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Abstract: Pesticide residues in wine were analyzed by liquid chromatography–tandem 

mass spectrometry. Retentions are modelled by structure–property relationships. Bioplastic 

evolution is an evolutionary perspective conjugating effect of acquired characters and 

evolutionary indeterminacy–morphological determination–natural selection principles; its 

application to design co-ordination index barely improves correlations. Fractal dimensions 

and partition coefficient differentiate pesticides. Classification algorithms are based on 

information entropy and its production. Pesticides allow a structural classification by 

nonplanarity, and number of O, S, N and Cl atoms and cycles; different behaviours 

depend on number of cycles. The novelty of the approach is that the structural parameters 

are related to retentions. Classification algorithms are based on information entropy. 

When applying procedures to moderate-sized sets, excessive results appear compatible 

with data suffering a combinatorial explosion. However, equipartition conjecture selects 

criterion resulting from classification between hierarchical trees. Information entropy 

permits classifying compounds agreeing with principal component analyses. Periodic 

classification shows that pesticides in the same group present similar properties; those 

also in equal period, maximum resemblance. The advantage of the classification is to 

predict the retentions for molecules not included in the categorization. Classification 

extends to phenyl/sulphonylureas and the application will be to predict their retentions. 
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1. Introduction 

Twenty-six billion litres of wine were produced worldwide and 24 billion litres, consumed in 2010 

according to the International Organization of Vine and Wine. Wine, especially red wine, is rich in 

polyphenols (e.g., resveratrol, catechin, epicatechin), which are antioxidants that protect cells from 

oxidative damage caused by free radicals. Red-wine antioxidants inhibit cancer development, e.g., that 

of prostate cancer. Red-wine consumption presents heart-health benefits. Application of pesticides 

(e.g., fungicides, insecticides) to improve grape yields is common. However, pesticides permeate via 

the plant tissues and remain in harvested grapes/processed products (e.g., grape juice, wine). Because 

pesticides are a source of toxicants that are harmful to human beings it is important to test for their 

levels in grapes, juice and wine. Although EU has set maximum residue levels (MRLs) for pesticides 

in wine grapes of 0.01–10 mg·kg−1 it has not done so for wine. An EU-wine study revealed that 34 out 

of 40 bottles contained at least one pesticide. Average number was >4 pesticides per bottle while the 

highest number was 10. Pesticide analysis in red wine is challenging because of the complexity of the 

matrix that contains alcohol, organic acids, sugars, phenols and pigments, e.g., anthocyanins. 

Traditional red-wine sample preparation methods include liquid–liquid extraction (LLE) with organic 

solvents [1,2] and solid-phase extraction (SPE) with reversed-phase C18/polymeric sorbents [3–5]. 

However, LLE is labour-intensive, consumes large amounts of organic solvents and forms emulsions 

making difficult to separate organic/aqueous phases. In contrast, SPE demands more development. 

Solid-phase microextraction (SPME) [6,7], hollow-fibre liquid-phase microextraction [8] and stir-bar 

sorptive extraction (SBSE) [9] are lesser reproducible. Typical detections incorporate gas 

chromatography (GC), GC coupled to mass spectrometry (MS) (GC–MS) and liquid chromatography 

coupled to tandem MS (LC–MS–MS). 

Quick, easy, cheap, effective, rugged and safe (QuEChERS) is a sample preparation method that 

was reported for pesticide-residue determination in vegetables/fruits [10]; it was used for 

pesticide/compound analysis in various food, oil and beverage matrices [11–13]; QuEChERS involves 

pesticide extraction from a sample with high water content into acetonitrile, with addition of salts to 

separate phases and partition the pesticides into the organic layer, which is followed by dispersive SPE 

(dSPE) to clean up various matrix co-extractives and achieve mixing of an aliquot of sample extract 

with sorbents prepacked in a centrifuge tube. Pesticide determination in red wine was reported [14]. 

