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Glatiramer acetate (GA; Copaxone) is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for
the treatment of patients with multiple sclerosis (MS). Its mechanism of action has not been already fully
elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte
mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients,
CD4+, the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that
consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently,
no works exist about CD4+ T cell metabolism in response to GA treatment. In order to provide novel insight
into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs)
and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated
patients' CD4+ T cells were compared with those from HCs analysing their mitochondrial activity through
polarographic and enzymatic methods in association with their antioxidant status, through the analysis of
SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4+ T lymphocytes'
dysfunctions by increasing mitochondrial activity and their response to oxidative stress.
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1. Introduction

Multiple sclerosis (MS) is a primary inflammatory demyelinating
autoimmune disorder of the central nervous system (CNS) affecting
mainly young people aged between 20 and 40 years at disease onset.
In early stages, the disease is characterized by infiltration and activation
of T cells and accumulation of monocyte-derived macrophages, which
promote destruction of the myelin sheath leading to the formation
of focal demyelinated lesions [1]. The disease involves a life-long,
unpredictable course generally categorized as relapsing-remitting,
secondary progressive, and primary progressive, though all these
courses entail a progressive destruction of myelin [2]. Previous studies
demonstrated that MS induces alteration in energy metabolism and in
oxidants/antioxidants balance that can be monitored in serum of MS
patients [3]. Moreover, recent evidence suggests that mitochondrial
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dysfunctions contribute to neurological disorders [4,5], supporting the
role of mitochondria as a potential therapeutic target in MS [6].
Interestingly, also CD4+ T lymphocytes, the main T cell population
involved in the pathogenesis of MS, present metabolic alterations.
This is an intriguing aspect, because these cells could be used as bio-
energetic markers. In particular, previous studies carried out by our
group demonstrated that CD4+ T cells of MS patients have a reduction
in oxygen consumption in association with an increase in the activity
of glycolytic enzymes respect to the cells of control ones [7]. These find-
ings lead us to propose CD4+ T cell bio-energetic status as a marker for
diagnosis and followup forMS [7]. During the last decade, new therapies
have been shown to significantly improveMS disease course. Currently,
13 different drugs with ten different active components are licensed in
the European Union [EU] and the United States [US] for the treatment
of MS. These drugs can be categorized into first-, second- and third-
line treatment. Among these, Glatiramer acetate [GA; commercial
name Copaxone] is a first-line immunomodulatory therapy [8] and a
widely used disease-modifying drug indicated for the reduction of
relapses in patients with relapsing-remitting MS (RRMS). GA is a
synthetic compound of the four amino acids (Glu, Ala, Lys, Tyr) that
are most common in myelin basic protein [9]. Even if its mechanism
of action has not been already fully elucidated, it seems that GA has an
immunomodulatory effect and neuroprotective properties [10,11,12].
Moreover, GA skews CD4 T cells differentiation from pathological Th1
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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toward regulatory Th2 phenotypes secreting IL-4 and 10 [13] and affects
innate immune cells includingmacrophages and dendritic cells [14,15].
GA probably also increases the frequency of FoxP3-expressing
regulatory T cells, effects that are at least partly mediated by
the generation of anti-inflammatory antigen-presenting cells,
allowing the differentiation of naïve T cells into Th2 or Th3 and reg-
ulatory T cells [16,17]. Particularly, it was shown that GA influence
monocyte/macrophage polarization by shifting the balance from
pathological M1 toward the M2 regulatory phenotypes [15]. The
majority of studies focusing on the mechanism of action of GA were
conducted in vitro and no information are available about GA effect
on CD4+ T cell metabolism. Ruggieri et al. demonstrated that GA is
able to restore a correct balance in the process of apoptosis of
cultured PBMCs from MS patients [18]. In order to provide more
insight into the effect of GA treatment on CD4+ T cell metabolism,
in the present study we investigated the metabolic characteristics
of this cell subset in association with response to oxidative stress in
GA treated MS patients in a 12 months follow up study.

