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Abstract: Annona muricata L. (Guyabano) leaves are reported to exhibit anticancer activity against
cancer cells. In this study, the ethyl acetate extract from guyabano leaves was purified through
column chromatography, and the cytotoxic effects of the semi-purified fractions were evaluated
against A549 lung cancer cells using in vitro MTS cytotoxicity and scratch/wound healing assays.
Fractions F15-16C and F15-16D exhibited the highest anticancer activity in the MTS assay, with
% cytotoxicity values of 99.6% and 99.4%, respectively. The bioactivity of the fractions was also
consistent with the results of the scratch/wound healing assay. Moreover, untargeted metabolomics
was employed on the semi-purified fractions to determine the putative compounds responsible for
the bioactivity. The active fractions were processed using LC-MS/MS analysis with the integration of
the following metabolomic tools: MS-DIAL (for data processing), MetaboAnalyst (for data analysis),
GNPS (for metabolite annotation), and Cytoscape (for network visualization). Results revealed that
the putative compounds with a significant difference between active and inactive fractions in PCA
and OPLS-DA models were pheophorbide A and diphenylcyclopropenone.

Keywords: Annona muricata; lung cancer; metabolomics; cytotoxicity

1. Introduction

Lung cancer is by far the most common cause of cancer deaths in both men and women
worldwide, accounting for 1.80 million deaths in 2020, or approximately 18% of all cancer
deaths [1]. It is categorized into two main types based on prognosis and treatment: non-
small-cell lung cancer (NSCLC), which accounts for around 85% of cases, and small-cell
lung cancer (SCLC), which accounts for the remaining 15% [2].

Current treatment options for lung cancer include surgery, radiotherapy, chemother-
apy, targeted therapy, and/or immunotherapy, depending on the type and stage of cancer.
Despite recent breakthroughs in cancer treatment, the prognosis for lung cancer patients re-
mains unsatisfactory. Radiotherapy and chemotherapy have severe side effects due to their
cytotoxicity to normal cells, whereas targeted therapy and immunotherapy have a limited
target range and can be very expensive [3]. In an attempt to overcome the limitations and
drawbacks of these individual and combined cancer treatments, several anticancer drugs
have been developed. The effectiveness of most of these drugs is compromised by the
ability of cancer cells to acquire drug resistance. Thus, continued research into developing
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novel and unique anticancer drugs that are more potent, tumor-selective, and can overcome
drug-resistant cancer cells is urgently needed [4].

Natural products, particularly those derived from plants, have long played an impor-
tant role in drug discovery. Medicinal plants with a long history of ethnopharmacological
use have been a valuable source of effective phytochemicals that provide beneficial effects
against numerous diseases [5]. Approximately 25% of clinically used drugs are derived
from plants, with more than 60% of these drugs having anticancer activity. Medicinal plants
are often utilized in the form of concoctions or concentrated extracts. Modern medicine,
however, requires the separation and purification of one or two active compounds that
elicit the activity [6]. Extracts with potential bioactivity are typically subjected to bioassay-
guided isolation, which involves (i) extraction of metabolites using appropriate solvents,
(ii) chromatographic fractionation of the resulting extract, (iii) bioassay screening of each
fraction, (iv) isolation of the molecule(s) from bioactive fractions, and (v) identification of
the isolated molecules and evaluation of their bioactivity [7].

One medicinal plant with a long history of ethnomedical use in cancer treatment
is Annona muricata L., also known as guyabano. This evergreen plant is a member of
the Annonaceae family and is widely distributed in the rainforests of Central and South
America, Africa, and Southeast Asia. It has alternative names such as soursop, guanábana,
guanábano, guanavana, guanaba, corossol épineux, huanaba, toge-banreisi, durian benggala, nangka
blanda, and cachiman épineux, among others. It grows around 5–10 m tall and has a diameter
of around 15–83 cm. It is typically found at altitudes below 1200 m above sea level, with
temperatures ranging from 25 to 28 ◦C, relative humidity ranging from 60% to 80%, and
annual rainfall above 1500 mm [8]. Studies show that extracts and metabolites from
guyabano, particularly the leaves, reduce tumor growth and inhibit the formation of
various types of cancer cells [9–11]. However, the majority of these studies used crude
plant extracts rather than bioactive isolates. Thus, the main objective of this study was
to extract and partially purify the bioactive compounds present in A. muricata leaves
through sequential solvent extraction and column chromatography. Specifically, it aimed to
determine the bioactivity of the fractions from the ethyl acetate leaf extract and identify
putative compounds from the fractions that could be responsible for the bioactivity through
MS-based metabolite profiling.

