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Background
Acute liver failure (ALF) is a rapid loss of liver function that 
comprises massive hepatocellular necrosis leading to multior-
gan failure. Patients with ALF develop hepatic encephalopathy 
and impaired protein synthesis within a few weeks. Over the 
past few decades, ~2000 patients per year have experienced 
ALF in the United States.1 The etiology of ALF varies between 
different geographic regions. Infection with hepatitis A, B, and 
E viruses is the most prevalent cause of ALF in developing 
countries, whereas drugs are the main causes in the United 
States and western Europe.2,3 Hepatitis B virus (HBV) is a 
major cause of ALF in China, and overall mortality has histori-
cally exceeded 80%.1,4 Liver transplantation and intensive clin-
ical care have significantly improved survival in recent years; 
2-year survival rates have increased to >90% for patients after 

liver transplantation.5 Although considerable progress has 
resulted in a better understanding of ALF, the pathogenesis of 
HBV-ALF remains unclear. Thus, the early detection, accurate 
diagnosis, and prognostic evaluation of ALF should be 
improved.

Advanced gene sequencing has led to the discovery of novel 
mechanisms that are involved in disease progression. Immune 
injury, ischemic hypoxia, and endotoxin-induced damage are 
currently recognized as major factors in the process of liver 
injury associated with ALF.6 Gene profiling and histological 
findings7 have shown that that humoral immunity against 
HBV core antigen might play key roles in the pathogenesis of 
ALF. Gene profiling has also shown that abnormal gene 
expression in HBV-ALF samples correlates with hepatic stem/
progenitor cell activation and fibrogenesis.8 Bioinformatic 
analysis of the microarray data sets GSE38941, GSE62029, 
GSE62030, and GSE14668) by Lin et al9 associated the genes 
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ORM1, ORM2, PLG, and AOX1 with the immune response, as 
well as the complement and coagulation cascade pathways that 
might participate in the pathogenesis of HBV-ALF. However, 
studies of gene expression associated with HBV-ALF have 
remained relatively scant.

We integrated previous microarray data to determine the 
potential mechanism(s) of HBV-ALF. Larger cohorts of dif-
ferentially expressed genes (DEGs) were identified in HBV-
ALF than in normal liver samples. We mined gene modules 
using weighed gene co-expression network analysis (WGCNA), 
constructed a co-expression network, and analyzed functional 
enrichment. We identified two signaling pathways (natural 
killer [NK] cell-mediated cytotoxicity and antigen processing 
and presentation) and the HLA-E, B2M, HLA-DPA1 genes as 
factors that might be involved in HBV-ALF progression. Our 
findings suggested that immune-biological processes (BPs) play 
major roles in the pathogenesis and development of 
HBV-ALF.

Materials and Methods
Data resources

Information was retrieved on May 24, 2019. We searched all 
publicly uploaded genomic profiles in the NCBI GEO10 
(http://www.ncbi.nlm.nih.gov/geo/) database using the key-
words “hepatitis B virus,” “acute liver failure,” and “Homo sapi-
ens.” The genomic expression profiles should include HBV-ALF 
and normal liver samples, and number of specimens should be 
more than 20. Finally, we obtained 2 data sets under the access 
numbers GSE389418 and GSE14668.1 The GSE38941 data 
set included 17 liver tissue samples derived from patients with 
HBV-ALF and 10 normal liver samples. The GSE14668 data 
sets consisted of 8 HBV-ALF liver specimens and 12 normal 
liver specimens from healthy donors. These data sets were tested 
using the platform of the [hg-u133_plus_2] Affymetrix Human 
Genome U133 Plus 2.0 Array.