Eight pesticides belonging to the insecticide (methamidophos, diazinone, pyrazophos, chlorpyrifos), 

fungicide (carbendazim, thiabendazole, pyrimethanil, cyprodinil, pyrazophos) and parasiticide 

(thiabendazole) classes were selected. Their polarities are different. Some are planar (carbendazim, 

thiabendazole, pyrimethanil, cyprodinil). Cyprodinil was most usually detected on grapes  

with chlorpyrifos, diazinone and methamidophos, frequent. Carbendazim was detected in three out  

of six red-wine samples. Occurrence and removal efficiency of pesticides in sewage treatment plants 

from Spanish, Mediterranean, Brazilian and other rivers were reviewed [15,16] and reported [17,18]. 

Transport of organic persistent microcontaminants associated with suspended particulate material in 
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the Ebro River Basin was described [19,20]. Several researchers have reported the quantitative 

structure–activity/property relationships (QSAR/QSPR) of pesticides. The Benfenati group modelled 

the QSPR of the octanol/water partition coefficient of organometallic substances by optimal SMILES-

based descriptors [21], QSAR of the toxicity of organic substances to Daphnia magna via freeware  

CORAL [22], and optimal descriptor as a translator of eclectic data into endpoint prediction and 

mutagenicity of fullerene as a mathematical function of conditions [23]. The Roy group modelled 

predictive chemometrics and three-dimensional toxicophore mapping of diverse organic chemicals 

causing bioluminescent repression of the bacterium genus Pseudomonas [24] and QSAR for toxicity of 

ionic liquids to D. magna analyzing aromaticity vs. lipophilicity [25]. 

The chromatographic retention time was correlated to the stationary and mobile phases of the 

system. In earlier publications the free energy of solvation and partition coefficients in methanol–water 

binary mixtures were analized [26]. Stationary phase was modelled in size-exclusion chromatography 

with binary eluents as a strategy in size-exclusion chromatography [27]. Stationary–mobile phase 

distribution coefficient for polystyrene standards was represented [28]. A new chemical index inspired 

by plastic evolution was presented [29] and applied to valence-isoelectronic series of aromatics [30]. 

QSPR of retention times of phenylureas [31,32] and pesticides [33] was described by plastic evolution. 

A simple computerized algorithm was proposed to be useful for establishing relationships between 

chemical structures and biosignificance [34,35]. Starting point is to use information entropy for pattern 

recognition. Entropy is formulated on basis of similarity matrix between two biochemical species. As 

entropy is weakly discriminating for classification, the more powerful concepts of entropy production 

and equipartition conjecture were introduced [36]. The aim of the present report is to find properties 

that distinguish pesticide structures according to retention times. The study applies a chemical index to 

pesticides. The goal is index usefulness validation via the capability to distinguish between pesticides, 

and interest as a predictive index for retention as compared with fractal dimensions and partition 

coefficients. Section 2 illustrates and discusses the results. Section 3 presents the computational 

method, including classification algorithm, information entropy, equipartition conjecture of entropy 

production and learning procedure. Finally, the last section summarizes our conclusions. 

2. Results and Discussion 

For pesticides, LC–MS–MS retention times Rt were taken from Wang and Telepchak. 

Methamidophos was taken as the reference Rt (Rt°) because of its least Rt (cf. Table 1). Internal 

standard (IS) triphenyl phosphate (TPP) was included in the classification. The (Rt–Rt°)/Rt° ratios were 

calculated. Molecular fractal dimensions were computed with our program TOPO [37]. 