2. Results
2.1. Bioassay-Guided Fractionation of A. muricata Ethyl Acetate Leaf Extract

A preliminary study was conducted to determine which of the three crude extracts
(n-hexane, ethyl acetate, and methanol) obtained from guyabano leaves is the most active.
Among the extracts tested, the ethyl acetate extract had the strongest cytotoxic effect in
A549 cancer cells (Figure 1). Following this, the ethyl acetate extract was subjected to
column chromatography on silica gel 60 using mixtures of hexane, ethyl acetate, and/or
methanol as eluents in order of increasing polarity. In the first purification step, a total of
18 fractions were obtained, with fraction F15 having the best anticancer activity. Successive
fractionation of fraction F15 resulted in the separation of the two most active fractions,
F15-16C and F15-16D. All fractions were tested for bioactivity against the A549 lung cancer
cells using the MTS and scratch assays. A summary of the bioassay screening results of GE
fractions is illustrated in Figure 2.

In the first purification, six fractions showed high bioactivity (% cytotoxicity ≥ 50%)
at 10 µg/mL in the MTS assay when compared to positive control docetaxel. Fraction
F17 (80.65%) was the most toxic to cancer cells, followed by fractions F16 (79.06%), F15
(69.86%), F18 (54.95%), F13 (54.56%), and F12 (51%). Considering the results of both assays,
F15 was selected for further fractionation. In the second purification step, fraction F15-16
exhibited the highest %cytotoxicity, followed by F15-15. Further fractionation and analysis
of F15-16 resulted in eight subfractions. Of the eight subfractions, fractions F15-16C and
F15-16D were the two most active fractions, exhibiting the highest %cytotoxicity values of
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99.6% and 99.4%, respectively. Current efforts are being undertaken to further characterize
the bioactivities and metabolites of F15-16C and F15-16D.
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while fractions below that are colored green.

2.2. Metabolomics Profiling of A. muricata Ethyl Acetate Leaf Extract

The chemical profiles of the metabolites obtained from LC-MS/MS analysis of GE
fractions were analyzed using the integration of the following metabolomic tools: MS-
DIAL (v.4.60, RIKEN), a spectral deconvolution software program for MS data; Metabo-
Analyst (v.5.0, https://www.metaboanalyst.ca/, accessed on 5 September 2022), a web-
based software program for comprehensive metabolomics data analysis; GNPS (https:
//gnps.ucsd.edu/, accessed on 5 September 2022), a web-based library for MS/MS spectra;
and Cytoscape (v.3.8.2), a software platform for visualizing molecular interaction networks.
Before metabolite identification and statistical analysis, the large MS data obtained were
pre-processed using the MS-DIAL. Normalization was applied to the raw data to reduce
fluctuations and increase confidence in data comparisons [12]. The normalized MS-DIAL
data was saved as a .csv file and uploaded to MetaboAnalyst. Non-targeted principal
component analysis (PCA) was used to visualize the clustering and trends of the fractions
obtained in the third purification—subfractions of F15-16 (active) and F15-17 (inactive).
The more similar the sample data, the closer the points in the PCA score plot [13]. The
chemical features or metabolites most likely to be responsible for the bioactivity were then
subjected to orthogonal partial least squares discriminate analysis (OPLS-DA) to further
verify and confirm the initial conclusion in PCA. PCA and OPLS-DA results are presented
using score and loading plots.

