
Heliyon 8 (2022) e08897

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

Dynamics of exciton polaron in microtubule

W.A. Nganfo, C. Kenfack-Sadem ∗, A.J. Fotué, M.C. Ekosso, S.N. Wopunghwo, L.C. Fai

Condensed Matter and Nanomaterials, Faculty of Science, Department of Physics, University of Dschang, Po Box 67, Cameroon

A R T I C L E I N F O A B S T R A C T

Keywords:

Microtubule
Exciton-polaron
Anisotropic
Vibration frequency
Protofilament
Helix
Antihelix

In this paper, we study the dynamical properties of the exciton-polaron in the microtubule. The study was carried 
out using a unitary transformation and an approximate diagonalization technique. Analytically, the modeling of 
exciton-polaron dynamics in microtubules is presented. From this model, the ground state energy, mobility, 
and entropy of the exciton-polaron are derived as a function of microtubule’s parameters. Numerical results 
show that, depending on the three vibrational modes (protofilament, helix, antihelix) in MTs, exciton-polaron 
energy is anisotropic and is more present on the protofilament than the helix and absent on the antihelix. Taking 
into account the variation of the protofilament vibrations by fixing the helix vibrations, exciton-polaron moves 
between the 1st and 2nd protofilaments. It is seen that the variation of the two vibrations induces mobility of the 
quasiparticle between the 1st and 15th protofilament. This result points out the importance of helix vibrations 
on the dynamics of quasiparticles. It is observed that the mobility of the exciton polaron and the entropy of 
the system are strongly influenced by the vibrations through the protofilament and helix. The effects of the one 
through the antihelix is negligible. The entropy of the system is similar to that of mobility. Confirming that the 
quasiparticles move in the protofilament faster than in the helix.
1. Introduction

Microtubules (MTs), major elements of the cytoskeleton are alleged 
to be at the middle of cellular organization and knowledge processing. 
They play a crucial role in intracellular transport where they function 
as road-rail for motor proteins, essential during cellular division and 
cell motility (Horio and Murata, 2014; Ganguly et al., 2012). An MT is 
a long cylindrical tube of about 25 nm in outer diameter and 14 nm in 
inner diameter. The interior of the cylinder is likely to be filled with or-
dered water molecules, which implies the existence of electric dipoles 
and electric fields. (Wang et al., 2012; Rüdiger et al., 2016; Amos and 
Klug, 1974). Formed by thirteen protofilaments, MTs are extremely dy-
namic and unstable due to the dynamic behavior of their basic units 
called tubulin dimers that attach end to end to make a protofilament 
(Antal et al., 2007; Aher and Akhmanova, 2018). Each tubulin dimer 
consists of two elements, 𝛼 tubulin negatively charged and 𝛽 tubu-
lin positively charged. This polarity difference implies that MTs are 
polarised structures where tubulin dimers are seen as electric dipoles 
(Stracke et al., 2002; Pokorný, 2004). The 𝛼𝛽 tubulins are represented 
within the protofilament as double-well potential, where the mobile 
electron on each 𝛼𝛽 tubulin dimer is often localized within the site of 
the monomer 𝛼 or the location of the monomer 𝛽 (Hiramatsu et al., 
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2008; Ying et al., 2004; Mavromatos et al., 2002). Under certain condi-
tions, and by quantum tunneling phenomenon, an electron may go from 
one well into another (Chen et al., 2005). Thus, depending on the situ-
ation of the mobile electron, the tubulin dimer has two basic states as 
shown in Fig. 1.

When the electrons present within the double-well potential is ex-
cited, it crosses from the fundamental state to the excited state, leaving 
a hole. This interaction between electron and hole forms an exciton. 
Several authors have studied the properties of the exciton in micro-
tubules (Tuszyński et al., 1998). Portet et al. (2005) studied the exciton 
energy transfers between MT dipoles and showed that the exciton en-
ergy is between 64-68 meV. Celardo et al. (2019) found that the spread-
ing of excitation is ballistic in the absence of external sources of disorder 
and strongly hooked into initial conditions in MT. Kurian et al. (2017) 
gave the evolution of exciton states in tubulin.

Microtubules are protein aggregates that depolymerize due to GTP 
hydrolysis. The energy produced during hydrolysis creates phonon vi-
brations in the MT network. By considering them as an aggregated layer 
in two dimensions, several authors have studied the lattice vibrations 
of MTs. Pokorný (1999) suggested that vibrations are possible in micro-
tubules; tubulin dimers being electric dipoles, their vibrations generate 
an electrical field. Pokorný (2004) studied the excitation of vibrations 
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Fig. 1. (a) Model of the microtubule made up of 13 protofilaments and formed 
from 𝛼𝛽 tubulin dimers. (b) Each filled circle represents a possible location 
of the electron with a corresponding quantum state |𝛼⟩ (upper) or ⟨𝛽| (lower) 
(Hiramatsu et al., 2008).

in microtubules in living cells. Thackston et al. (2019) measured the 
electrical field produced by vibrations of the microtubule lattice and 
showed that a vibrating MT exerts significant forces on electric dipoles. 
There are several other articles that handle the vibrational properties of 
MTs (Shirmovsky and Shulga, 2018; Taj and Zhang, 2012). The elastic 
vibrations of the tubulins around their equilibrium position within the 
network are called phonons (Sirenko et al., 1996a,b; Stroscio and Dutta, 
2001). Sirenko et al. (1996a,b) studied several vibrational modes in MTs 
(radial, torsional and longitudinal) and showed that the velocity of the 
phonons varies between 200 and 600 m/s. Pokorný (2004) constructed 
a model of MT as monoatomic linear chains and concluded that the ex-
pected phonon vibration frequencies were of the order of 107-1010 m∖s. 
Portet et al. (2005) expressed the frequencies and vibration speed of the 
phonon as a function of the elastic constants characterizing the geom-
etry of the MTs. They said that there are three modes of vibration in 
microtubules: The one following the protofilament, the one following 
helix, and the one following antihelix. The choices of elasticity constan-
cies are justified by the fact that Sept et al. (2003), Kis et al. (2002), 
and Nogales et al. (1999) reported that tubulin dimers are strongly 
bound along the protofilament, while the interaction between protofil-
aments is much weaker. So they considered that 𝑘𝑝 ≻ 𝑘ℎ, 𝑘𝑎. Li et al. 
(2002) specified that the longitudinal intra-protofilament interactions 
are identical while the lateral interactions between the protofilaments 
are different therefore 𝑘ℎ is different from 𝑘𝑎. In the work of Sept et 
al. (2003), they estimated that the elasticity constant corresponding to 
the harmonic approximation is 𝑘 = 4𝑁∕𝑚. de Pablo et al. (2003) ex-
perimentally estimated that the elasticity constant linked to the lateral 
interactions between protofilaments is 𝑘 = 0.1𝑁∕𝑚. Portet et al. (2005) 
suggest that the elastic constancies are anisotropic and can vary follow-
ing the directions, in their studies, they considered that 𝑘𝑝 = 4.5𝑁∕𝑚, 
𝑘ℎ = 0.1𝑁∕𝑚, 𝑘ℎ = 0.01𝑁∕𝑚 and the mass of the dimer is taken to be 
𝑚 = 1.89 × 10−22𝑘𝑔. Several authors (Cifra et al., 2011; Thackston et 
al., 2019) have shown that microtubules have an intrinsic increasing 
electric field resulting from network vibrations and an external electric 
field resulting from vibrations of other components of the cytoskele-
ton. Pokorný (2004) and Pokorný et al. (2005) showed that endogenous 
electric fields by action on charges and by polarization exert forces that 
can lead to charges and particles in the cell. They analyzed the mobil-
ity of mass and electrons driven by deterministic forces with the latter 
by thermal forces.