Variations of (Rt − Rt°)/Rt° vs. 1-octanol–water partition coefficient and fractal dimension averaged 

for nonburied atoms minus molecular fractal dimension D’–D show fit. The regression turns out to be:  

Rt − Rt
o( ) Rt

o = −0.188 + 0.367 log P + 19.6 D′ − D( ) , n = 9, r = 0.973, s = 0.337, F = 53.3 

MAPE = 8.77% AEV = 0.0533
(1) 

where mean absolute percentage error (MAPE) is 8.77% and approximation error variance (AEV), 

0.0533. If IS TPP is excluded the results are improved:  

  



Molecules 2014, 19 7391 

 

 

Rt − Rt
o( ) Rt

o = −0.229 + 0.420 log P + 19.1 D′ − D( ) , n = 8 r = 0.982  s = 0.295  

F = 67.5 , MAPE = 7.17%  AEV = 0.0357  
(2)

and AEV decays by 33%. When D’ is included in the fit the correlation is bettered:  

Rt − Rt
o( ) Rt

o = −11.6 + 0.272log P + 9.44D′ , n = 8  r = 0.987  s = 0.253  F = 93.2  

MAPE = 5.81%  AEV = 0.0261  
(3)

and AEV drops by 51%. The best quadratic model vs. D’ improves the fit:  

Rt − Rt
o( ) Rt

o = −112 + 151D′ − 49.3D′ 2 , n = 9 r = 0.988  s = 0.224  F = 125.2  

MAPE = 5.39%  AEV = 0.0234  (4) 

and AEV decreases by 56%. If IS TPP is excluded the results are bettered:  

Rt − Rt
o( ) Rt

o = −107 + 144 D′ − 46.7D′ 2 , n = 8 r = 0.989  s = 0.228  F = 114.4  

MAPE = 5.84% AEV = 0.0214
(5) 

and AEV decays by 60%. Model (3) is linear and expected to perform better than Equations (4) and (5) 

for extrapolation. However, the latter are nonlinear and could function better than Equation (3) for 

intrapolation. Additional fitting parameters were tested: absolute/differential formation enthalpies, 

molecular dipole moment, organic solvent/water partition coefficients, free energies of solvation and 

water → organic solvent transfer, molecular volume, surface area, globularity, rugosity, hydrophobic, 

hydrophilic and total solvent accessible surfaces, and numbers of P and total atoms. However, the 

results do not improve Equations (3)–(5). 

Table 1. Vector property (cyc123, O0345, NP, S=, N13, Cl3), retention, logP, pKa and 

dimensions for pesticides. 

Compound 
Rt 

(min) 
Rt − Rt° 
(min) 

(Rt − Rt°)/Rt° logP pKa D D’ 

1. Methamidophos C2H8NO2PS <001010> 2.78 0.00 0.00000 −0.779 −0.58 1.235 1.266
2. Carbendazim C9H9N3O2 <100010> 6.48 3.70 1.33094 1.52 5.66 1.284 1.332
3. Thiabendazole C10H7N3S <110010> 6.91 4.13 1.48561 2.47 3.40 1.288 1.331
4. Pyrimethanil C12H13N3 <110010> 10.43 7.65 2.75180 2.558 4.41 1.314 1.407
5. Cyprodinil C14H15N3 <110010> 11.44 8.66 3.11511 3.012 4.22 1.344 1.470
6. TPP (IS) C18H15O4P <111000> 11.78 9.00 3.23741 4.63 −5 1.394 1.504
7. Diazinone C12H21N2O3PS <111100> 11.92 9.14 3.28777 3.766 1.21 1.398 1.509
8. Pyrazophos C14H20N3O5PS <111110> 12.24 9.46 3.40288 2.810 −1.37 1.403 1.505
9. Chlorpyrifos C9H11NO3PSCl3 <111111> 13.42 10.64 3.82734 5.004 −5.28 1.394 1.494

Pearson correlation coefficient matrix R was calculated between pairs of vector properties <i1, i2, i3, 

i4, i5, i6> for nine pesticides. Intercorrelations are illustrated in the partial correlation diagram, which 

contains high (r ≥ 0.75), medium (0.50 ≤ r < 0.75), low (0.25 ≤ r < 0.50) and zero (r < 0.25) partial 

autocorrelations. Pairs of molecules with higher partial correlations show similar vector property. 