https://www.metaboanalyst.ca/
https://gnps.ucsd.edu/
https://gnps.ucsd.edu/
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In Figure 3a, the first component (PC 1) explains the most variation (28.4%), while
the second component (PC 2) shows the second highest amount of variance (19%). The
scores plot shows that six samples overlap, indicating that they are likely to be found in
both active and inactive fractions. Similarly, the PCA scores plot of F15-17 subfractions in
Figure 4a shows an overlapping of components. Although the active and inactive fractions
were separated, it is possible that the analytes were co-eluted or that the fractions were
not fully separated. An ideal PCA plot is when there is a distinct separation between
components. However, it is important to take note that the analysis of metabolomics data is
complicated due to the inherent variability in each sample and several other experimental
or environmental factors, such as the kind of sample used and how the samples were
obtained [14]. According to Worley and Powers (2012), PCA scores only show separation
between groups when “within-group variation” is much less than “between-group varia-
tion” in the data, while PLS scores may show separation at random [15]. Therefore, there is
a higher possibility of obtaining biologically relevant results when PCA scores are guided
by PLS classification. As shown in Figures 3b and 4b, the active and inactive fractions of
F15-16 and F15-17 were separated so that the inactive components (green) were on the
far-right side and the active components (red) were on the far-left side. The horizontal
component shows the relationship between the active and inactive fractions, while the
vertical component shows the relationship of the individual members within the group.
The members in the active and inactive groups overlapped with each other since they were
just replicates of each other. The OPLS-DA loading S-plot (Figures 3c and 4b) obtained
shows the vital features that contributed to the separation of the components. The m/z
and rt values with the most negative values of covariance and correlation significantly con-
tributed to the separation between the active and inactive components. The top 20 features
were chosen and are presented in Tables 1 and 2. In addition, the presence of these top
20 features in the active and inactive fractions had a significant difference, as shown in
Supplementary Figures S1 and S2. The compound’s m/z and retention times were used in
determining the compounds through MS-DIAL.

Table 1. Suggested compounds in F15-16 subfractions from MetaboAnalyst and MS-DIAL.

Alignment ID m/z rt Formula Ontology

13271 633.43335 19.473 NA NA
12388 617.43817 20.733 NA NA
12357 617.17627 20.72 NA NA
12376 617.30951 20.734 NA NA
3078 335.17929 19.474 C21H28O2 Androgens and derivatives

13297 633.61481 19.472 NA NA
12369 617.27972 20.737 NA NA
11145 591.42114 18.254 C40H56O2 Xanthophylls
12433 618.26306 20.723 C22H47N5O21S2 4,6-disubstituted 2-deoxystreptamines
12422 617.61731 20.752 NA NA
11920 609.11182 20.41 C28H23BCl2F4N2O4 NA
11996 610.47235 16.595 C35H63NO7 Macrolides and analogues
11931 609.26654 20.402 C32H42O10 Limonoids
12363 617.23511 20.714 C31H35FN4O7 Dipeptides
13254 633.33405 19.48 C31H50N2O10 Peptides
10417 573.40094 18.334 NA NA
13144 631.40973 19.491 NA NA
11923 609.13605 20.392 NA NA
9844 557.41901 19.811 NA NA

11985 610.30011 18.351 C35H39N5O5 Ergotamines, dihydroergotamines,
and derivatives
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Figure 4. Comparative metabolomics of F15-17 cytotoxic active and inactive fractions. (a) PCA scores
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subfractions. (c) PLS-DA loadings S-plot for F15-17 subfractions showing the variable importance in
a model, combining the covariance and the correlation (p(corr)) loading profile.
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Table 2. Suggested compounds in F15-17 subfractions from MetaboAnalyst and MS-DIAL.

Alignment ID m/z rt Formula Ontology

15623 659.44159 20.911 NA NA
14263 633.43433 20.944 NA NA
3653 336.20688 17.861 C21H25N3O 4-benzylpiperidines

17871 703.41687 19.107 NA NA
3618 335.20947 17.844 C18H32O4 NA

14942 645.50934 22.086 NA NA
3722 338.1687 18.385 NA NA
1551 239.23094 17.983 NA NA

19912 772.49536 20.734 NA NA
14387 635.42743 20.948 NA NA
14941 645.50061 22.144 NA NA
17456 692.46521 20.672 NA NA
5453 395.37494 20.871 NA NA