The electron-hole-phonon coupling also known as the exciton-
phonon interaction is understood within the microtubule literature and 
mentioned by (Kurian et al., 2017; Craddock et al., 2014; Craddock and 
Tuszynski, 2010). Also, it is well known that the electron-phonon inter-
2

action creates the quasi-particle called polaron. So, the exciton-polaron 
appears when the exciton interacts with optical or acoustic phonons. 
Radoń et al. (2022), studied ultraslow electron-phonon scattering and 
polaron formation in magnetite to find relations between the forma-
tion of polarons, phonons, and conduction by a virtual free electron gas. 
The analysis performed here shows that the interaction electron-phonon 
coupling results in the formation of large polarons, and these are re-
sponsible for high-frequency conductivity in magnetite. Chorošajev et 
al. (2014) studied the dynamics of the formation of polaron excitons 
in molecular systems coupled to an overamplified bath using the Dirac-
Frenkel variational principle and the Davydov Ansatz D1. They showed 
that the timescale of the polaron formation can be defined by the 
timescale of resonant coupling quenching. Kato et al. (1999) studied 
excitonic polarons in molecular aggregates: by performing a dynamic 
coherent potential approximation. In their study, excitons interact with 
phonons to form exciton-polaron in molecular aggregates. Tuszyński et 
al. (1999), studied the mechanisms of exciton energy transfer in pro-
tein aggregates. In particular, they addressed the issue of determining 
the strength of the exciton-phonon interaction and its effect on the for-
mation and dynamics of a coherent exciton domain. They specify that 
for certain coupling values there is the formation of polaron in the 
protein aggregates. Craddock and Tuszynski (2010) studied a critical 
assessment of the information processing capabilities of neuronal micro-
tubules using coherent excitations. They showed that phonons, excitons, 
and polarons exist in microtubules. A phase diagram is constructed in 
terms of the parameter space spanned by the coefficient 𝛾 which rep-
resents the ratio of the phonon energy to the exciton energy and the 
coefficient g which is one half of the product of the square of the ratio 
of the exciton–phonon energy to the dipole-dipole energy times the ra-
tio of the exciton energy to the phonon energy. It is straightforward to 
estimate the range of the coefficient values as 0.03 < 𝛾 < 1.3 and 0 < g 
< 0.001. This falls squarely into region III, i.e., a small polaron system. 
Most importantly, the radiative decay of the small polaron domain at 
300 K is expected not to exceed 10−10 s.

Our interest in the exciton-polaron concept comes from the fact 
that many studies have proven that the behavior of an exciton is con-
stantly modified by its interaction strength with the phonon (Thilagam, 
2015; Chen, 2018). The latter is therefore important for understand-
ing the conductivity within materials. Exciton-polarons present a higher 
degree of lattice deformation than the conventional polaron. The above-
mentioned characteristics prove the contribution of the exciton-polaron 
to the dynamics of a given system. This concept is well known in the 
context of nanostructure dynamics (Mommadi et al., 2020), but to our 
knowledge, it has not yet been studied in the context of microtubule dy-
namics. MTs consist of dynamically aggregated proteins that move with 
the phenomena of polymerization and depolymerization, maintaining 
the mechanical stability of the cell. During these processes, several 
physical and biological transformations take place in and around mi-
crotubules (Gudimchuk and McIntosh, 2021; Borin et al., 2020). In the 
above works, it is clearly demonstrated that there is the formation of 
excitons, phonons, electrons, and polarons in MTs. For this reason, in 
the present work, we investigate the dynamics of exciton-polaron quasi 
particles on the dynamics of microtubules. The effects of microtubule 
parameters on exciton-polaron dynamics will also be studied. The vari-
ational method will be used to evaluate the ground state’s energy, mo-
bility, and entropy of the exciton-polaron according to the parameters 
characterizing the geometry of the microtubules. The paper is organized 
as follows: Section 2 presents the model and the calculations. The re-
sults are discussed in section 3, and section 4 concludes.

2. Model and calculations

In this section, the conceptualization of exciton, phonon, exciton-
phonon interaction, and exciton-polaron will be presented in micro-
tubules using the basic assumptions. Then we use the unitary transfor-
mation presented by (Thilagam, 2015; Thilagam and Singh, 1996), to 
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diagonalize as much as possible the exciton-phonon interaction oper-
ators because the Hamiltonian consisting of the exciton, phonon, and 
exciton-phonon interaction energy operators is not diagonal. Finally, 
we will use the variational method to evaluate the ground state energy 
of the exciton-polaron.