However, results should be taken with care, because Entry 9 with constant vector <111111> shows 

null standard deviation, causing greatest partial correlations r = 1 with any compound, which is an 

artefact. With the equipartition conjecture the upper triangle of R resulted: 
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R =

0.984 0.359 0.109 0.109 0.109 0.203 0.141 0.172 0.156

0.984 0.734 0.734 0.734 0.578 0.516 0.547 0.531

0.984 0.984 0.984 0.828 0.766 0.797 0.781

0.984 0.984 0.828 0.766 0.797 0.781

0.984 0.828 0.766 0.797 0.781

0.984 0.922 0.891 0.875

0.984 0.953 0.938

0.984 0.969

0.984
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 
 
 
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 

 
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Some correlations are high, e.g., R3,4 = R3,5 = R4,5 = 0.984. They are illustrated in the partial 

correlation diagram, which contains 21 high (cf. Figure 1, red lines), seven medium (orange), one low 

(yellow) and seven zero (black) partial correlations. Two out of eight high partial correlations of Entry 9 

are corrected: its correlation with Entry 2 is medium and its correlation with Entry 1 is zero partial 

correlation. For instance, pesticide 2 (carbendazim) shows medium partial correlations with molecules 

3–9 (0.50 ≤ r < 0.75, orange) and low partial correlation with compound 1 (0.25 ≤ r < 0.50, yellow). 

The grouping rule in the case with equal weights ak = 0.5 for b1 = 0.93 allows the classes:  

C − b1 = (1)(2)(3,4,5)(6)(7,8,9) 

Five clusters are obtained with the associated entropy h – R – b1 = 10.70 matching to 

<i1,i2,i3,i4,i5,i6> and C − b1 [38–40]; the binary taxonomy (Table 1) separates the classes 1, 2, 3, 4 and 

5 with 1, 1, 3, 1 and 3 pesticides, respectively [41]. The planar molecules 3–5 with low retention are 

grouped into the same class; nonplanar thiophosphates 7–9 with the greatest retention are aggregated 

into the same cluster. Substances belonging to the same grouping appear highly correlated in the 

partial correlation diagram (Figure 1). However, C – b1 results should be taken with care because 

classes (1), (2) and (6) with only one substance could be outliers. At level b2 with 0.74 ≤ b2 ≤ 0.76, the 

set of groupings turns out to be:  

C − b2 = (1)(2)(3,4,5,6,7,8,9) 

Three clusters result and entropy decays to h – R – b2 = 3.71 going with <i1,i2,i3,i4,i5,i6> and C − b2 

dividing classes: 1–3 with 1, 1 and 7 pesticides. Again, nonplanar thiophosphates 7–9 with the greatest 

retention are aggregated into the same class. Compounds in the same cluster appear highly correlated 

in partial correlation diagram (Figure 1). Notwithstanding, C – b2 results should be taken with caution 

because groupings (1) and (2) with a unique compound could be outliers. Table 2 shows comparative 

analysis of the set containing 1–9 classes in agreement with partial correlation diagram (Figure 1). 

From the previous partial correlation diagram (Figure 1) and set of nine classifications (Table 2), we 

suggest splitting the data into three groupings:  

(1,2)(3,4,5)(6,7,8,9) 

The pesticides dendrogram (cf. Figure 2) shows different behaviour depending on the number of 

cyles. One more time, the planar molecules 3–5 with low retention are grouped into the same class and 

nonplanar thiophosphates 6–9 with the greatest retention are aggregated into the same cluster. 
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Figure 1. Partial correlation diagram: High (red), medium (orange) and low (yellow) 

correlations of pesticides. 

 

Table 2. Classification level, number of classes and entropy for vector property of pesticides. 

Classification Level b Number of Classes Entropy h 

1.00 9 32.49 
0.98 7 20.01 
0.96 6 15.13 
0.93 5 10.70 
0.87 4 6.77 
0.76 3 3.71 
0.51 2 1.47 
0.10 1 0.08 
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Figure 2. Dendrogram of pesticides according, top → bottom, to: (1,2)(3,4,5)(6,7,8,9). 