2. Materials and methods

2.1. Ethical permission

The studywas approved by the Vito Fazzi Hospital Ethics Committee
(Lecce, Italy) and informed consent was obtained from each patient
prior to entry into the study, according to the declaration of Helsinki.

2.2. Participants/study population

20 patients diagnosed with RRMS in Vito Fazzi Hospital with an age
range of 19–45 years were included into the study. Patients had to be
without any immune-modulatory treatment at least 6 months prior to
study entry. For each patient, blood samples were obtained at baseline
(untreated) and every 6 months during GA (Copaxone® – Teva)
treatment (20mg s.c./day) for a period of 12months. Written informed
consentwas obtained from each individual before the start of the study.
Blood sampleswere also collected from 20 sex and agematched healthy
controls (HCs).

2.3. CD4+ T cell isolation

PBMC fractions were isolated from whole blood using Ficoll-Paque
density-gradient centrifugation. CD4+ T cells were purified by negative
selection using an indirect magnetic cell sorting kit (MiltenyiBiotec,
Bergisch Gladbach, Germany). In summary, human CD4+ T cells were
isolated by depletion of non-CD4+ T cells. Non-CD4+ T cells were
indirectly magnetically labelled with a cocktail of biotin-conjugated
monoclonal antibodies, as primary labelling reagent, and anti-biotin
monoclonal antibodies conjugated to MicroBeads, as secondary label-
ling reagent. Themagnetically labelled non-CD4+ T cells were depleted
by retaining them on MACS® Column in the magnetic field of a MACS
Separator, while the unlabeled cells passed through the column.

2.4. Polarographic measurement of respiratory rate

1·106 cells CD4+ T cells were suspended in buffer containing 10mM
HEPES, 143 mM NaCl, 4 mM KCl, pH 7.4. Oxygen consumption was
measured at 36 °C by a Clark-type oxygen probe (Oxygraph, Hansatech
Instruments, King's Lynn, UK), in the presence of mitochondrial respira-
tory substrates (5 mM pyruvate and 5 mM malate) and 0.5 mM ADP.
The rate of oxygen uptake (V) by CD4+ T cell mitochondria was
expressed as nmol O2·ml−1·minute−1. The respiratory control ratio
(RCR) was calculated by dividing V3(rate of oxygen uptake measured
in the presence of respiratory substrates + ADP) by V4(rate of oxygen
uptake measured with respiratory substrates alone).
2.5. ΔΨ measurement

CD4+ T cells were incubated with 2 μM JC-1 (Molecular Probes,
Eugene,CA) for 20 min and then fluorescence of J-aggregates and
J-monomers was measured using excitation/emission wavelengths of
535/595 nm and 485/535 nm, respectively.

2.6. Respiratory complexes activity

CD4+ T lymphocytes were resuspended in Mito buffer (2 mM
HEPES, 0.1 mM EGTA, 250 mM sucrose, pH 7.4) supplemented with a
protease inhibitor mixture, subjected to three freeze-thawing cycles
and, after the addition of 10 mM triethanolamine and 0.1 mg/ml
digitonin, were incubated for 10 min on ice, homogenised and centri-
fuged at 1000 ×g for 10 min at 4 °C. The supernatant was saved and
thepellet resuspended in the same volume ofMito buffer supplemented
with 0.1 mg/ml digitonin, homogenised and centrifuged once again.
Supernatants were mixed and centrifuged at 12,000 ×g for 15 min at
4 °C, and the mitochondria-rich pellet was resuspended in Mito buffer.
A total of 10–40 μg of proteins were used to determine the activity of
each complex. The assays were performed at 37 °C (except for citrate
synthase activity that was assayed at 30 °C) using microcuvettes
(volume 100 μl).

