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ABSTRACT
The cold, permanently ice-covered waters of Lake Bonney, Antarctica, may seem like an uninviting
place for an alga, but they are home to a diversity of photosynthetic life, including Chlamydomonas sp.
UWO241, a psychrophile residing in the deep photic zone. Recently, we found that UWO241 has lost
the genes responsible for light-independent chlorophyll biosynthesis, which is surprising given that
this green alga comes from a light-limited environment and experiences extended periods of dark-
ness during the Antarctic winter. Why discard such a process? We argued that it might be linked to the
very high dissolved oxygen concentration of Lake Bonney at the depth at which UWO241 is found.
Oxygen is the Achilles’ heel of the key enzyme involved in light-independent chlorophyll biosynthesis:
DPOR. If this hypothesis is true, then other algae in Lake Bonney should also be susceptible to losing
DPOR, such as Chlamydomonas sp. ICE-MDV, which predominantly resides in the chemocline, a depth
with an even higher oxygen concentration than that where UWO241 exists. Here, we report that,
contrary to our earlier prediction, ICE-MDV has maintained the genes encoding DPOR. We briefly
discuss the implications of this finding in relation to the loss of light-independent chlorophyll
synthesis in UWO241.
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No two lakes are the same. But Lake Bonney in the
McMurdo Dry Valleys of Victoria Land, Antarctica, is
perhaps one of the most unique and uninviting lakes on
Earth. Its frigid waters (around 40 meters deep) are
permanently enclosed by one storey of ice, resulting
in a chemically stratified environment, largely cut off
from the outside world [1]. Nevertheless, Lake Bonney
is home to an array of microbial life [2], including
eukaryotic algae [3–5]. Among the best-studied algae
that brave the lake’s waters are Chlamydomonas sp.
UWO241 [6,7] and Chlamydomonas sp. ICE-MDV
[5,8]. Both are bona fide psychrophiles in that they
can withstand intense cold but die at more moderate
temperatures.

There are better places than an ice-covered Antarctic
lake to perform photosynthesis. Within Lake Bonney,
UWO241 and ICE-MDV must endure sustained cold
(~5°C year-round), high salinity (up to 0.7 M NaCl in the
deep layers), and perpetual low irradiance, not to mention
24-hours of darkness during peak austral winter [1]. Given
these conditions, one might assume that being able to
synthesize chlorophyll in the dark would be a major asset
for an alga that calls LakeBonney home. But recently, to our

great surprise, we discovered that UWO241 has lost the
ability to do just that, and we hypothesized that ICE-MDV
has as well [9]. Here, we briefly update our findings, show-
ing that our prediction for ICE-MDV was wrong, which
may have implications for how we interpreted the loss of
light-independent chlorophyll synthesis in UWO241.

Most eukaryotic algae contain two distinct nonhomo-
logous enzymes for the penultimate step of chlorophyll
a biosynthesis: light-dependent and light-independent
protochlorophyllide oxidoreductase (LPOR and DPOR,
respectively) [10,11]. LPOR, which is encoded by the
nuclear gene por, is ubiquitous among photosynthetic
eukaryotes [12] and is only active when its pigment sub-
strate (protochlorophyllide) absorbs light [13]. Evidence
suggests that LPOR is three to seven times more efficient
when protochlorophyllide absorbs red light (647 nm)
relative to blue light (407 nm) [14], which penetrates
deeper into the water column. Conversely, DPOR,
which is encoded by the chloroplast genes chlB, chlL,
and chlN, can facilitate chlorophyll synthesis in the dark
[11], but has been lost multiple times independently
throughout eukaryotic evolution, most notably in all
angiosperms [12]. DPOR is also dependent on iron for
constructing iron-sulfur clusters [15], which is not true of
the iron-moiety-lacking LPOR.
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Chloroplast and nuclear genome sequencing demon-
strated that UWO241 contains por but lacks chlB, chlL,
and chlN, indicating it has discarded DPOR and is now
entirely dependent on LPOR for making chlorophyll [9].
Why would any self-respecting photosynthesizer living in
a light-limited environment dispose of DPOR? We rea-
soned that it might be linked to the very high dissolved
oxygen concentration of Lake Bonney, which is >1,000 μM
over the first fifteen meters [16] and remains high (~200%
air saturation) at 17 m, where UWO241 is primarily
located. DPOR, which is thought to have first evolved in
anoxygenic photosynthetic bacteria, is oxygen sensitive
[17,18], whereas LPOR, which first evolved in cyanobac-
teria [19], is not [20]. If the high oxygen content of Lake
Bonney inhibited DPOR in UWO241 then presumably
there would be no additional deleterious effects resulting
from mutations knocking out the genes for DPOR, or so
went our argument. But if this hypothesis is correct then the
DPOR from other algae in Lake Bonney should also be
inhibited by the elevated oxygen levels and susceptible to
loss.