2.1. Model

We used the double-well potential to represent each dimer consist-
ing of the 𝛼𝛽-tubulins in the protofilament. The exciton present in the 
double-well arises from the electron-hole interaction when the coulomb 
interaction force is strong in the dimers which are electric dipoles. The 
exciton is localised in the XY plane and thus its motion becomes two-
dimensional. The energy from hydrolysis creates a quantum of vibra-
tions which are phonons. The polaron comes from the electron phonon 
interaction. Then electrons, hole, phonon interaction create the quasi-
particles called exciton-polaron. For clarity, we will denote all wave 
vectors in the plane by the index 𝑙. The Hamiltonian of the exciton-
polaron is given by the following equation:

𝐻̂ = 𝐻̂𝑄2𝐷
𝑒𝑥 + 𝐻̂𝑝ℎ + 𝐻̂𝑄2𝐷

𝑒𝑥−𝑝ℎ (1)

The first term 𝐻̂𝑄2𝐷
𝑒𝑥 represents the Hamiltonian of an exciton evolv-

ing in two dimensions, the second term 𝐻̂𝑝ℎ represents the energy of 
the phonons and the last term 𝐻̂𝑄2𝐷

𝑒𝑥−𝑝ℎ gives the interaction energy of 
exciton-phonon. Q2D denotes the interaction between the quasi-two-
dimensional exciton and phonons in double-well. The corresponding 
expression of each term is given as follows:

𝐻̂𝑄2𝐷
𝑒𝑥 =

∑
𝑘𝑙 ,𝑧

𝐸𝑒𝑥(𝑘𝑙)𝑎+𝐾𝑎𝐾 +𝐻𝑍. (2)

Assuming that all the wave vectors of the plane are indexed by 𝑙. Where 
𝐸𝑒𝑥

(
𝑘𝑙
)

is the energy of the exciton in a double-well, 𝑎+
𝐾

and 𝑎𝐾 are 
respectively the creation and annihilation operators of an exciton. The 
term 𝐸𝑒𝑥 is expressed as:

𝐸𝑒𝑥 = ℏΩ+ 2
𝑁∑
𝑖=1

3𝑖∑
𝑗=1

𝐽𝑖𝑗 cos
(
⃖⃗𝑘. ⃖⃖⃖⃗𝑟𝑖𝑗

)
+
ℏ2𝑘2

𝑙

2𝑀∗ (3)

The term ℏΩ + 2 ∑𝑁
𝑖=1

∑3𝑖
𝑗=1 𝐽𝑖𝑗 cos

(
⃖⃗𝑘. ⃖⃖⃖⃗𝑟𝑖𝑗

)
in Eq. (3) is the dispersion en-

ergy of exciton in the MT and ℏΩ defines the energy difference between 
the ground and first excited state (Craddock et al., 2014). 𝑖 and 𝑗 de-
termine the neighborhood dimers, 𝐽𝑖𝑗 is the dipole-dipole interaction 
energy of the central dimer dipole and a given neighboring dipole. 𝑟𝑖𝑗
is the distance between two dipoles, 𝑘𝑙 is the wave vector of the exciton 
in the XY plane and 𝑀∗ = 𝑚∗

𝑒 +𝑚∗
ℎ

is the effective mass of the exciton. 
𝑚∗
𝑒 is the mass of electron; 𝑚∗

ℎ
is the mass of the hole. The Hamiltonian 

𝐻𝑍 of the exciton in the z-direction is given by:

𝐻𝑧 =
𝑝2𝑒,𝑧

2𝑚∗
𝑒

+
𝑝2
ℎ,𝑧

2𝑚∗
ℎ

+ 𝑉𝑒
(
𝑧𝑒
)
+ 𝑉ℎ(𝑧ℎ) (4)

Where 𝑝𝑒,𝑧 and 𝑝ℎ,𝑧 are the momentum components associated respec-
tively with electrons (𝑧𝑒) and hole (𝑧ℎ). 𝑣𝑒

(
𝑧𝑒
)

and 𝑣ℎ
(
𝑧ℎ

)
are re-

spectively the confinement potentials of the electron and hole between 
interlayer of the dimer system.

The Hamiltonian of phonon 𝐻̂𝑝ℎ is given by:

𝐻𝑝ℎ =
∑
𝑞

ℏ𝜔𝑝,ℎ

(
𝑏+𝑞 𝑏𝑞 +

1
2

)
(5)

In Eq. (5), the terms 𝑏+𝑞 (𝑏𝑞) denote the creation (annihilation) operators 
of phonons. 𝑞 is the wave vector of the phonon, ℏ𝜔𝑝,ℎ is the phonon 
energy, 𝜔𝑝,ℎ represents the vibration frequency following the protofila-
ment 𝑝 and helix ℎ (Craddock and Tuszynski, 2010).

The Hamiltonian of the quasi-two-dimensional exciton-phonon in-
teraction is given by:
3

𝐻̂𝑄2𝐷
𝑒𝑥−𝑝ℎ =

∑
𝑘𝑙 ,𝑞𝑙,

𝜒𝑒𝑓𝑓

(
𝑏𝑞𝑙 + 𝑏+−𝑞𝑙

)
𝑎+
𝑘𝑙+𝑞𝑙

𝑎𝑘𝑙 (6)

Where

𝜒𝑒𝑓𝑓 = 2𝐽𝛼
√
𝑀𝐷𝐾𝐵𝑇𝑝ℎ𝑑 (7)

𝑀𝐷 is the mass of tubulin; 𝐾𝐵 is the Boltzmann’s constant; 𝑑 is the dis-
tance between the dimers, 𝐽 is the dipole-dipole interaction (Tuszyński 
et al., 1999). By substituting Eqs. (2), (5) and (6) into Eq. (1), the final 
expression of the Hamiltonian of exciton polaron in MT is written as:

𝐻̂ =
∑
𝑘𝑙 ,𝑧

𝐸𝑒𝑥(𝑘𝑙, 𝑧)𝑎+𝑘𝑙 𝑎𝑘𝑙 +
𝑝2𝑒,𝑧

2𝑚∗
𝑒

+
𝑝2
ℎ,𝑧

2𝑚∗
ℎ

+
∑
𝑞

ℏ𝜔𝑞

(
𝑏+𝑞 𝑏𝑞 +

1
2

)
+

∑
𝑘𝑙 ,𝑞𝑙,

𝜒𝑒𝑓𝑓

(
𝑏𝑞𝑙 + 𝑏+−𝑞𝑙

)
𝑎+
𝑘𝑙+𝑞𝑙

𝑎𝑘𝑙 (8)

2.2. Approximate diagonalization method

Our aim is to compute the ground state energy of the exciton-
polaron in an MT. So, to achieve that, we have to use the approximate 
diagonalization method (Thilagam, 2015; Thilagam and Singh, 1996) 
on Hamiltonian given in Eq. (8). First of all, we partially use the uni-
tary transformation 𝑈𝑒𝑥 = 𝑒𝑖𝑠 proposed by Singh (Singh, 2013, 1994).