19882 771.52161 21.33 NA NA
10807 567.42865 22.217 NA NA
21854 871.30621 20.854 NA NA
8693 505.40161 19.697 NA NA
6588 431.19675 20.974 C22H32O7 NA
3683 337.1861 18.402 NA NA

17677 699.5072 22.895 NA NA

2.3. Molecular Networking of Identified Compounds in A. muricata Ethyl Acetate Leaf Extract

Several putative compounds were identified from the feature-based molecular net-
working (FBMN) method in GNPS and Cytoscape analyses of F15-16 and F15-17 fractions.
They are observed to be more significant in the active fractions than the inactive frac-
tions. As shown in Figure 5, these compounds are ID 11257 (and 11258), identified as
pheophorbide A, with an m/z and rt of 593.28015/20.868, and ID 789, identified as the
benzenoid diphenylcyclopropenone, with an m/z and rt of 207.06885/10.591. Between the
two compounds, pheophorbide A has a history of use in cancer treatment as a photosen-
sitizing agent. Pheophorbide A is a chlorophyll catabolite that belongs to the porphyrin
class [16,17]. Jonker et al. used pheophorbide A as a fluorescent substrate for ABCG2 (also
known as breast cancer resistance protein, BCRP), a member of the ATP-binding cassette
family of drug transporters that provides resistance to various anticancer drugs [18]. On
the other hand, Robey et al. used pheophorbide A as a specific probe for ABCG2 function
and inhibition [19].

Moreover, compounds that are significantly present in the inactive fractions and may
not contribute to the bioactivity were ID 5287, with an m/z and rt value of 415.20721/16.312
(a flavonoid austinoneol); ID 2318, with m/z and rt value of 303.04907/7.486 (a flavonoid
quercetin); ID 2189, with m/z and rt value of 275.99554/9.465 (an aporphine 8H-Benzo[g]-
1,3benzodioxolo[6,5,4-de]quinolin-8-one), and ID 7511, with m/z and rt value of 465.11206/
7.534 (a flavonoid-3-O-glycoside isoquercitrin). Other compounds identified but with
no significant difference in the active and inactive fractions were ID 1682, with an m/z
and rt value of 273.07602/11.566 (a flavanone naringenin); ID 1392, with an m/z and rt
value of 255.06786/11.576 (an antioxidant chrysin); ID 1433, with m/z and rt value of
256.26559/20.081 (the xanthine dyphylline); ID 5197, with m/z and rt value of 387.19971/
5.265 (a triterpenoid roseoside); ID 3189, with m/z and rt value of 317.06598/12.154 (a
flavone isorhamnetin); and ID 5972, with m/z and rt value of 413.1936/22.248 (a pyridopy-
rimidine 9-OH-risperidone).
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A prior study by Raheem et al. highlighted the application of combined metabolomics
and bioactivity-guided approaches for the successful isolation of a norlanostane-type
saponin glycoside with significant antitrypanosomal activity from British bluebells (Hy-
acinthoides non-scripta) plants [20]. In this paper, the pre-processed LC-MS/MS data were
subjected to GNPS for metabolite annotation, and the metabolite’s networks were then
visualized using Cytoscape. The bioactive metabolites from the antitrypanosomal ac-
tive fractions were predicted using the OPLS-DA loading S-plot. In another study, Yang
et al. successfully screened the active THR/FXa inhibitors from Salvia miltiorrhiza Bunge
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or Dashen, a well-known traditional Chinese medicine with anticoagulant action, using
LC-MS combined with multivariate statistical analysis [13]. PCA and OPLS-DA models
were used to identify the four bioactive marker compounds (tanshinone IIA, cryptotan-
shinone, tanshinone I, and dihydrotanshinone I), which are the main active ingredients of
Danshen [21].

The bioactive compounds from A. muricata leaf fractions identified in the current
study were previously studied for anti-proliferative activity and cytotoxicity. Rutin from A.
muricata leaves was also shown to be an effective antitumor agent in an in vivo model using
BALB/c mice induced with PC3-cells (prostrate) and 4T1 cells (breast), with results showing
approximately a 62% tumor volume reduction and ED50 of 10.8 mg kg−1 active extracts,
respectively [22]. The synergistic effect of A. muricata extracts containing quercetin against
cancer was also observed either with doxorubicin (breast) or among other flavonoids and
acetogenins (prostate) [23].