Screening DEGs associated with HBV-ALF

The original format of the two microarray data sets was down-
loaded from the Affymetrix platform. The data set was nor-
malized using the Oligo package11 in R3.4.1 version 3.6 
(http://www.bioconductor.org/packages/release/bioc/html/
oligo.html) followed by background correction (using the 
MAS method), format conversion, missing value complement, 
and data normalization. We then screened and compared 
DEGs associated with HBV-ALF and control samples using 
the Limma package12 version 3.34 (https://bioconductor.org/
packages/release/bioc/html/limma.html). A false discovery 
rate (FDR) <0.05 and |log2 fold change (FC)| >1 were the 
selected thresholds. Hierarchical clustering was assessed using 
the Pheatmap package13 version 1.0.8 (https://cran.r-project.
org/web/packages/pheatmap/index.html) based on Euclidean 
distance methods14 and the results were visualized in a heat-
map.15,16 We identified DEGs that overlapped between the 

GSE38941 and GSE14668 data sets. For these common 
genes, Gene ontology (GO) BPs and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway enrichment were ana-
lyzed using the online Database for Annotation, Visualization 
and Integrated Discovery (DAVID) version 6.8 (https://
david.ncifcrf.gov/).17,18

Screening stable gene modules using WGCNA 
algorithm

The bioinformatics method WGCNA has been extensively 
used to construct gene co-expression networks and mine gene 
modules associated with stable diseases.19 We used the 
WGCNA package20 version 1.61 in R3.4.1 (https://cran.r-
project.org/web/packages/WGCNA/index.html) to mine 
HBV-ALF-related gene modules. The data sets GSE38941 
with a relatively large number of samples served as the training 
set, and the GSE14668 data set served as the verification set. 
Gene expression status in the two data sets was compared and 
correlations among values were analyzed. Meanwhile, the adja-
cency function was defined, and gene module divisions and 
stability were evaluated. Modules with >80 genes were 
obtained and the cutHeight was set at 0.99.

Co-expression network construction

Interactions between candidate DEGs and the constructed co-
expression network were explored using STRING21 version 
10.0 (http://string-db.org/). The network was visualized using 
Cytoscape version 3.6.122 (http://www.cytoscape.org/). We 
screened crucial DEGs associated with HBV-ALF by calculat-
ing the topology parameters of nodes (degree, betweenness 
centrality, and closeness centrality). The functional enrichment 
of these DEGs was analyzed.

Candidate target gene screening for HBV-ALF

We used the keywords “acute liver failure” to search the 
Comprehensive Toxicogenomics Database23 (2019 update, 
http://ctd.mdibl.org/) for genes in the KEGG pathway that are 
closely associated with HBV-ALF. After comparisons with pre-
vious pathways, we screened overlapping signaling pathways as 
key factors in disease progression as well as associated DEGs.

Results
Screening DEGs associated with ALF

The information derived from the two data sets was normal-
ized. After setting the threshold in the GSE38941 data sets, we 
screened 2558 DEGs from HBV-ALF samples and compared 
them with normal liver tissue samples, including 685 and 1873 
that were, respectively, downregulated and upregulated. We 
screened 5317 DEGs from the GSE14668 data set that includ-
ing 1042 and 4275 that were downregulated and upregulated, 
respectively. The distribution of DEGs was visualized using 
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volcano plots, and Figure 1 shows a bidirectional hierarchical 
clustering heat map.

We screened 2238 overlapping genes as crucial gene cohorts 
associated with ALF disease (Figure 2A). Most genes represented 
consistent expression status (2236 consistent DEGs), whereas the 
expression of only 2 genes contrasted. Functional enrichment of 
these 2236 overlapping DEGs was analyzed. We screened 84 
GO-BP terms and 50 pathway categories. Figure 2 shows the top 
20 terms according to the FDR. These DEGs were mainly 
enriched in GO-BP terms associated with regulation of the 
immune response, the inflammatory response and neutrophil-
mediated immunity. The major pathway categories included cell 
adhesion molecules, complement, and coagulation cascades.

Mining gene modules according to WGCNA 
algorithm

Here, we used the WGCNA algorithm to further mine the 
functional gene modules associated with ALF disease. The 
results showed that correlations of both expression status and 
connectivity were positive between the 2 data sets (cor = 0.9; 
P < 1e–200; cor = 0.57; P = 7.5e–193).