With

𝑆 =
∑
𝑘𝑙 ,𝑞𝑙

𝑎+(𝑘𝑙+𝑞𝑙)
𝑎𝑘𝑙

[
𝑓 ∗
𝑒𝑥(𝑘𝑙, 𝑞𝑙)𝑏

+
−𝑞 + 𝑓𝑒𝑥(𝑘𝑙, 𝑞𝑙)𝑏𝑞

]
(9)

Using the series expansion of the transformed Hamiltonian 𝑈−1
𝑒𝑥 𝐻̂𝑈𝑒𝑥

(Singh, 2013) the expression of the Diagonalization is written as:

𝑈−1
𝑒𝑥 𝐻̂𝑈𝑒𝑥 =𝑈−1

𝑒𝑥 𝐻̂0𝑈𝑒𝑥 +𝑈−1
𝑒𝑥 𝐻̂

2𝐷
𝑒𝑥−𝑝ℎ𝑈𝑒𝑥 (10)

Eq. (10) allows finding the form of the function 𝑓𝑒𝑥(𝑘𝑙, 𝑞𝑙) given in 
Eq. (9).

The use of the Baker-Campbell-Hausdorff formula (Oteo, 1991) 
given by:

𝑒−𝑖𝐴̂𝜆𝐵̂𝑒𝑖𝐴̂𝜆 = 𝐵̂ − 𝑖𝜆
[
𝐴̂, 𝐵̂

]
+ 𝜆

2!
[
𝑖𝐴̂, 𝑖

[
𝐴̂, 𝐵̂

]]
+ ..., (11)

Applying this formula into Eq. (10), we obtain the following series ex-
pansion:

𝑈−1
𝑒𝑥 𝐻̂𝑈𝑒𝑥 =𝐻̂0 +

(
𝑖
[
𝐻̂0, 𝑆

]
− + 𝐻̂2𝐷

𝑒𝑥−𝑝ℎ

)
+ 𝑖

([
𝑖

2
[
𝐻̂0, 𝑆

]
− + 𝐻̂2𝐷

𝑒𝑥−𝑝ℎ,𝑆
]
−

)
+ ... (12)

In order 2, the perturbation theory allows us to write:[
𝐻̂0, 𝑆

]
= 𝐻̂2𝐷

𝑒𝑥−𝑝ℎ (13)

Since:[
𝐻̂0, 𝑆

]
=
[∑
𝑘𝑙 ,𝑧

𝐸𝑒𝑥(𝑘𝑙, 𝑧)𝑎+𝑘 𝑎𝑘 +𝐻𝑍 +
∑
𝑞

ℏ𝜔𝑏+𝑞 𝑏𝑞,

∑
𝑘𝑙 ,𝑞𝑙

𝑎+(𝑘𝑙+𝑞𝑙)
𝑎𝑘𝑙

(
𝑓 ∗
𝑒𝑥(𝑘𝑙, 𝑞𝑙)𝑏

+
−𝑞 + 𝑓𝑒𝑥(𝑘𝑙, 𝑞𝑙)𝑏𝑞

)]
(14)

Using the following commutator relationships:[
𝑎𝑗 , 𝑎

+
𝑖

]
= (1) 𝛿𝑖𝑗

[
𝑎+𝑖 , 𝑎𝑗

]
= (−1) 𝛿𝑖𝑗 (15)

Eq. (13) becomes:

𝐻̂2𝐷
𝑒𝑥−𝑝ℎ =

∑
𝑘𝑙 ,𝑞𝑙

𝑎+(𝑘𝑙+𝑞𝑙 )
𝑎𝑘𝑙 𝑓

∗
𝑒𝑥𝑏

+
−𝑞𝑙

(
𝐸𝑒𝑥(

𝑘𝑙+𝑞𝑙
) −𝐸𝑒𝑥

𝑘𝑙
+ ℏ𝜔

)
+

+
∑
𝑘𝑙 ,𝑞𝑙

𝑎+(𝑘𝑙+𝑞𝑙 )
𝑎𝑘𝑙 𝑓𝑒𝑥𝑏𝑞𝑙

(
𝐸𝑒𝑥(

𝑘𝑙+𝑞𝑙
) −𝐸𝑒𝑥

𝑘𝑙
− ℏ𝜔

)
=

∑
𝑘𝑙 ,𝑞𝑙,

𝜒𝑒𝑓𝑓

(
𝑏𝑞𝑙 + 𝑏+−𝑞𝑙

)
𝑎+
𝑘𝑙+𝑞𝑙

𝑎𝑘𝑙 (16)
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By comparing both sides of Eq. (16), the following expressions of 𝑓𝑒𝑥

𝑓 ∗
𝑒𝑥 =

𝜒𝑒𝑓𝑓

𝐸𝑒𝑥
(𝑘𝑙+𝑞𝑙 )

−𝐸𝑒𝑥
(𝑘𝑙)

+ ℏ𝜔
and𝑓𝑒𝑥 =

𝜒𝑒𝑓𝑓

𝐸𝑒𝑥
(𝑘𝑙+𝑞𝑙 )

−𝐸𝑒𝑥
(𝑘𝑙)

− ℏ𝜔
(17)

It is noted that the transformation of the Hamiltonian as applied above 
is only interesting when the functions derived from 𝑓 ∗

𝑒𝑥 and 𝑓𝑒𝑥 are 
small, otherwise, the series 𝑈−1

𝑒𝑥 𝐻̂𝑒𝑥𝑈𝑒𝑥 = 𝐻̂0 +
[
𝑖
{
𝐻̂0, 𝑆

}
. ± 𝐻̂2𝐷

𝑒𝑥−𝑝ℎ +
𝑖
{ 1
2 𝑖 … does not converge. So let us diagonalize the matrix to find its di-

agonal shape, the transformed Hamiltonian 𝐻𝑇 =𝑈−1
𝑒𝑥 𝐻̂𝑈𝑒𝑥 is obtained 

by diagonalizing each term of 𝐻 .
The final expression of the transformed Hamiltonian is given by:

𝐻̂𝑇 =𝐻̂𝑄2𝐷
𝑒𝑥 − 𝑖

∑
𝑘𝑙 ,𝑞𝑙

∑
𝑘′
𝑙
,𝑞′
𝑙

𝐸𝑒𝑥
𝑘𝑙
𝑎+
(𝑘′
𝑙
+𝑞𝑙 )