This is the first study, to the best of our knowledge, to show that the following compounds
from a member of the Annonaceae family are putative against cancer: 1,4a-dimethyl-9-oxo-7-
propan-2-yl-3,4,10,10a-tetrahydro-2H-phenanthrene-1-carboxylic acid, 2-(3,4-dihydroxyphenyl)-
5,7-dihydroxy-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-
one, 2,4,7,9-tetramethyl-5-decyne-4,7-diol, 3-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-
[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-5,7-dihydroxy-2-(4-
hydroxy-3-methoxyphenyl)chromen-4-one, 7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-3-[(2R,3R,4R,
5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-
methyloxan-2-yl]oxymethyl]oxan-2-yl]oxy-6-methoxychromen-2-one, 7-[4,5-dihydroxy-6-
(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxyoxan-2-yl]oxy-
2-(3,4-dihydroxyphenyl)-5-hydroxychromen-4-one, 9-OH-risperidone, 9,12-octadecadiynoic
acid, adenosine, austinoneol, chrysin, cis-7,10,13,16-docosatetraenoic acid, dioctyl ph-
thalate, diphenylcyclopropenone, dyphylline, isoquercitrin, isorhamnetin, lauric acid
leelamide, monoerucin, naringenin, naringenin chalcone|3-(4-hydroxyphenyl)-1-(2,4,6-
trihydroxyphenyl)prop-2-en-1-one, naringenin-7-O-glucoside, octadecanamide, ouabain,
oxoglaucine, phenanthraquinone, pheophorbide A, roseoside, and sarmentoside B.

3. Discussion

The bioassay-guided isolation method is considered the most effective strategy for
screening metabolites, particularly when the active component is unknown. Each frac-
tionation step is guided by a bioassay result systematically, reducing the entire processing
time and cost [24]. Furthermore, in vitro cytotoxicity assays are typically accompanied
by wound healing experiments to determine the efficiency and optimal dose of the tested
agents. One of the commonly used in vitro wound healing experiments is the scratch assay.
The scratch assay is used to evaluate wound healing by measuring the distance traveled
by migrating cells during the assay. A large %wound size indicates that the test extract
effectively prevents cancer cells from healing the wound.

In this study, bioassay-guided purification was employed to identify the putative
anticancer compounds in the guyabano ethyl acetate leaf extract. Numerous studies on
the therapeutic benefits of guyabano leaves against various human cancers and disease
agents have previously been investigated in both in vitro and preclinical animal mod-
els. Different classes of annonaceous acetogenins, alkaloids, flavonoids, and phenolic
compounds in guyabano extracts have been shown to induce apoptosis and cytotoxicity
in cancer cells [8,25]. Moghadamtousi et al. reported that the ethyl acetate extract from
guyabano leaves inhibited the spread of A549 lung cancer cells, resulting in cell cycle
arrest and apoptosis via activation of the mitochondrial pathway and the NF-B signaling
pathway [26]. Similarly, the ethyl acetate extract showed in vivo chemopreventive effects
against azoxymethane-induced colonic aberrant crypt foci (ACF) by significantly lowering
the ACF formation in rats [27].