Activities of complex I, II and III were determined according to
themethod described by Frazier and Thorburn [19]. Complex IV activity
wasdetermined using a COXassay kit (CYTOCOX1) fromSigma-Aldrich.
All activities were expressed as mU/mg of proteins.

Citrate synthase [CS], a ubiquitous mitochondrial matrix enzyme,
serving as a mitochondrial marker, was measured in the presence of
acetyl-CoA and oxaloacetate by monitoring the liberation of CoA-SH
coupled to dithiobis(2-nitrobenzoic) acid spectrophotometrically
at 412 nm. Protein concentration was determined by the Bradford
method and calculated according to bovine serum albumin (BSA)
standard curve.

2.7. Antioxidant enzyme activities

The superoxide dismutase (SOD) activity was measured using the
Sigma SOD assay kit-WST (Sigma-Aldrich, Switzerland) following the
manufacturer's instructions.

Catalase (CAT) activity was assayed by the method of Luck [20].
The assay mixture consisted of H2O2-phosphate buffer (12.5 mM
H2O2 in 0.067 M phosphate buffer, pH 7.0) and cell homogenate.
Absorbance changes were recorded at 240 nm for 3 min. Results were
expressed as U/mg protein using molar extinction coefficient of
H2O2(71 × M−1 cm−1).

Glutathione peroxidase (GPx) activity was determined according to
Lawrence and Burk [21] with modifications. The activity was measured
as a decrease in absorbance at 340 nm for 5 min at 25 °C based on a
coupled reaction with glutathione reductase (GR) in the presence of
GSH and H2O2. Cell homogenate was added to each well containing
100 μL of 25 mM KH2PO4, 0.5 mM EDTA pH 7.4, 0.5 mM NaNO3,
0.3 mM NADPH, 0.64 units of GR, and 1 mM GSH. The reaction was ini-
tiated by adding 0.1mMH2O2. Values were corrected for nonenzymatic
oxidation of GSH and NADPH by H2O2. GPx activity was expressed as
U/mg of protein using 6.22 mM−1 cm−1 as the extinction coefficient.

2.8. Hexokinase and phosphofructokinase activity assays

A total of 30–50 μg of cellular proteins were used. The assays were
performed at 37 °C using microcuvettes(volume 100 μl). Hexokinase
activity was quantified following the method described by Tielens
et al. [22]. Briefly, 5 μl of sample dissolved in 35 μl of water was added
to a mix containing 40 mM Tris, 22 mM Mg-acetate, 10 mM β
mercaptoethanol, NADP+ 0.75 mM, 1 U/ml G6PDH, 10 mM ATP. After



Fig. 1. Respiratory rate of CD4+ T cells in controls and MS patients. Pyruvate/malate was
used as respiratory substrate. Respiratory control rate [RCR] represents the ratio between
state 3 and state 4 (table). Data are means ± S.E.M. from n= 20 controls and n = 20MS
subjects [0–6–12 months] each performed in triplicate. Asterisks indicate values that are
significantly different from those obtained in control cells; ⁎p b 0.05, ⁎⁎p b 0.01,
Student's t-test.
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waiting until a constant reading, the reaction was started by adding
5 mM glucose and absorbance was monitored for 3 min at 340 nm.

Phosphofructokinase activity was detected as NADH oxidation by
monitoring absorbance at 340 nm in a buffer containing 4 mM fructose
6-phosphate, 1 mM ATP, 0.5 mM NADH, 3 U/ml aldolase, 50 U/ml TPI,
8 U/ml GPD1.

2.9. Lactate production

Lactate production measurement was carried out following the
method described by Merlo-Pich et al. [23] with some modifications.
Briefly, CD4+T cells (1∗106 cells) were incubated for 1 h at 37 °C in
the presence and absence of 9 μM of antimicyn A; after incubation,
the samples were centrifuged at 1500 g for 10 min and lactate
was assayed spectrophotometrically. From the lactate data, it was
possible to calculate basal lactate as glycolytic ATP (in absence of
antimycin), Δ-lactate (the difference of lactate production in
presence and absence of antimycin A) as mitochondrial ATP and
the ratio Δ-lactate/basal lactate as the ratio of mitochondrial ATP
and glycolytic ATP.