𝑎𝑘′
𝑙
(𝑓 ∗

𝑒𝑥𝑏
+
−𝑞𝑙

+ 𝑓𝑒𝑥𝑏𝑞𝑙 ) + 𝐻̂𝑝ℎ + 𝐻̂𝑧

+ 𝐻̂2𝐷
𝑒𝑥−𝑝ℎ + 𝑖

∑
𝑘𝑙

∑
𝑘′
𝑙
,𝑞𝑙

𝜒𝑒𝑓𝑓
(
𝑓 ∗
𝑒𝑥 − 𝑓𝑒𝑥

)
𝑎+
(𝑘′
𝑙
+𝑞𝑙 )

𝑎𝑘𝑙 𝑎
+
(𝑘′
𝑙
+𝑞𝑙 )

𝑎𝑘′
𝑙

(18)

Eq. (18) can also be written as:

𝐻̂𝑇 = 𝐻̂𝑄2𝐷
𝑒𝑥 + 𝐻̂𝑝ℎ + 𝐻̂𝑧 + 𝐻̂ ′𝑇 2𝐷

𝑒𝑥−𝑝ℎ + 𝐻̂ ′ (19)

where

𝐻̂ ′𝑇 2𝐷
𝑒𝑥−𝑝ℎ = 𝑖

∑
𝑘𝑙

∑
𝑘′
𝑙
,𝑞𝑙

𝜒𝑒𝑓𝑓
(
𝑓 ∗
𝑒𝑥 − 𝑓𝑒𝑥

)
𝑎+
(𝑘′
𝑙
+𝑞𝑙 )

𝑎𝑘𝑙 𝑎
+
(𝑘′
𝑙
+𝑞𝑙)

𝑎𝑘′
𝑙

(20)

and

𝐻̂ ′ = 𝐻̂2𝐷
𝑒𝑥−𝑝ℎ − 𝑖

∑
𝑘𝑙 ,𝑞𝑙

∑
𝑘′
𝑙
,𝑞′
𝑙

𝐸𝑒𝑥
𝑘𝑙
𝑎+
(𝑘′
𝑙
+𝑞𝑙)

𝑎𝑘′
𝑙
(𝑓 ∗

𝑒𝑥𝑏
+
−𝑞𝑙

+ 𝑓𝑒𝑥𝑏𝑞𝑙 ) (21)

𝐻̂ ′ represents a part of the interaction operator that cannot be diago-
nalized by the above transformation. Its contribution can be expected 
to be neglected. The total Hamiltonian is not completely diagonal, this 
is why it is an approximation. This approximation provides an analyt-
ical way to estimate the energy of the exciton-polaron. So, Eq (19) is 
rewritten as:

𝐻̂𝑇 ≈ 𝐻̂𝑄2𝐷
𝑒𝑥 + 𝐻̂𝑝ℎ + 𝐻̂𝑧 + 𝐻̂ ′𝑇 2𝐷

𝑒𝑥−𝑝ℎ (22)

2.3. The exciton-polaron energy in the microtubule

The ground state energy of exciton-polaron is computed using the 
state vector ||𝑘𝑙, 𝑛(𝑞)⟩, as:

||𝑘𝑙, 𝑛(𝑞)⟩ = 𝑎+
𝑘𝑙
||0, 𝑛(𝑞𝑙, 𝑞𝑧)⟩ (23)

With ||0;𝑛(𝑞𝑙, 𝑞𝑧)⟩ = |0⟩ ||𝑛(𝑞𝑙, 𝑞𝑧)⟩, |0⟩ denotes the vacuum state vector of 
exciton and ||𝑛(𝑞𝑙)⟩ = |||𝑛𝑞1 , 𝑛𝑞2 , 𝑛𝑞3 ...⟩ the bulk phonon state vector with 
𝑛(𝑞) being the occupation number of phonons with wave vector 𝑛(𝑞𝑙, 𝑞𝑧). 
For the ground state of an exciton-polaron, 𝑛(𝑞) = 0, then the ground-
state energy can be evaluated using:

𝐸𝑒𝑥
𝑝𝑜𝑙

(0) = ⟨𝑛(𝑞), 𝑘𝑙||𝑈−1
𝑒𝑥 𝐻̂

𝑇 𝑈𝑒𝑥
||𝑘𝑙, 𝑛(𝑞)⟩ (24)

Performing calculations, the ground state energy is obtained as:

𝐸𝑒𝑥
𝑝𝑜𝑙

(0) =𝐸𝑒𝑥
𝑘𝑙

+ ℏ𝜔+𝐸𝑒𝑥
𝑧 −

∑
𝑘𝑙 ,𝑞𝑙

|||𝜒𝑒𝑓𝑓 |||2
×

[
1

𝐸𝑒𝑥
(𝑘𝑙+𝑞𝑙 )

−𝐸𝑒𝑥
(𝑘) − ℏ𝜔

− 1
𝐸𝑒𝑥
(𝑘𝑙+𝑞𝑙 )

−𝐸𝑒𝑥
(𝑘) + ℏ𝜔

]
(25)

In Eq. (25), the summation term has to be estimated. It is given by:

𝐼𝑒𝑥(𝐾) =
∑
𝑘𝑙 ,𝑞𝑙

|||𝜒𝑒𝑓𝑓 |||2
×

[
1

𝐸𝑒𝑥
(𝑘𝑙+𝑞𝑙)

−𝐸𝑒𝑥
(𝑘) − ℏ𝜔

− 1
𝐸𝑒𝑥
(𝑘𝑙+𝑞𝑙 )

−𝐸𝑒𝑥
(𝑘) + ℏ𝜔

]
(26)
4

Where

𝐸𝑒𝑥
𝑘𝑙

= ℏΩ+ 2
𝑁∑
𝑖=1

3𝑖∑
𝑗=1

𝐽𝑖𝑗 cos
(
⃖⃗𝑘. ⃖⃖⃖⃗𝑟𝑖𝑗

)
+
ℏ2𝑘2

𝑙

2𝑀∗ (27)

Using Eq. (27), the following relation is written:

𝐸𝑒𝑥
(𝑘𝑙+𝑞𝑙 )

−𝐸𝑒𝑥
(𝑘𝑙)

=
[
𝐸𝑔 +

ℏ2

2𝑀∗
(
𝑘𝑙 + 𝑞𝑙

)2]−(
𝐸𝑔 +

ℏ2𝑘2
𝑙

2𝑀∗

)