Recently, metabolomics has received a lot of attention as a practical approach for
analyzing a large number of metabolites present in a sample. Unlike the classical approach,
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metabolomics offers a more efficient and faster process [6]. It involves data acquisition
using hyphenated analytical techniques (e.g., GC-MS, LC-MS, or NMR) and data mining
or molecular networking using advanced bioinformatics tools (e.g., MS-DIAL, Metabo-
Analyst, GNPS, and Cytoscape) to provide extensive metabolites data that help confirm
the relationship between a specific compound and its bioactivity. Molecular network-
ing works by either matching experimental spectra against reference spectra (targeted
metabolomics) or by aligning experimental spectra against one another and connecting
related molecules based on spectral similarity (untargeted metabolomics) to find candidate
metabolites directly from fractionated bioactive extracts [28]. Liquid chromatography cou-
pled to mass spectrometry (LC-MS) is currently the most preferred approach for untargeted
metabolomics due to its versatility, high throughput, soft ionization, and broad range of
metabolites [12,29]. Several LC-MS systems are available, each with unique features that
make it better suited to certain applications than others. Untargeted metabolomics often
relies on systems with high resolution and MS2 capabilities for metabolite identification
and relatively fast scan rates to produce enough data points within the short spans of
peak elution. Isolating individual components from medicinal extracts may be counter-
productive, since they often work synergistically to elicit therapeutic benefits. Nothias et al.
(2020) also emphasized that, despite promising bioassay results in the initial extract, the
bioactive compound(s) may not be efficiently isolated during subsequent bioassay-guided
purification due to the relatively low amounts of bioactive compound(s) present in the
fraction or possible degradation [28]. These problems can be addressed by combining the
bioassay-guided method with metabolomics studies to predict the putative compounds
responsible for the bioactivity. Because metabolomics studies generate a large amount of
data, multivariate data analysis must be used to derive conclusions from the results.

The bioactive compounds from A. muricata leaves were extracted and purified using
sequential solvent extraction and column chromatography. F15 from the first purification
was further purified due to its promising bioactivity. In the second purification, F15-16
had the highest cytotoxicity activity, hence it was chosen for further purification. In the
third purification, fractions C and D of F15-16 showed the highest anticancer activity,
with %cytotoxicity values of 99.6%, and 99.4%, respectively. The cytotoxicity results were
consistent with the scratch assay results, since the fractions were observed to effectively
prevent A549 cancer cells from healing the wound. Moreover, subfractions from F15-
16 (active) and F15-17 (inactive) were run in LC-MS/MS, and untargeted metabolomics
was employed to determine the putative compounds that probably contributed to the
bioactivities. The PCA results showed overlapping components, probably due to the co-
elution of the compounds during the purification process. OPLS-DA scores plot showed
separation of the active and inactive classes and overlapping of the individual elements
within each group. The top 50 features from the OPLS-DA loadings S-plot with the lowest
values of correlation and variance were obtained, since they significantly contributed to the
separation of the active and inactive groups. Feature-based molecular networking of GNPS
gave 28 hits or putative compounds for F15-16 fractions. However, most of the hits did not
have a significant difference in the active and inactive fractions except pheophorbide A
and dicyclopropenone, which were in significantly greater quantities in the active fractions
than in the inactive fractions. Moreover, the putative compounds probably contribute to or
were responsible for the bioactivities of the active fractions. On the other hand, austinoneol,
quercetin, 8H-benzo[g]-1,3benzodioxolo[6,5,4-de]quinolin-8-one, and isoquercitrin were
significantly more observed in the inactive fractions and probably do not contribute to
the bioactivity.

4. Materials and Methods
4.1. Sample Collection, Preparation, and Extraction

Healthy mature A. muricata (guyabano) leaves were collected from UPLB Agri Park,
Los Baños, Laguna, Philippines. The plant species was verified by Michelle Alejado
(Museum of Natural History, University of the Philippines Los Baños), and a voucher
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specimen (Accession number #073576) was prepared and deposited at the Museum of
Natural History, University of the Philippines Los Banos. The fresh guyabano leaves
(3.975 kg) were cleaned, cut into small pieces, and air-dried at room temperature for two
weeks or until fully dried. The dried leaves (1135.7 g) were homogenized using a blender,
and the resulting powdered leaves were macerated with n-hexane (3 × 1.5 L) three times at
room temperature for 24 h, with filtering time intervals of 4 h, 4 h, and 16 h. The n-hexane
extract was filtered, and the residues were dried and re-extracted sequentially with ethyl
acetate (EtOAc) and methanol (MeOH) using the same procedure. The filtrate in each
extract was concentrated to dryness using a rotary evaporator and stored in a refrigerator
(−20 ◦C) until further use.