The lactate concentration is then calculated from a standard curve of
known lactate concentrations.

2.10. Western blot analysis

CD4+ T cell protein extracts (~30 μg) were boiled in Laemli
sample buffer (Sigma-Aldrich) for 5 min, resolved on 10% SDS-
polyacrylamide gels and transferred onto PVDF filters (Amersham).
Membranes were blocked for 1 h in Tris-buffered saline (TBS),
0.05% Tween-20, 5% non-fat dry milk, followed by overnight incuba-
tion with specific primary antibodies diluted in the same buffer. The
primary antibodies used are listed as follows: anti-GLUT1 (1:1000,
Novus Biologicals), anti-MCT1 (1:1000, Novus Biologicals), anti-β-
actin (1:8000, Sigma-Aldrich). Mitochondria-rich pellet (15 μg)
was separated on a SDS-PAGE and, after blocking, membranes were
incubated with MitoProfile total OXPHOS human WB antibody
cocktail (1:1000, Abcam) and anti-Porin (1:1000, Santa Cruz). After
washing with 0.1% Tween in TBS, membranes were incubated
with a peroxidase-conjugated secondary antibody for 1 h, washed
and developed using the ECL chemiluminescent detection system
(Clarity™ Western ECL Substrate Biorad). The densitometric analyses
of blots were performed by a computerized image processing system
(Image J, 1.0 version).

2.11. Statistics

All datawere analysed using the statistical software GraphPad Prism
(5.0 version). Statistical differences were assessed by Student's t-test.
Comparison between MS patients and healthy controls was evaluated
using an unpaired Student's t-test (two tailed), while comparison
between time point 0 (patients at diagnosis), 1 (after 6 months of
treatment) and 2 (after 12 months of GA treatment) was evaluate
using a paired Student's t-test. Values at p b 0.05 were considered
statistically significant.

3. Results

3.1. Respiratory rate and OXPHOS activity

Fig. 1 shows the mitochondrial respiratory efficiency by CD4+

T cells samples from control and MS subjects at baseline and
during GA (Copaxone®) treatment (20 mg s.c./day) after 6 and
12 months.

In the presence of metabolic substrates, a strong decrease in V3

values (also known as the rate of oxygen consumption in the active
state of respiration) was observed in the MS subjects. A slight yet
significant decrease of V4 was also observed in these patients. As a
consequence, the RCR values calculated by dividing V3 by V4, were
profoundly and significantly lower in MS patients in comparison to
the control subjects (Fig. 1).

After 6 months of GA administration, V3, V4 and RCR values did not
particularly differ from those observed at baseline. Interestingly, after
12 month of GA treatment RCR values indicated a better coupling
between respiration and a well-preserved integrity of the organelles
in CD4+ T cells isolated from MS patients.

To further characterize the mitochondrial dysfunction, we used the
JC1 fluorescent probe to measure mitochondrial membrane potential
(Δψm), which is an indicator of mitochondrial activity.

The respiratory defects detected in CD4+ T cells of MS untreated
patients result in an increased Δψm, as found with JC1 analysis: the
ratio between 595/530 was 2,81 ± 0,64 in control subjects, 4,14 ±
0,33 in MS baseline patients, 3,46 ± 0,24 in 6 months treated
and 2,36 ± 0.63 in 12 months treated subjects. These results
suggest the ability of GA to completely reverse mitochondrial
dysfunction (Fig. 2).