We explored the value of the soft-thresholding power that 
represented the adjacency matrix weight parameter to fulfill 
the scale-free network topology (R2 > 0.9). Subsequently, 
interaction coefficients (coef ) between log (k) and logp (k) 
were calculated. Higher coef values indicated that the co-
expressed network had closer scale independence (Figure 3B). 
The power value was set to 36, then mean connectivity as a 
function of soft-thresholding power was evaluated (Figure 3B).

To further screen the gene modules, we used cluster dendro-
grams to detect co-expressed clusters based on specific thresh-
olds (cutHeight = 0.99; number of genes ⩾ 80). Figure 4A 
shows the clustering results of mined modules in the GSE38941 
(upper) and GSE14668 (lower) data set. We obtained 10 mod-
ules (module 1-10) comprising 75 to 1078 genes. Entire mod-
ules were assigned specific colors (yellow, blue, red, brown, 
green, black, turquoise, magenta, pink, and gray). Table 1 shows 
a complete list of preserved modules, which was high for whole 
modules (Z-score > 5; P ⩽ 0.05). The 1078 genes that were not 
assigned to functional modules are colored gray. The heatmap 
in Figure 4B shows relationships between gene modules and 
disease traits. The coefficient values for the black, brown, pink, 
and turquoise modules were the same as those of control gray 

Figure 1. Volcano plots and supervised hierarchical cluster heat map of DEGs between hepatitis B virus-associated acute liver failure and control liver 

samples. Blue dots, DEGs in GSE38941 (A) and GSE14668 (B) data sets. Red horizontal lines, FDR < 0.05; vertical lines, |log2FC| > 1. DEGs, 

differentially expressed genes. FDR, false discovery rate.
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Figure 2. Crucial DEGs screening and function enrichment. (A) Venn diagram based on overlapping DEGs between GSE38941 and GSE14668 data 

sets. (B) GO terms and, (C) KEGG pathway analysis for DEGs associated with acute liver failure. Horizontal axis, number of genes; vertical axis, GO 

terms or pathway categories. Orange columns indicate higher significance. DEGs, differentially expressed genes; GO, gene ontogeny; KEGG, Kyoto 

Encyclopedia of Genes and Genomes.

Figure 3. Co-expression analysis of DEGs in two data sets and definition of adjacency function: (A) scatter diagram shows ranked gene expression (left) 

and connectivity (right) in two data sets. (B) Definition of weighted parameter power in adjacency function. Left panel, scale-free topology model; right 

panel, mean connectivity as function of soft threshold. Red line in left panel represents the squared value of a correlation coefficient of 0.9.
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modules. Thus, a total of 629 DEGs in the 4 modules were 
identified as candidate genes associated with the development 
of HBV-ALF (Figures 5 and 6).

Construction of co-expression network

A co-expression network was constructed for these 629 DEGs 
according to the STRING database. Interaction pairs with 

scores >0.8 were reserved and a co-expression network com-
prising 849 edges and 214 gene nodes was constructed. All of 
these DEGs were notably upregulated in ALF specimens. Hub 
genes were identified by evaluating the topological parameters 
of node degree, betweenness centrality, and closeness centrality. 
The top 10 hub genes listed in Table 2 include cyclin-depend-
ent kinase 1 (CDK1; degree = 62), cyclin B1 (CCNB1; 
degree = 48), cell-division cycle protein 20 (CDC20; 

Figure 4. WGCNA of hepatitis B virus-associated acute liver failure-related genes: (A) clusters of mined modules in GSE38941 (upper) and GSE14668 

(lower) data sets. (B) Module-trait relationships. Colors ranging from blue to red represent change from negative, to positive correlation. WGCNA, 

weighed gene co-expression network analysis.

Table 1. Overview of module preservation statistics.