4.2. Bioassay-Guided Fractionation

The crude guyabano ethyl acetate (GE) extract with the highest %cytotoxicity in the
preliminary MTT assay was chosen for further purification. GE extract was subjected to
column chromatography over silica gel 60 (0.063–0.200 mm). The column was eluted using
n-hexane with a gradient of ethyl acetate up to 100%, followed by increasing the polarity
of the mobile phase with methanol. Before column chromatography, solvent optimization
was performed using TLC analysis to determine the optimal solvent system (mobile phase).
The fractions eluted from the column with similar TLC profiles were combined to yield
18 fractions (labeled as F1 to F18). Each fraction was subjected to cytotoxicity assays on
A549 cancer cells. The fraction that exhibited the best anticancer activity, fraction F15, was
subjected to the second purification using mixtures of n-hexane, ethyl acetate, and methanol
of increasing polarity. The resulting fractions with similar TLC profiles were combined
into 17 main fractions (F15-1 to F15-17) and then assayed. The most active fraction (F15-16)
was fractionated further to produce a total of 8 fractions (F15-16A to F15-16H), which were
subsequently assayed. The most active fractions were F15-16C and F15-16D. Masses of
obtained fractions can be seen in Supplementary Table S1.

4.3. Cell Culture and Bioassay Screening

A549 lung cancer cells (CCL-185TM) were obtained from the American Type Culture
Collection (ATCC, Manassas, VA, USA). No further authentication for the cell line was done.
The cells were grown in a 20-mL RPMI 1640 medium (Gibco) supplemented with 10% fetal
bovine serum (FBS) and 1% penicillin-streptomycin (Thermo Scientific). The media was
changed every other day. All cells were grown in at least three biological replicates and
maintained in a humidified atmosphere with 5% CO2 at 37 ◦C.

MTS(5-(3-carboxymethoxyphenyl)-2-(4,5-dimethyl-thiazoly)-3-(4-sulfophenyl)tetrazolium)
assay was performed to determine the cytotoxicity effects of GE fractions on the A549
cancer cells. A549 cells were seeded into 96-well plates at a density of 3 × 103 cells/well
and allowed to adhere for 24 h. Then, the cells were treated with 10 µg/mL GE fractions,
10 µM docetaxel (positive control), and 1% v/v DMSO (negative control) and incubated
for 24 h at 37 ◦C, 5% CO2. The MTS reagent (CellTiter 96 AQueous One Solution MTS
Reagent—Promega) was added to each well containing the fractions and controls and
incubated for another 30 min at 37 ◦C to allow color stabilization. The absorbance was
measured at 490 nm using a UV-Vis plate reader, and the cytotoxicity values were reported
as % cytotoxicity. One-way ANOVA statistical tests were performed using GraphPad Prism
(v.9.4.0, San Diego, USA). Assays were done in triplicate.

Additionally, the scratch/wound healing assay was conducted to assess the inhibitory
effects of GE fractions on the migration and wound healing of A549 cancer cells. A549 cells
were seeded into 24-well plates and cultured for 48 h to form a monolayer. Then, the cells
in the monolayer were scratched with sterile p200 pipette tips and rinsed with PBS twice to
remove the detached cells. After which, the cells were treated with 10 ug/mL GE fractions
and 0.1% v/v DMSO (negative control) and incubated for 48 h. The scratch/ wound closure
was monitored and photographed every 24 h after wounding. ImageJ software was used to
compute the % wound size. Assays were done in triplicate.
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4.4. LC-MS/MS Analysis

The bioactive GE fractions were subjected to LC-MS/MS analysis using the Waters
Xevo G2-S QTof instrument. The instrument was calibrated and operated according to the
manufacturer’s instructions. Dried GE fractions were dissolved in HPLC-grade MeOH at
a final concentration of 1000 ppm and eluted through a C-18 column (ACQUITY UPLC,
100 mm, id 2.1 mm, particle size 1.8 µm, particle shape spherical, pore size 100 Å) together
with the solvent blank (methanol), QC (quercetin), and standard (mixture of quercetin,
gallic acid, naringenin, and rutin). Gradient elution was performed at a 0.4 mL/min flow
rate using a mobile phase consisting of 0.1% formic acid in HPLC-grade water (solvent
A) and acetonitrile (solvent B). The solvent gradient was as follows: 0 min (95% A; 5% B),
5 min (85% A; 15% B), 15 min (50% A; 50% B), 17 min (30% A; 70% B), 20–22 min (5% A;
95% B), 23–25 min (95% A; 5% B). MS detection was performed using the Electron Spray
Ionization (ESI) probe in positive mode. The following ionization parameters were used:
sampling cone 75, source offset 80, source temperature 80 ◦C, desolvation temperature
33 ◦C. The mass range was selected from 100 to 1000 m/z using 40 V cone voltage, 6 V
collision energy, and 30–50 V ramp collision energy. The total run time was 25 min.