In amore selective approach for investigating the functionality of the
mitochondrial oxidative phosphorylation, we assayed the activity of
single components of the respiratory chain (Fig. 3). Complex activities
were normalized against both the protein content and activity of citrate
synthase (CS), in order to consider any possible variations in cell density
andmitochondrial content. The latter did not display any differences be-
tween CD4+ T cells before and after drug treatment (data not shown),
suggesting that GA treatment is not able to alter mitochondrial
biogenesis, but only OXPHOS activity.

We found a decrease in the enzymatic activity of complex I and IV,
respectively, of 21% and 39% in baseline subjects in comparison to the
control group. A reversal in the activity of these complexes was
clearly observed after 12 months of GA treatment. Complex III activity
showed a significant increase in MS baseline patients, which was
more pronounced during GA treatment. No significant differences
were found in the activity of complex II (Fig. 3).

Image of Fig. 1


Fig. 2. Effect of Glatiramer acetate on the mitochondrial membrane potential of CD4+ T
cells of controls and MS treated patients. JC-1 probe was used to assess variation of
mitochondrial ΔΨ in controls [n = 20] and MS patients [n = 20]. Asterisks indicate
values that are significantly different from those obtained in control cells; ⁎p b 0.05,
⁎⁎p b 0.01, Student's t-test.

Fig. 4. Activities of antioxidative enzymes: SOD, GPx and CAT. Antioxidant systems
biomarkers in patients with MS and control subjects.[A] Superoxide dismutase [SOD],
glutathione peroxidase [GPx] and catalase [CAT] activities were assayed in CD4+ T cells
from control and MS treated subjects. Histograms show the mean values, expressed as
percent of control, of n = 10 controls and n = 10 MS subjects, each performed in
triplicate; bars indicate S.E.M. Asterisks denote values that are significantly different
from those obtained in control cells; ⁎p b 0.05, ⁎⁎p b 0.01, Student's t-test.

134 L. De Riccardis et al. / BBA Clinical 6 (2016) 131–137
3.2. Antioxidant enzymes activities in CD4+ T cells from MS subjects

Mitochondria are themajor ROS generator, as they convert 0.2–2% of
the oxygen taken up by the cells to ROS. Therefore mitochondrial
dysfunction is often associated with increased ROS production by the
organelle itself.

The activity of antioxidant enzymes such as superoxide dismutases
(SODs), glutathione peroxidases (GPx) and catalase (CAT) were assayed
inMS treated patients and healthy subjects (Fig. 4A). SOD activity, which
was significantly lower in MS baseline in comparison to control group,
was restored after GA treatment (Ctrl: 100% ± 15,9, baseline: 70,04 ±
8,92, 6 months: 92,28 ± 11,04, 12 months: 92,03 ± 6,87). An increase
in catalase activitywas observed only after 6month of GA administration
(Fig. 4C). No differences between baseline and GA treated subjects were
observed in glutathione peroxidase (GPx) activity (Fig. 4B).
3.3. Glycolytic flux in CD4+ T cells

Inhibition and/or a decrease ofmitochondrial respiration could stim-
ulate glycolysis, hexokinase and phosphofructokinase are key enzymes
Fig. 3. OXPHOS activity in CD4+ T cells. Citrate synthase-normalized activity of mitochondrial
subjects were assayed for enzymatic activities of electron transport chain complexes I-IV a
expressed as percent of the control group [A] and represent the means from n = 20 controls a
indicate S.E.M. The same mitochondria-rich pellet utilized for OXPHOS activity determination
by western blot analysis using porin as a loading control. Representative immunoblot is sho
n = 10 MS subjects [B], each performed in triplicate; bars indicate S.E.M. Asterisks indicat
⁎⁎p b 0.01, Student's t-test.
involved in this pathway.Wemeasured hexokinase and phosphofructo-
kinase activities in CD4+ T cells from control and MS treated subjects.
We found an increase in the activity of hexokinase and phosphofructo-
kinase in baseline subjects (36% and 94% respectively), that was partial-
ly restored after 12 months of GA treatment (Fig. 5A). Because lactate
was the predominantmetabolite which is released from cells as a result
of glycolysis, we next examined amounts of extracellular lactate.
Extracellular lactate release strongly decreased in CD4+ T cells from12
months treated patients (Fig. 5B). The observed differences in glucose
utilization were associated to a decrease in the expression levels of
GLUT-1 duringGA treatment (Fig. 5C) in lymphocytes fromMSpatients.
respiratory complex enzymes in CD4+ T cells. CD4+ T cells from control and MS treated
nd citrate synthase. Figure depicts the relative activities compared to citrate synthase
nd n = 20 MS subjects [0–6–12 months of treatment], each performed in triplicate; bars
was also used for CI-CIV expression: 15 μg were separated on a SDS-PAGE gel followed