ID COLOR MODULE 
SIZE

CORRELATION WITH 
PHENOTYPE

PRESERVATION 

COR. P VALUE Z-SCORE COR. P VALUE

Module 1 Black 91 0.91 0 7.019385 0.37 3.10E–04

Module 2 Blue 134 –0.65 3.00E–271 5.640913 0.18 3.70E–02

Module 3 Brown 121 0.84 0 8.622159 0.38 1.70E–05

Module 4 Green 112 0.77 0 8.109407 0.42 4.00E–06

Module 5 Gray 1078 0.82 0 17.506798 0.98 1.00E–200

Module 6 Magenta 75 0.75 0 5.689374 0.5 4.90E–06

Module 7 Pink 83 0.9 0 6.452846 0.5 1.50E–06

Module 8 Red 95 –0.83 0 5.232336 0.23 2.50E–02

Module 9 Turquoise 334 0.96 0 16.522555 0.44 3.00E–17

Module 10 Yellow 113 –0.98 0 5.692059 0.28 2.70E–03



6 Evolutionary Bioinformatics 

Figure 5. Construction of co-expression network and functional enrichment analysis: (A) construction of protein-protein interaction network. Color on 

node edge corresponds to module with same color and node size is shown in degrees. (B) Gene ontogeny terms and KEGG signaling pathway 

enrichment analysis of DEGs in co-expression network. Colored dots with different sizes indicate significance of enrichment results. DEGs, differentially 

expressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes.

Figure 6. Comprehensive network construction of crucial signaling pathways and DEGs associated with HBV-ALF. Color on node edge corresponds to 

module with same color. Oval node, KEGG signaling pathway. Black and red lines, interactions between genes and pathways.
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degree = 47). Moreover, analysis of the functional enrichment 
of these DEGs using the online tool DAVID identified 17 
GO-BP terms and 6 pathway categories (Table 3). These 
DEGs were mainly involved in cell division, immune response 
process, antigen processing and presentation, and NK cell-
mediated cytotoxicity signaling pathways.

Screening candidate target genes in CTD database

We searched the CTD database using the keyword “acute liver 
failure” to explore potential mechanisms of HBV-ALF and 
found 110 KEGG signaling pathways. Two overlapping path-
ways, namely antigen processing and presentation, and NK 
cell-mediated cytotoxicity were identified after comparisons 
with the previously determined pathways. A gene-pathway 
interaction network was constructed that consisted of two 
pathways and several DEGs, including HLA-E, HLA-DPA1, 
TYROBP, SYK, LCK, RAC2, and ZAP70. The results indicated 
that these DEGs and associated pathways are crucially involved 
in the development of HBV-ALF.

Discussion
We investigated changes in genes associated with HBV-ALF 
processes using the WGCNA algorithm. Genomic profiling 
identified numerous DEGs between HBV-ALF and normal 
liver tissue samples. Four gene modules were selected for 
detailed analysis and 629 related DEGs were identified as 
being vitally involved in ALF processes. We constructed a co-
expression network and considered CDK1, CCNB1, and 
CDC20 as hub genes in disease development. We also found 
that the signaling pathways, NK cell-mediated cytotoxicity, 
and antigen processing and presentation, were involved in 
HBV-ALF. Several genes, namely, HLA-E, B2M, HLA-DPA1, 
TYROBP, ZAP70, and SYK might be candidates in HBV-ALF 
progression, because abundant NK cells in the human liver 