So, what of ICE-MDV? It can be found in the shallow
zone of Lake Bonney (5 m) and is particularly dominant in
the chemocline (15m) where the dissolved oxygen concen-
tration is even higher than in the deeper photic zone where
UWO241 exists [16]. Hence, we predicted that, like
UWO241, sequencing of its chloroplast genome would
reveal the loss of the three genes encoding DPOR.
Fortunately, we were able to reach out to some colleagues
who have carried out extensive next-generation sequencing
on ICE-MDV (Ion Torrent sequencing using Hi-Q chem-
istry and a P1 chip as well as Illumina paired-end sequen-
cing on aNextSeq500) and searched these data for evidence
of DPOR. (Please see [8] for details on culture conditions,
DNA isolation, and sequencing and assembly methods.)

Alas, complete sequences of chlB, chlL, and chlN
were easily located in the draft genome assembly of
ICE-MDV, which comprised 331,087 contigs, averaging
812 nt. Note: the sequences were identified by blasting
(BLASTN) the UWO241 chlB, chlL, and chlN genes
against the ICE-MDV contigs. Adding to our disap-
pointment, these genes were clearly chloroplast located
and harbored no signs of deleterious or knockout
mutations (please see GenBank accessions MN046391-
MN046393). A nuclear-located gene for por was also
found in the assembly. Thus, despite existing in an
aquatic environment with a remarkably high dissolved
oxygen concentration, ICE-MDV clearly retains func-
tional genes for light-dependent and light-independent
chlorophyll synthesis.

What does this mean for our earlier conjectures on
the forces driving the loss of DPOR in UWO241?
Surely, it weakens them. But it is worth highlighting

an additional feature of the ICE-MDV data we col-
lected. Specifically, the ICE-MDV chlB, chlL, and chlN
genes share 100%, 99.8%, and 100% nucleotide
sequence identity, respectively, with those from another
Antarctic green alga: Chlamydomonas sp. ICE-L [21].
(Nucleotide alignments were performed with ClustalW
implemented through Geneious v10.2.6, Biomatters
Ltd., New Zealand, using default settings). This implies
that ICE-MDV and ICE-L are very closely related to
one another, which is intriguing because ICE-L was
isolated >2500 kilometers from Lake Bonney near
Zhongshan Station, Antarctica, from the underside of
Antarctic sea ice (where the oxygen concentrations are
not extremely high) [22]. UWO241, on the other hand,
belongs to a different chlamydomonadalean clade (the
Moewusinia) than ICE-MDV and ICE-L (the
Monadinia), and appears to represent a distinct lineage
within that clade [6]. Lastly, a recent paper reported
that UWO241 and ICE-MDV exhibit additional phy-
siological differences [23].

The close phylogenetic affiliation of ICE-MDV and
ICE-L could be an indication that the former is part
of population that extends beyond the bounds of Lake
Bonney – potentially into an environment where oxy-
gen concentrations are low enough to not inhibit
DPOR. If such a scenario is true, then it might be
preventing the loss of the genes encoding for light-
independent protochlorophyllide oxidoreductase
within ICE-MDV. Alternatively, the close phyloge-
netic relationship between ICE-MDV and ICE-L
could suggest that ICE-MDV arrived in Lake
Bonney more recently than UWO241 and has not
yet had time to lose the chlB, chlL, and chlN genes.
Moreover, we currently do not know if DPOR is
active in the high-oxygen natural habitat of ICE-
MDV and whether this alga has retained the ability
to synthesize chlorophyll in the absence of light.
Whatever the reasons for the presence of DPOR in
ICE-MDV and its absence in UWO241, these data
further emphasize just how unique UWO241 is rela-
tive to other green algae [7], both inside and outside
of Lake Bonney.
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