=
ℏ2𝑞2

𝑙

2𝑀∗ + ℏ2

𝑀∗ 𝑘𝑙.𝑞𝑙 (28)

With

𝐸𝑔 = ℏΩ+ 2
𝑁∑
𝑖=1

3𝑖∑
𝑗=1

𝐽𝑖𝑗 cos
(
⃖⃗𝑘. ⃖⃖⃖⃗𝑟𝑖𝑗

)
By converting the discrete summation into integration as:

𝐼𝑒𝑥(𝑘𝑙) =
𝑠

(2𝜋)2

∞

∫
0

𝑑𝑞𝑙

2𝜋

∫
0

𝑑𝜃𝑞𝑙
|||𝜒𝑒𝑓𝑓 |||2

×
⎡⎢⎢⎢⎣

1
ℏ2𝑞2

𝑙

2𝑀∗ + ℏ2

𝑀∗𝐾.𝑞𝑙 − ℏ𝜔

− 1
ℏ2𝑞2

𝑙

2𝑀∗ + ℏ2

𝑀∗ 𝑘𝑙.𝑞𝑙 + ℏ𝜔

⎤⎥⎥⎥⎦ (29)

Knowing that:

𝑘𝑙.𝑞𝑙 = 𝑘𝑙𝑞𝑙 cos𝜃

Eq. (29) becomes:

𝐼𝑒𝑥(𝐾) = 𝑆

(2𝜋)2

∞

∫
0

𝑑𝑞𝑙

2𝜋

∫
0

𝑞2
𝑙
𝑑𝜃

|||𝜒𝑒𝑓𝑓 |||2
[

1
𝑢1 + 𝑣 cos𝜃

− 1
𝑢2 + 𝑣 cos𝜃

]
(30)

With:

𝑢1 =
ℏ2𝑞2

𝑙

2𝑀∗ − ℏ𝜔; 𝑢2 =
ℏ2𝑞2

𝑙

2𝑀∗ + ℏ𝜔; 𝑣 = ℏ2

𝑀∗ 𝑘𝑞𝑙 (31)

Integrating over 𝜃 and assuming:

𝑇1 =
(
𝑢1 − 𝑣

)(
𝑢1 + 𝑣

) = 1 −
2ℏ2𝑘𝑞𝑙∕𝑀∗

ℏ2𝑞𝑙
𝑀∗

(
𝑞𝑙
2 + 𝑘𝑙

)
− ℏ𝜔

(32)

and

𝑇2 =
(
𝑢2 + 𝑣

)
=
ℏ2𝑞𝑙
𝑀∗

( 𝑞𝑙
2
+ 𝑘𝑙

)
+ ℏ𝜔 (33)

Eq. (30) takes the form:

𝐼𝑒𝑥(𝐾) = 𝑆

2𝜋
|||𝜒𝑒𝑓𝑓 |||2

∞

∫
0

𝑑𝑞𝑙𝑞
2
𝑙

⎡⎢⎢⎢⎣
√
𝑇1(

𝑢1 − 𝑣
) −

√
𝑇2

𝑇2

√(
𝑢2 − 𝑣

)
⎤⎥⎥⎥⎦ (34)

Assuming 𝑘 << 𝑞 and small exciton wave vectors, expressions of 𝑇1 and 
𝑇2 in Eq. (34) are approximated as:

√
𝑇1 =

⎛⎜⎜⎜⎜⎝
1 +

(
ℏ2𝑘𝑙
𝑀∗

)2 𝑞2
𝑙(

ℏ2𝑞2
𝑙

2𝑀∗ − ℏ𝜔

)2 −
(
ℏ2𝑘𝑙
𝑀∗

)
𝑞𝑙

ℏ2𝑞2
𝑙

2𝑀∗ − ℏ𝜔

⎞⎟⎟⎟⎟⎠
(35)

And

𝑇2 ≈
ℏ2𝑞2

𝑙

2𝑀∗ + ℏ𝜔 (36)

Eqs. (35), (36) into Eq. (34) allow to write:

𝐼𝑒𝑥(𝑘𝑙) ≈ 𝐼𝑒𝑥(𝑘𝑙) + 𝐼𝑒𝑥(𝑘𝑙) (37)
1 2
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Where

𝐼𝑒𝑥1 (𝑘𝑙) =
𝑆

2𝜋
|||𝜒𝑒𝑓𝑓 |||2

∞

∫
0

𝑑𝑞𝑙

⎡⎢⎢⎢⎣
𝑞𝑙

ℏ2𝑞2
𝑙

2𝑀∗ − ℏ𝜔

−
𝑞𝑙

ℏ2𝑞2
𝑙

2𝑀∗ + ℏ𝜔

⎤⎥⎥⎥⎦ (38)

𝐼𝑒𝑥2 (𝐾) = 𝑆

2𝜋
|||𝜒𝑒𝑓𝑓 |||2

(
ℏ2𝑘𝑙
𝑀∗

)2 ∞

∫
0

𝑑𝑞𝑙

×

⎡⎢⎢⎢⎢⎣
𝑞3
𝑙(

ℏ2𝑞2
𝑙

2𝑀∗ − ℏ𝜔

)3 −
𝑞3
𝑙(

ℏ2𝑞2
𝑙

2𝑀∗ + ℏ𝜔

)3

⎤⎥⎥⎥⎥⎦
(39)

By performing calculations on Eqs. (38) and (39), we obtain:

𝐼𝑒𝑥1 (𝐾) = 𝑆

2𝜋
|||𝜒𝑒𝑓𝑓 |||2

(
2𝑀∗

ℏ2

)[ 1
2
ln𝑤

]
(40)

𝐼𝑒𝑥2 (𝐾) = − 𝑆

2𝜋
|||𝜒𝑒𝑓𝑓 |||2

(
ℏ2𝑘𝑙
𝑀∗

)2(
2𝑀∗

ℏ2

)3 ( 1
2𝑤

)
(41)

With 𝑤 = 2𝑀∗𝜔
ℏ

𝐼𝑒𝑥2 (𝑘𝑙) =

(
ℏ2𝑘2

𝑙

2𝑀∗

)2

𝐼𝑒𝑥3 (𝑘𝑙) (42)

With

𝐼𝑒𝑥3 (𝑘𝑙) = −𝑆
𝜋

|||𝜒𝑒𝑓𝑓 |||2 8𝑀∗2𝜔

ℏ5
(43)

The ground state energy becomes:

