuracies), and two comprehensive
ophthalmologists get 78.56% and 76.3% accuracy on
a subset of the validation set. Second, we validate the
algorithm using a 18-class pathology classification—
the second-level nodes of the tree. The CNN achieves
81.4% ± 1.7% overall accuracy, and the same two
ophthalmologists get 75.2% and 73.2% accuracy,
respectively. Figure 3 shows a few example images,

demonstrating the difficulty in distinguishing between
the fundus diseases because of the many similar visual
features. The comparison metrics are sensitivity and
specificity:

sensitivity = true positive
positive

speci f icity = true negative
negative

Where “true positive” is the number of correctly
predicted fundus diseases, “positive” is the number
of certain diseases the CNN predicted, including
true-positive and false-positive results, “true-negative”
is the number of correctly eliminated diseases, and
“negative” is the number of diseases the CNN
eliminated, including true-negative and false-negative
results. When inputting an image into the CNN, we get
a probabilityP of the 18 diseases it predicted as output.
By setting a threshold probability t, we can finally
determine one disease the image belongs to as ŷfor the
image, whereas ŷ = P ≥ t. The sensitivity and speci-
ficity of these probabilities can be computed, by chang-
ing t in the interval 0–1, a curve of sensitivities and
specificities of the CNN about the classification effec-
tiveness can be generated as shown in Figure 4. The
area under the curve (AUC) measures the performance
of the CNN, whose maximum value is 1. As shown
by the AUC on Figure 4a, the deep learning CNN
exhibits reliable fundus disease classification. Each
red point on the plots represents the sensitivity and
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Figure 3. Example images. These test images highlight the difficulty for the disease classification tasks.

specificity of a single ophthalmologist. We can see that
the CNN’s performance is superior to the two ophthal-
mologists because the red points are under the blue
curve of the CNN. When tested on a larger dataset
(macular diseases: 800 images, vascular diseases: 720
images, OD diseases: 808 images; Fig. 4b), we found
the tiny changes in the AUC compared with the small
dataset, which show the robust and reliable classifica-
tion performance on larger dataset.

Using t-distributed stochastic neighbor embedding
(t-SNE),15 the internal features learned by the CNN
can be examined as shown in Figure 5. Each point
represents a fundus image projected from the last
hidden layer of the CNN into two-dimensional space.
Most of the same pathology images are in the same
cluster, whereas some points are mixed in different
clusters, which indicates the wrong classification made
by the CNN.
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Figure 4. Fundus disease classification performance of the CNNwith receiver operating characteristic (ROC) curve of sensitivity and speci-
ficity.

Figure 5. The t-SNE visualization of the last hidden layer representations in the CNN for the four disease classes. Different color clusters
represent the different fundus diseases, showing how the algorithm clusters the diseases.
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Figure 6. Illustration of calculating inference class probabilities from training class probabilities. Inference class (e.g., vascular diseases) is
the red node while training classes (e.g., central retinal vein occlusion (CRVO), central retinal artery occlusion (CRAO), branch retinal artery
occlusion (BRAO), branch retinal vein occlusion (BRVO)) are the green nodes in the tree. The probability of the parent equals to the sum of
the child probabilities. As shown in the example, the probability of inference class of vessel disease: Pvessel disease = 0.8 = 0.05 + 0.06 + 0.1 +
0.15 + 0.15 + 0.25 + 0.04.

Methods

Taxonomy

Our taxonomy represents 18 individual diseases
arranged in a tree structure with three root nodes repre-
senting general disease classes: (1) Macular disease,
(2) vascular diseases and (3) OD diseases (Fig. 2a). It
was derived using a bottom-up procedure by ophthal-
mologists : individual diseases were initialized as leaf
nodes, based on clinical and visual similarity, the leaf
nodesweremerged until the entire treewas formed. The
taxonomy is helpful in generating training classes that
are suitable for machine learning classifiers. The first-
level nodes are used in the first validation strategy and
represent the most general partition. The child nodes
of the root are used in the training of the ResNet to
fine-tune the weights to make it suitable for the fundus
disease classification.

Data Preparation

Blurry and far-away images were used in training
the CNN but were removed from the test and valida-
tion sets. Yet the training images are still insufficient,
in order to enlarge the training datasets, the images are

augmented by rotating randomly between 0° and 359,
and then scaling by a factor of ±0.2, some of which
were randomly added noise. Due to the fine-grained
variation of the fundus diseases, stretching is not used
for image augmentation to avoid the false generation
of fundus lesions. No overlap (that is, same lesion,
multiple viewpoints) exists between the test sets and the
training/validation data.

Training Class–Generation Algorithm

After image augmentation, the training datasets get
enlarged but with unbalanced distribution, i.e., differ-
ent fundus diseases have different sizes whichmay effect
the training performance of the CNN. So we designed
a algorithm to partition the individual diseases into
training classes as outlined in Table 1. It is a recur-
sive algorithm that takes the taxonomy as input and
generates training classes whose individual diseases are
clinically and visually similar. The algorithm also has
another input parameter, maxClassSize, which forces
the average generated training class size to be slightly
less than its only maxClassSize. The algorithm keeps
a balance between (1) generating training classes that
are overly fine grained but do not have sufficient data
to be learned properly; (2) generating training classes
that are too coarse, too many data and may affect the
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Table 2. General Validation Results

a. Disease classes: three-way classification
Vascular diseases
OD diseases
Macular diseases

b. Diseases classes: 18-way classification
CRAO
CRVO
BRAO
BRVO
Choroidal hemangioma
Retinal hemangioma
Papillitis
Glaucoma
Optic atrophy
OD edema
OD vasculitis
ARMD
Myopic MD
Traumatic macular hole
Mild NPDR
Moderate NPDR
PDR
Severe NPDR

c. Classifier three-way accuracy
Ophthalmologist1 78.56%
Ophthalmologist2 76.3%
CNN 85.2 ± 0.7%
CNN-TGA 87.3 ± 0.9%

d. Classifier 18-way accuracy
Ophthalmologist1 75.2%
Ophthalmologist2 73.2%
CNN 81.4 ± 1.7%
CNN-TGA 85.4 ± 0.8%