comprise the major effector population in the innate immune 
system. Activation of the NK-cell-mediated cytotoxicity path-
way during HBV infection could result in liver damage and 
contribute to the development of HBV-ALF.24 However, the 
potential mechanism has remained obscure. Others have shown 
that during the processes of HBV-ALF or FHF, the KCTD9, 
Fas/FasL, NKG2D/NKG2D ligand and TRAIL pathways25-27 
interact with the NK cell-mediated cytotoxicity pathway and 
contribute to hepatocyte injury. This study identified 16 DEGs 
that were associated with NK-cell-mediated cytotoxicity path-
ways during disease progression. Among these, RAC2, SYK, 
TYROBP, ZAP70 had a highly connective degree in the com-
prehensive network. RAC2 encodes a GTP-metabolizing pro-
tein that belongs to the Rac family and the activity of Rac in 
leukocytes is essential for immunity. Depletion of RAC2 (but 
not RAC1) can induce mitochondrial dysfunction in human 
leukemic stem/progenitor cells.28 Patients with mutations of 
the RAC2 gene have the clinical features of a common variable 
immunodeficiency.29 A recent study showed that RAC1/RAC2 
and SFK can regulate the NK cell-mediated cytotoxicity pro-
cess through PI3K activation for defense against bacterial 
infection.30 TYROBP, also known as DAP12, encodes a trans-
membrane signaling polypeptide. The signal adapter, DNAX-
activating protein of 12 kDa (DAP12) was initially described 
as an immunoreceptor containing a tyrosine-based activation 
motif and phosphorylated DAP12 peptides interact with zeta-
chain-associated protein kinase (ZAP)-70 and spleen tyrosine 
kinase (SYK) that are involved in activating NK cells.31 An 
enzyme belonging to a tyrosine kinase family encoded by 
ZAP70 regulates T-cell development and lymphocyte activa-
tion. Spleen tyrosine kinase is involved in the immune cell acti-
vation process, and HBV or HCV infection can significantly 
increase SYK and related cytokine expression in hepatocytes, 
thus resulting in the development of liver fibrosis.32 Pugh 
et al33 showed that human NK cells can downregulate Syk and 

Table 2. Topological parameters of top 10 hub genes in protein-protein interaction network.

GENE BETWEENNESS 
CENTRALITY

CLOSENESS 
CENTRALITY

DEGREE COLOR

CDK1 0.210 0.311 62 Brown

CCNB1 0.080 0.299 48 Brown

CDC20 0.031 0.282 47 Brown

CCNA2 0.027 0.280 42 Brown

BUB1 0.042 0.296 41 Brown

CCNB2 0.032 0.293 40 Brown

BUB1B 0.018 0.290 36 Brown

KIF11 0.019 0.290 35 Brown

CENPE 0.019 0.290 34 Brown

MAD2 L1 0.003 0.252 32 Brown
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Table 3. GO terms and KEGG pathways enrichment analysis for differential expressed genes associated with acute liver failure.

CATEGORY TERM COUNT PVALUE FDR

Biology process GO:0051301~cell division 32 6.38E–18 1.05E–14

 GO:0006955~immune response 34 1.97E–17 3.24E–14

 GO:0019882~antigen processing and presentation 14 1.08E–13 1.78E–10

 GO:0045087~innate immune response 30 1.13E–13 1.86E–10

 GO:0060333~interferon-gamma-mediated signaling pathway 14 3.64E–12 5.99E–09

 GO:0007067~mitotic nuclear division 22 4.83E–12 7.93E–09

 GO:0006954~inflammatory response 25 6.43E–11 1.06E–07

 GO:0031295~T-cell costimulation 13 2.13E–10 3.50E–07

 GO:0007062~sister chromatid cohesion 14 4.74E–10 7.78E–07

 GO:0002250~adaptive immune response 16 4.94E–10 8.12E–07

 GO:0050776~regulation of immune response 16 6.43E–09 1.06E–05

 GO:0050900~leukocyte migration 13 3.94E–08 6.48E–05

 GO:0016032~viral process 18 2.13E–07 3.51E–04

 GO:0008283~cell proliferation 19 7.81E–07 1.28E–03

 GO:0051056~regulation of small GTPase mediated signal transduction 12 9.22E–07 1.51E–03