𝐸𝑒𝑥
𝑝𝑜𝑙

(0) =

(
ℏ2𝑘2

𝑙

2𝑀∗

)(
1 + 𝐼𝑒𝑥3

)
+𝐸𝑔 +𝐸𝑒𝑥

𝑧 + ℏΩ+ ℏ𝜔− 𝐼𝑒𝑥1 (𝑘𝑙) (44)

2.4. Mobility of exciton-polaron in MTs

The mobility of charge carriers is a well-known concept applied in 
solid-state physics to characterize the speed at which an electron can 
move through a material when it is influenced by an external phe-
nomenon. Mobility will allow us to characterize the movement of quasi-
particles in microtubules. Based on quantum statistical theory (Sun et 
al., 2014; Coehoorn et al., 2017; Fobasso et al., 2020), the average num-
ber of phonons is given by:

𝑁 = 1
2

[
exp

(
𝐸0
𝐾𝐵𝑇

)
− 1

]−1
(45)

Where 𝑇 and 𝐾𝐵 are respectively the temperature and Boltzmann con-
stant. Where 𝐸0 is the fundamental state energy. The exciton-polaron 
mobility 𝜇 (Fobasso et al., 2020) will be given by the following formula:

𝜇 ≈ 1
𝑁

= 2
[
exp

(
𝐸0
𝐾𝐵𝑇

)
− 1

]
(46)

2.5. Tsallis entropy

Tsallis entropy is a measure of disorder at a local point in the system. 
It is linked to Gibbs and Boltzmann entropy by the parameter 𝑥 (Tsallis, 
1995; Kenfack-Sadem et al., 2020). The Tsallis entropy (Tsallis, 1988) is 
a generalization of the Boltzmann-Gibbs entropy (Havrda and Charvát, 
1967) corresponding to the quantity of information contained or de-
livered by an information source. In the microtubule system, Tsallis 
entropy quantifies the amount of information that the exciton-polarons 
exchange with its environment.

𝑆𝑥 = 𝑘
1 −

∑𝑛
𝑖 𝑃

𝑥
𝑖 (47)
𝑥− 1

5

Where 𝑘 is the conventional constant, and 𝑥 is any real number, 𝑃𝑖 is 
the probability of microscopic configuration and 𝑛 is the number of the 
microscopic configuration of the system. For 𝑥 → 1, the connection to 
thermodynamics is established as (Kenfack-Sadem et al., 2020).

1
𝑇

=
𝜕𝑆𝑥
𝜕𝑛𝑥

(48)

Where 𝑇 = 1
𝛽𝐾𝐵

The free energy is given by:

𝐹𝑥 ≡𝑈𝑥 − 𝑇𝑆𝑥 = − 1
𝛽
ln𝑍𝑥 (49)

With

𝑈𝑥 = − 𝜕

𝜕𝛽
ln𝑍𝑥 (50)

For

𝑥→ 1𝑆𝑥 = ln𝑍𝑥 + 𝛽𝑈𝑥 (51)

It follows that:

𝑃𝑥
𝑖 =

⎧⎪⎨⎪⎩
[
1 − 𝛽 (1 − 𝑥)𝐸𝑖

] 1
1−𝑥

𝑍𝑥

0 otherwise

If1 − 𝛽 (1 − 𝑥)𝐸𝑖 ≻ 0

Where the partition function is given by:

𝑍𝑥 =
[
1 − 𝛽 (1 − 𝑥)𝐸𝑝𝑜𝑙

𝑒𝑥

] 1
1−𝑥 (52)

With 𝐸𝑖 =𝐸
𝑝𝑜𝑙
𝑒𝑥 the energy of the corresponding microstate and:

𝑈𝑥 =
𝐸
𝑝𝑜𝑙
𝑒𝑥

1 − 𝛽 (1 − 𝑥)𝐸𝑝𝑜𝑙
𝑒𝑥

(53)

The final expression of the Tsallis entropy is given by:

𝑆𝑥 =
( 1
1 − 𝑥

)
ln

[
1 − 𝛽 (1 − 𝑥)𝐸𝑝𝑜𝑙

𝑒𝑥

]
+ 𝛽

[
𝐸
𝑝𝑜𝑙
𝑒𝑥

1 − 𝛽 (1 − 𝑥)𝐸𝑝𝑜𝑙
𝑒𝑥

]
(54)

3. Numerical results

In this section to properly observe the exciton-polaron dynamics in 
microtubules, numerical simulations of the energy, mobility, and en-
tropy of the ground state are performed using the MATLAB simulation 
software. To obtain the different frequencies, we varied the elasticity 
constants: the elasticity constant along the protofilament 𝑘𝑝 between 0 
and 5 N/m, the elasticity constant along the helix 𝑘ℎ between 0 and 
1 N/m, and the elasticity constant along the antihelix 𝑘𝑎 between 0 
and 0.1 N/m. The MT’s parameters are selected efficiently in order 
to highlight the effect of vibrations on the properties of the exciton-
polaron. The vibration frequencies taken in Fig. 2 are in the range of 
the vibration frequencies obtained by (Portet et al., 2005; Sirenko et al., 
1996a,b). We have plotted (Fig. 2) the energy of the exciton-polaron as 
a function of the frequencies of vibrations following the protofilament, 
the helix, and the antihelix.

In Fig. 2a, we observe that the exciton-polaron energy is constant 
according to the antihelix vibrations but varies with the protofilamen-
t’s vibration. In Fig. 2b, we observe that the exciton-polaron energy is 
constant according to the antihelix vibrations but varies with the he-
lix vibrations. In Fig. 2c, we observe that exciton-polaron energy varies 
according to the vibrations of both protofilament and helix and this en-
ergy is higher with the vibrations of the protofilament. We claim that 
the energy of the exciton-polaron is anisotropic and sensitive to vibra-
tions following the protofilament and the helix but is not sensitive to 
vibrations following the antihelix. This energy is stronger in the protofil-
ament than in the helix. It is reported in the work of Portet et al. (2005) 
that the vibrations which propagate along the protofilament do so much 
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Fig. 2. a): exciton-polaron energy as a function of vibration frequency along the main helix 𝜔ℎ and the vibration frequency along the antihelix 𝜔𝑎 . b): exciton-polaron 
energy as a function of vibration frequency along the antihelix and the vibration frequency along a protofilament 𝜔𝑝 . c): exciton-polaron energy as a function of the 
vibration frequency along the main helix 𝜔ℎ and the vibration frequency along a protofilament 𝜔𝑎 .
faster than those along the helix and that the frequency of vibration of 
the protofilament is greater than the frequency of vibration of the helix. 
We can conclude that the energy of exciton -polaron is anisotropic and 
increases with phonon velocity. We can also say that the electron, hole, 
and phonon couplings are higher in the protofilament than in the helix. 
Exciton-polaron is more spread and more dynamic in the protofilament 
than the helix. Mobility can support this statement.