CRAO, •••; CRVO, •••; BRAO, •••; BRVO, •••; ARMD, •••; MD, •••;
PDR, •••.

algorithm toward them. With maxClassSize = 3000
this algorithm yields a disease partition of 18 classes.
All training classes are descendants of inference classes.

Training Algorithm

We use ResNet CNN architecture pretrained to
achieve 3.57% error on the 1000 object classes
(1.28million images) of the ILSVRC 2015. Remove the
final classification layer from the network and add a
layer with 18 nodes, which represents our 18 diseases,
then retrain it with our dataset and the parameters are

fine-tuned across all layers. During training each image
was resized to 224 × 224 pixels to make it compati-
ble with the original dimensions of the ResNet network
architecturewhile leveraging the natural-image features
learned by the ImageNet pretrained network. This
procedure, known as transfer learning, is optimal given
the amount of data available. TheCNN is trained using
backpropagation. All layers of the network are fine-
tuned using the global learning rate of 0.002 and a
decay factor of 15 every 30 epochs. We use RMSProp
with a decay of 0.85, momentum of 0.9 and epsilon of
0.1 to update the parameters of each layer.

Inference Algorithm

According to the tree convention, each node
contains its children. Each node in the taxonomy repre-
sents a training class. Each inference class is a parent
node of its descendent training nodes. As shown in
Figure 1, the red node is inference class, and the green
nodes are training classes. When inputting a fundus
image through the ResNet CNN, it outputs a proba-
bility distribution over the training nodes. Probabili-
ties over the taxonomy are computed by the following
equation:

P(u) =
∑

v∈C(u)

P(v),

where u is a parent node, P(u) is the probability of u,
andC(u) are the child nodes of u. Therefore, to get the
probability of any inference node, we just add all the
probabilities of its descendant nodes together.

This algorithm takes the taxonomy tree as input
and organizes all the fundus images into fine-grained
balanced training classes. The experiments show that
training on these finer classes helps to improve the
classification accuracy of the corresponding inference
classes. The algorithm begins with the root node of
the taxonomy tree and recursively descend, if the
amount of images in a node does not exceed a
specified threshold, then the node are turned into a
training class. During the organization procedure, the
recursive property keeps the tree structure of the taxon-
omy, while make sure that the clinical similar fundus
images are grouped into the same training class. The
data restriction (maxClassSize) property helps to make
that training data fairly evenly distributed among the
leaf nodes. The algorithm generates training classes
that leverage the fine-grained information contained
in the taxonomy structure while keeping a balance
between generating classes that are overly fine-grained
and but don’t have enough images to train the CNN
properly, and classes that are too coarse with too many
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images and so as to prevent the algorithm from gener-
ating small size training classes.

The above tables show the classification accuracy
with 120,100 images organized in two different strate-
gies: three-way classification and 18-way classifica-
tion. The reported values are the mean and standard
deviation of the accuracy. (a) Disease classes used for
the three-way classification represent highly general
disease classes. (b) Disease classes for 18-way classi-
fication represent the 18 fine-grained fundus diseases.
(c) Three-way classification accuracy of our algorithm
and two ophthalmologists. The three classes are the
first-level nodes of our taxonomy tree. A CNN
trained directly on these three classes achieves inferior
performance to the one trained with our training class–
generation algorithm (TGA). (d) An 18-way classifica-
tion accuracy of our algorithm and two ophthalmolo-
gists. The 18 classes are the second-level nodes of our
taxonomy. A CNN trained directly on these 18 classes
also achieves inferior performance to one trained with
our TGA.

Discussion

This article demonstrates the effectiveness of deep
CNN in fundus disease classification. By using a
single convolutional neural network trained on fundus
images, we match the performance of two board-
certified ophthalmologists tested across three criti-
cal diagnostic tasks: vascular diseases, OD diseases,
and macular diseases classification. Our method is
fast and scalable, which can be deployed on mobile
devices and holds the potential for substantial clini-
cal impact, including broadening the scope of primary
care practice and augmenting clinical decision-making
for ophthalmology specialists.

Yet, as we know, the retinal vascular diseases are
more complex in nature and often present overlap-
ping structural changes, sometimes even in the best
scenario, the diseases can be misdiagnosed by CNN.
So the systemic history information is needed to help
our CNN to get a more accurate medical diagno-
sis. Currently the results from CNN can be used
to help the ophthalmologists screening the retinal
disease at the primary level, which is half of the work
done.

In the future, we will combine the systemic history
information, as well as genome information with
the CNN, and improve the model to deal with the
overlapping diseases, data bias, and more, and evalu-
ate its performance in a real-world, clinical setting, to
validate this technique across the full disease distri-

bution. The major constraints of this method is lack
of labeled data; if sufficient training images exist, the
CNN can work under many visual conditions. Deep
learning is independent of image type it is applied
on, and so it could be adapted to other specialties,
including dermatology, otolaryngology, radiology, and
pathology.
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