 GO:0000086~G2/M transition of mitotic cell cycle 12 1.15E–06 1.89E–03

 GO:0006915~apoptotic process 21 2.83E–05 4.65E–02

KEGG pathway hsa04612: Antigen processing and presentation 16 2.97E–11 3.53E–08

 hsa04514: Cell adhesion molecules (CAMs) 19 6.30E–10 7.49E–07

 hsa04110: Cell cycle 17 4.64E–09 5.52E–06

 hsa04650: Natural killer cell mediated cytotoxicity 15 2.03E–07 2.41E–04

 hsa04666: Fc gamma R-mediated phagocytosis 12 1.16E–06 1.38E–03

 hsa04662: B-cell receptor signaling pathway 10 1.17E–05 1.39E–02

Zap70 kinases in response to prolonged activation or DNA 
damage. Regulating NK cell activity has proven valuable as an 
immunotherapeutic strategy against various disease states.

Moreover, the antigen processing and presentation pathway 
was abnormally expressed during disease progression and 15 
related DEGs were enriched in this pathway. Antigen process-
ing is an immunological process that prepares antigens for 
presentation to specialized immune cells, which is essential for 
the T-cell immune response. The potential mechanism of anti-
gen processing and presentation machinery in HBV-ALF is 
still not clear. We selected several associated candidate genes 
for detailed analysis. Human HLA-E is a nonclassical MHC 
class I molecule, and less of it is expressed on cell surfaces com-
pared with classical paralogues. Infection with HCV results in 
chronic inflammatory changes in liver tissues that lead to fibro-
sis and cirrhosis. The expression of HLA-E is significantly 
upregulated in patients infected with HCV at the severe stages 
of liver fibrosis.34 Genome-wide sequencing has shown that 

B2M is mutated in several types of cancers, whereas little is 
known about its status in HBV-ALF.35-37 The B2M gene 
encodes beta-2-microglobulin protein (B2M), which is a 
human leukocyte antigen (HLA) domain. Class I HLA anti-
gens play major roles during the process of hepatitis virus 
infection by eliminating the virus. Serum levels of B2M are 
high in patients with chronic active HBV and in those with 
liver cirrhosis associated with HCV.38,39 We found that abnor-
mally expressed B2M is involved in antigen processing and 
presentation pathways, indicating that B2M might be a marker 
of disease progression in HBV-ALF.

A recent study has applied similar approaches to analyze the 
GSE38941, GSE62029, GSE62030, and GSE14668 microar-
ray data sets.9 That study showed that the ORM1, ORM2, 
PLG, and AOX1 genes that are associated with the immune 
response and complement and coagulation cascade pathways 
might participate in the pathogenesis of HBV-ALF. Although 
the approaches were similar, the thresholds for screening DEGs 
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differed. The criteria of|fold change| ⩾ 2 and FDR < 0.01 
were applied in that study, which generated 624 and 1395 
DEGs for GSE38941 and GSE14668, respectively. However, 
we selected DEGs based on the thresholds of |log2 fold change 
(FC)| > 1 and FDR < 0.05, and identified 2258 and 5317 
DEGs in GSE38941 and GSE14668, respectively. We used 
relatively looser criteria to collect more DEGs for WGCNA 
analysis. In addition, although the hub genes in this study and 
in that of Lin et al9 were identified from protein-protein inter-
action networks, the methods used to build the networks dif-
fered. The 629 DEGs that we used to build the network were 
in the black, brown, pink, and turquoise modules, and had 
higher coefficients with disease traits. These genes might be 
associated with HBV-ALF development.

Although this study provided a comprehensive network of 
pathways and crucial genes, some limitations persisted. First, 
we did not have a large number of clinical liver samples. Second, 
the potential roles of candidate genes in the development of 
HBV-ALF disease should be experimentally validated.

Conclusion
We identified several crucial DEGs associated with HBV-ALF, 
such as CDK1, CCNB1, HLA-E, B2M based on the WGCNA 
method and a PPI network. Our findings suggested that DEGs 
involved in two signaling pathways are key factors in disease 
progression. The present findings provided novel insight and 
potential therapeutic targets for patients with HBV-ALF.
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