Fig. 3 presents the mobility of charge carriers as a function of the 
vibrations along the protofilament for different values of the vibrations 
along the helix and antihelix respectively. Fig. 3a shows that the mobil-
ity increases with the vibrations along the protofilament and remains 
constant for different vibrations along the antihelix. In Fig. 3b, the mo-
bility increases with the vibrations of the protofilament and the helix. 
This result shows how the charge carriers move in the microtubules un-
der the action of an anisotropic electric field created by the vibrations 
along the helix and the protofilament but, absent in the antihelix. These 
results are in agreement with those reported in the work of Pokorný et 
al. (2005) and confirm that the transport of charge carriers in micro-
tubules is anisotropic and well depending on the protofilament than 
the helix. From Fig. 3a, we can suggest that the antihelix vibrations do 
not produce an intrinsic electric field (Nganfo et al., 2021) contributing 
to the self-organization of microtubules. This exciton-polaron mobility 
6

leads to the exchange of information between the quasiparticle and its 
environment (Chang et al., 2006; Kenfack-Sadem et al., 2021). So it will 
be important to evaluate the entropy of the quasi-particle in the system.

In Fig. 4, we evaluated the Tsallis entropy as a function of the vi-
brations along the protofilament for different values of the vibrations 
along the helix and the antihelix. In Fig. 4a, we observe that the en-
tropy increases with the protofilament vibrations and remains constant 
for different antihelix vibrations. In Fig. 4b, the entropy increases with 
the vibrations along the protofilament and the helix. This can lead to 
the fact that MT structures possess strong robustness to static disorder 
in comparison to geometries that include only short-range interactions. 
These results suggest that the dynamics of the exciton-polaron in MTs 
occurs with the exchange of information with its environment. This in-
formation is higher at the protofilament than at the helix.

Figs. 5a and 5b show the behavior of the entropy and the mobility. 
When the vibrations along the helix are set at 0.1 s−1, the entropy and 
the mobility increase from 1 to 2 protofilaments. From 3 protofilaments 
up to 15, the entropy and the mobility decrease with the vibrations 
along the protofilament. In Figs. 5c and 5d, it is observed that when the 
helix vibrations are no longer fixed, the entropy and the mobility in-
crease for 1 to 15 protofilaments. This result confirms the importance 
of helix vibrations which are neglected by many heights (Cifra et al., 
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Fig. 3. a): Mobility 𝜇 as a function of vibration frequency along a protofilament 
for different values of the helix frequency 𝜔ℎ . b): Mobility as a function of 
vibration frequency along a protofilament for different values of the antihelix 
frequency 𝜔𝑎 .

2011; Thackston et al., 2019). When the intensity of vibration of the 
helix is fixed, the behavior of the exciton-polaron is identical to the 
process of information exchange in the system. We find that the mo-
bility of the exciton-polaron is increasing between the first and second 
protofilament. From the third protofilament until the last this mobil-
ity decreases. When the vibrations of the helix and protofilament vary, 
the mobility of exciton-polaron and entropy is increasing from the first 
to the last protofilament. The protofilament and the helix vibrations af-
fect the mobility and the entropy of the system. Results obtained in this 
subsection are similar to those obtained in refs (Fotue et al., 2021; Poko-
rný et al., 2005). Therefore the dynamic of exciton polaron is improved 
when the number of protofilament increases. In addition, the latter pro-
motes the exchange of information between the quasi-particle and its 
environment. This can be a good way to restore the stability of MT.

4. Conclusions

We investigated the dynamical properties of the exciton-polaron in 
the microtubule. The study was carried out using a unitary transfor-
mation and an approximate diagonalization technique. Analytically, 
the expressions of the ground-state energy, mobility, and the Tsallis 
7

Fig. 4. a): Tsallis entropy as a function of vibration frequency along a protofila-
ment 𝜔𝑝 for different values of the helix frequency 𝜔ℎ . b): Entropy as a function 
of vibration frequency along a protofilament for different values of the antihelix 
frequency 𝜔𝑎 .

entropy of the exciton-polaron have been derived according to the pa-
rameters characterizing the geometry of the microtubules. The numer-
ical results based on parameters of microtubules show that the energy 
of exciton-polaron is anisotropic and increases with phonon velocity. 
The vibration frequencies chosen are in the range of the vibration fre-
quencies obtained in the literature. We found that the energy of the 
exciton-polaron is anisotropic and sensitive to vibrations through the 
protofilament and the helix but it is not the case through the anti-
helix. This energy is stronger in the protofilament than in the helix. 
Exciton-polaron is more spread and more dynamic in the protofilament 
than the helix. The mobility of the exciton-polaron is not sensitive to 
the vibration along the antihelix. The dynamics of exciton-polaron in 
MTs vary with the exchange of information with its environment as 
a function of the vibrations of helix and protofilament. This informa-
tion is higher at the protofilament level than the helix. When we fix 
the vibration values of the helix, the behavior of the exciton-polaron is 
identical to the process of information exchange in the system. We find 
that the mobility of the exciton-polaron is increasing between the first 
and second protofilament. From the third protofilament until the last 
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Fig. 5. a): Mobility 𝜇 as a function of vibration frequency along a protofilament 𝜔𝑝 for the population of protofilament. b): Entropy as a function of vibration 
frequency along a protofilament for the population of protofilament. c): Mobility 𝜇 as a function of vibration frequency along a protofilament for the population of 
protofilament and for different values of the helix. d): Entropy as a function of vibration frequency along a protofilament 𝜔𝑝 for the population of protofilament and 
for different values of the helix 𝜔ℎ .
this mobility decreases. This can be interesting in order to stabilize MT. 
When the vibrations of the helix and protofilament vary, the mobility 
of exciton-polaron and entropy is increasing from the first to the last 
protofilament. This work can be interesting to solve the problem in cel-
lular organization and knowledge processing. At the end of this work, 
we found that the role of exciton-polaron in the dynamic instability of 
microtubules is an important aspect that is important to investigate.
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