wn [C]. Histograms show the mean values, expressed as percent of n = 10 controls and
e values that are significantly different from those obtained in control cells; ⁎p b 0.05,

Image of Fig. 2
Image of Fig. 3
Image of Fig. 4
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A parallel increase in MCT1 lactate transporter was observed in MS
patients, although no statistically significant differences were found
between baseline subjects, 6 and 12 months treated (Fig. 5C).

Finally, the ratio of mitochondrial ATP over glycolytic ATP,
significantly reduced in MS baseline subjects, was gradually
increased in 6 and 12 months treated patients (Fig. 5D).

4. Discussion

Multiple Sclerosis is a chronic autoimmune inflammatory disease of
the CNS that affects young adults, mainly female, leading to a growing
disability. CD4+ and CD8+ are the inflammatory cells that, together
with microglia and macrophages, play a pivotal role in the onset of MS
[24]. The animal model of MS, experimental autoimmune encephalo-
myelitis (EAE), the same used to synthesize the encephalitogenic com-
ponents of myelin basic protein (MBP), was useful to understand that
CD4+ T cell subset plays a central role in MS pathogenesis [25], having
these cells the ability to cross the blood–brain barrier with axonal
damage and neuronal death [26]. In the past 30 years many therapies
have been developed in order to decrease clinical relapses, halting the
progression of disease. Among others, Glatiramer Acetate (Copaxone,
Teva Pharmaceuticals) is a first-line therapy for relapsing-remitting
form of MS and Clinical Isolated Syndrome. The usual dose of GA is
20mg subcutaneously once a day. Although the mechanism of action
of GA is not completely understood, it may be similar to the process
of a vaccine in which antigen-presenting cells incorporate peptides
of GA and present them to lymphocytes, developing a population
responsive to GA. This process is able to inhibit the number of
lymphocytes that react against MBP.

Lots of studies propose a shift from a Th1-biased cytokine profile
toward a Th2-biased profile in.

GA treatedMS patients [27,28,29,30]. Using cytometric proliferation
assays, Karandikar et al. [31], studied the phenotypic subsets of
T cells responding to GA finding changes in the cytokine profiles of
post-treatment GA-specific cells; in particular, IL-4 was detected in
post-treatment CD4+ T cells. This finding support previous report
that have shown a shift toward the Th0-Th2 phenotype [31].
Fig. 5. Bioenergetics of CD4+ T cells in control and MS subjects. CD4+ T cells from control
phosphofructokinase, expressed as percent of control, [B] lactate production, [C] GLUT-1 and M
Δ-lactate/basal lactate), where Δ-lactate is the difference of lactate production in presence an
Cell lysates [30 μg] were separated on a SDS-PAGE gel followed by western blot analysis using
mean values, expressed as percent of n = 10 controls and n = 10 MS subjects, each performe
from those obtained in control cells; ⁎p b 0.05, ⁎⁎p b 0.01, Student's t-test.
Recent attention to the role of mitochondria in the etiology of MS
suggests that mitochondrial defects and organelle structural and
functional changes may contribute to the disease. Given the key role
of mitochondria in many important cellular functions including energy
production, it is reasonable that their dysfunction could contribute to
neurodegenerative process of this disease [32]. In particular, during
the progression of MS, inflammatory mediators, such as cytokines,
oxidants, and nitric oxide, which are released by microglia or are
generated by hypoxia, perturb mitochondrial function causing defects
in mitochondrial DNA and its replication, along with defective mito-
chondrial enzyme activities. Therefore, mitochondrial abnormalities
and mitochondrial energy failure may impact other cellular pathways,
including increased demyelination and inflammation in neurons and
tissues that are affected by MS [33,34,35,36,32,37,38].