The raw data acquired from the LC-MS/MS analysis of GE fractions were processed to
identify the putative compound(s) responsible for the bioactivity [30]. Multiple databases
such as MS-DIAL [31], MetaboAnalyst [32], FBMN-GNPS [28], and Cytoscape [33] were
used for the metabolomics analysis.

The RAW files from the LC-MS/MS run were first converted into analysis base file
(ABF) format using the ABF converter before running them in MS-DIAL (v.4.60). In
starting a new project in MS-DIAL, soft ionization was chosen, and chromatography for
the separation type. For the MS method type, SWATH-MS or the conventional All-ions
method was chosen. Centroid and profile data were selected for the MS1 and MS/MS data
types, respectively.

Mass features in the form of [M+H]+ adducts were collected using tolerance values
of 0.01 and 0.025 for MS1 and MS2, respectively, with peak heights of 1000 and mass slice
widths of 0.1 Da. A sigma window value of 0.5 was employed in the MS2 deconvolution
parameters. The MSP file was MS/MS-Public-Pos-VS15, and the MS/MS identification
settings had a 100-min retention time tolerance. MS1 had an accurate mass tolerance of
0.01 Da, while MS2 had a tolerance of 0.05 Da, and the identification score cutoff was set at
80%. The alignment result was then normalized and transformed into a comma-separated
value (.csv) format to be uploaded in MetaboAnalyst, along with the TIC-peak intensities
obtained from the MS-DIAL run.

MetaboAnalyst was used for multivariate data analysis such as PCA and OPLS-
DA. The data type uploaded was in a peak intensity table, where the samples are in
columns. Because the features are less than 5000, no additional filtering or normalizing was
performed. However, log transformation and autoscaling were conducted before starting
the analysis. After the analysis, the top 50 metabolites with the lowest p[1] and p[corr]
values were obtained.

The mascot generic format (mgf) file and the aligned mass feature table that was
initially exported from MS-DIAL were subsequently uploaded to GNPS (Global Natural
Products Social Molecular Networking) for further analysis [34]. Feature-based molecular
networking (FBMN) was chosen as the analysis method in the GNPS workflow using
the following default values: precursor ion mass tolerance: 0.01 Da; fragment ion mass
tolerance: 0.05 Da. The network produced was further annotated using three GNPS in
silico tools: (1) Dereplicator+ [35], which annotates both peptidic and non-peptidic natu-
ral products; (2) MS2LDA [36], which annotates molecular fragments into Mass2Motifs
obtained from experimental data; and (3) Network Annotation Propagation (NAP) [37],
which propagates the database’s annotations by matching the network further to improve
in silico fragmentation candidate structure annotation.

The results obtained from the GNPS run were collated into a single network using
MolNetEnhancer [38] and then uploaded to Cytoscape database for molecular networking
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visualization. The compound taxonomy annotations made by MolNetEnhancer for each
compound in the network were noted and cross-referenced to the alignment file generated
by MS-DIAL. The MS-DIAL alignment file contains the TIC-normalized peak intensities for
each compound in the network, which allowed the determination of the relative abundances
of each compound superclass, class, and subclass across sample preparations.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/plants11182380/s1: Figure S1: Putative compounds in F15-16
and their relative intensities (from MetaboAnalyst analysis); Figure S2: Putative compounds in F15-17
and their relative intensities (from MetaboAnalyst analysis). Table S1: Masses of obtained fractions
from the purification of Annona muricata.
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