Amongperipheral cells, T cells, especially CD4+, play a pivotal role in
MS pathogenesis and, for this reason and for their easy accessibility,
investigating their bioenergetics status could represent a follow up
marker for MS. Activated lymphocytes, such as cancer cells, usually
rely more on glycolysis than glucose oxidative phosphorylation
(OXPHOS) in energy production: this reprogrammed metabolism is
known as theWarburg effect. It provides cells advantages in energy pro-
duction, biosynthesis, redox control and inhibition of apoptosis [39,40].

During glycolysis, each glucose molecule is converted to pyruvate
with a net production of two ATP molecules. Non-proliferating and
certain T cells, such as memory and naïve, completely oxidize pyruvate
through Krebs cycle producing 36 molecules of ATP. Once activated,
T cells transform pyruvate into lactate: this process is less efficient, but
faster thanOXPHOS in generatingATP andproducesmetabolic interme-
diates that are used in anabolic pathways able to sustain cell growth and
proliferation [41].

In activated T cells, the upregulation of glycolysis is promoted by in-
creased activity of enzymes and proteins such as Glut-1 overexpression
associatedwith the increase in glucose uptake [42,43].mTOR is essential
to maintain aerobic glycolysis in effector T cells, transcription factors
such as Hypoxia-Inducible Factor 1 (HIF1), and c-Myc are involved in
glycolytic reprogramming of T cells directly binding the promoters of
a variety of genes, notably those of glycolytic enzymes and glucose
and MS patients were assayed for [A] enzymatic glycolytic activities of hexokinase and
CT-1 expression and for [D] ratio of mitochondrial over glycolytic ATP production (ratio

d absence of antimycin A and basal lactate is lactate production in absence of antimycin.
β-actin as a loading control. Representative immunoblot is shown. Histograms show the
d in triplicate; bars indicate S.E.M. Asterisks indicate values that are significantly different

Image of Fig. 5
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transporters [44,45]. Indeed, when lymphocytes are prevented from
engaging aerobic glycolysis, cellular differentiation and function is com-
promised. This has been demonstrated using strategies to disrupt the
signalling pathways that promote aerobic glycolysis [46,47]. Metabolic
changes in T cells influence immune functions in human diseases: in
HIV patients, it was shown that high levels of immune activation and
markers of inflammation, correlated with Glut-1 overexpression and
the increased glycolytic metabolism in CD4+ T cells [48]. In the same
cells of Multiple Sclerosis first diagnosis patients, we found an increase
in glycolytic pathway associated with a decrease in OXPHOS activity:
in particular, we found a decrease in the activities of mitochondrial
complex I and IV and a parallel increase in the activity of complex III,
suggesting a defect in mitochondrial function [7]. The impairment of
mitochondrial respiration efficiency resulted also in decreased RCR
values, which are a measure of the tightness of coupling between
electron transport and oxidative phosphorylation.

Apart of that study, little is known about CD4+ T cell metabolic
phenotype in MS subjects, especially related to its response to
pharmacological treatment. In order to depeen this issue, we investi-
gated mitochondrial function and we demonstrated, for the first
time, that GA administration is able to restore mitochondrial func-
tion, as suggested by RCR and mitochondrial membrane potential
values, along with enzymatic activities of respiratory complexes. In
particular, our results showed an increase in RCR values and in the
activities of complex I and IV and a decrease in the values of Δψm.
In this context, it is important to underline that mitochondrial
hyperpolarization observed in MS patients may be due to T cell
receptor stimulation, associated with the transient inhibition of
Fo-F1 ATP synthase and the consequent ATP depletion [49]. In various
cell lines, it has been proposed that the residual activity of OXPHOS
complexes may trigger mitochondrial membrane alterations [50,
51]. Experiments carried out in T cells isolated from SLE patients re-
vealed persistent mitochondrial hyperpolarization [52]; in addition,
in comparison to control monocytes, lupus monocytes induced
MHP of normal T cells after co-culture, mainly due to an increased
nitric oxide production [53]. Accordingly, in CD4+ T cells from MS
baseline subjects we detected an increased Δψm in comparison to
the control group while, during GA treatment, we found a gradual
reduction of Δψm, suggesting a restored OXPHOS activity.

Defects in mitochondrial activity are often associated with greatly
increased ROS and the mitochondrial respiratory chain is one of the
major sources of endogenous ROS, together with other oxidative
enzymes, such as plasma membrane oxidases [54]. In order to counter-
act an excess of ROS, cells have evolved several antioxidant defences,
including enzymes, and small molecules, such as glutathione. The
intracellular ROS-scavenging system is represented by glutathione
peroxidase, peroxiredoxins, glutaredoxins, thioredoxins, catalases
and superoxide dismutases, the latter located in both cytosol and
mitochondria.

Previous studies on patients with MS have shown increased free
radical activity and/or reduction in antioxidant enzymes in comparison
to control subjects [55,56,57,58,59,60]. A recent study carried out by our
group showed a significant reduction of SOD activity in CD4+ T cells of
MS patients [7]. In the present study we found that GA treatment was
able to increase SOD activity, which was significantly reduced in MS
baseline. On the other hands, glutathione peroxidase activity showed
no differences between baseline and GA treated subjects while catalase
activity was significantly reduced in 12 months treated patients. This
last result may be due to the decrease in H2O2 rate.

In MS first diagnosed patients no subjected to a pharmacological
therapy defects in mitochondrial respiration and the increase in
ROS production were accompanied by a stimulated glycolytic rate.
Accordingly, we found an increase in HK and PFK-1 activities, both
significantly reduced in 6 and 12 months treated subjects. HK and
PFK-1 are among the main controlling steps of the glycolytic flux, the
first catalyzed the ATP-dependent phosphorylation of glucose to form
glucose-6-phosphate, the second involved in the phosphorylation of
fructose 6-phosphate [61,62].

T cell activation is dependent on high rates of glycolysis and,
therefore, dependent on a rapid efflux of lactate from T cells [63]:
interestingly, extracellular lactate release was strongly decreased
in CD4+ T cells of 12 months treated patients respect to baseline
subjects and this process was accompanied by an increase in the
ratio of mitochondrial ATP over glycolytic ATP.

Co-stimulation of T cells receptor lead to an upregulation of glucose
transporter 1 (GLUT-1) gene expression and glucose uptake [64], MCT,
also known as monocarboxylate transporters (MCTs), belonging to the
SLC16 gene family export of lactate, is essential to the maintenance of
the hyper-glycolytic cell phenotype. In CD4+ T cells of MS patients,
GLUT-1 expression showed a significantly reduction in 12 months
treated subjects respect to baseline; a parallel increase in MCT1 lactate
transporter was observed in MS patients, although no statistically
significant differences were found between baseline subjects, 6 and
12 months treated.

5. Conclusions

These results, on thewhole, provide new insights into the therapeu-
tic effects of GA on CD4+ T cells, as we demonstrated an additional
way of action of this treatment, able to restore OXPHOS activity and,
consequently, oxidative stress response. Since metabolic alteration
represent an important variable in MS, it could act as a possible targets
of intervention able to modify MS pathology.
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