 

The illustration of the classification above in a radial tree (cf. Figure 3) shows the different 

behaviour of the pesticides depending on the number of cyles. The same classes above are recognized, 

in qualitative agreement with partial correlation diagram and dendrogram (Figures 1 and 2). One more 

time, planar molecules 3–5 with low retention are grouped into the same class, and nonplanar 

thiophosphates 6–9 with the greatest retention are aggregated into identical cluster. 
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Figure 3. Radial tree of pesticides according, from top to bottom, to: (1,2)(3,4,5)(6,7,8,9). 

 

Program SplitsTree allows examining cluster analysis (CA) data [42]. Based on split decomposition 

it takes as input a distance matrix and produces as output a graph, which represents relations between 

taxa. For ideal data the graph is a tree whereas less ideal data will give rise to a tree-like net, which is 

interpreted as possible evidence for conflicting data. As split decomposition does not attempt to force 
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data on to a tree it can provide a good indication of how tree-like are given data. In the splits graph for 

nine pesticides (cf. Figure 4), points 4 and 5 are superimposed on 3, and 9 on 8. It reveals conflicting 

relationship between class 1, and groupings 2 and 3 because of interdependences. It indicates spurious 

relation resulting from base-composition effects. It shows different pesticides behaviour depending on 

number of cycles in agreement with partial correlation diagram, binary and radial trees (Figures 1–3). 

Figure 4. Splits graph of pesticides according, top → bottom, to: (1,2)(3,4,5)(6,7,8,9). 

 

In QSPR, the data file contains less than 100 objects and thousands of X-variables. So many 

X-variables exist that no one can discover by inspection patterns, trends, clusters, etc. in objects. 

Principal components analysis (PCA) is a technique useful to summarize all information contained in 

X-matrix and put it understandable [43–48]. The PCA works decomposing X-matrix as the product of 

two smaller matrices P and T. Loading matrix (P) with information about the variables contains few 

vectors, the principal components (PCs), which are obtained as linear combinations of the original  

X-variables. In the score matrix (T) with information about objects, every object is described in terms 

of the projections on to PCs instead of the original variables: X = TP’ + E, where ’ denotes the 

transpose matrix. The information not contained in the matrices remains as unexplained X-variance in 

the residual matrix (E). Every PCi is a new co-ordinate expressed as linear combination of old features 

xj: PCi = ∑jbijxj. The new co-ordinates PCi are named scores/factors while the coefficients bij are called 

loadings. The scores are ordered according to their information content with regard to the total 

variance among all objects. Score–score plots show positions of compounds in the new co-ordinate 

system while loading–loading plots indicate the locations of the features that represent the compounds 
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in the new co-ordinates. The PCs present two interesting properties. (1) They are extracted in decaying 

order of importance. First PC F1 always contains more information than the second F2 does, F2 more 

than the third F3, etc. (2) Every PC is orthogonal to one another. There is no correlation between the 

information contained in different PCs. A PCA was performed for the vector properties. The 

importance of PCA factors F1–F6 for {i1,i2,i3,i4,i5,i6} is collected in Table 3. The use of the first factor 

F1 explains 39% of variance (61% error), combined application of two factors F1/2 accounts for 66% of 

variance (34% error), utilization of factors F1–3 justifies 87% of variance (13% error), etc. 

Table 3. Importance of the principal component analysis factors for vector property  

of pesticides. 

Factor Eigenvalue Percentage of Variance Cumulative Percentage of Variance 

F1 2.33109829 38.85 38.85 
F2 1.62998318 27.17 66.02 
F3 1.25482746 20.91 86.93 
F4 0.38517751 6.42 93.35 
F5 0.33518718 5.59 98.94 
F6 0.06372637 1.06 100.00 

The PCA factor loadings are shown in Table 4. 

Table 4. Principal component analysis loadings for the vector property of pesticides. 

Property 
  PCA Factor Loadings a   

F1 F2 F3 F4 F1 F6 

i1 0.30822766 0.64474701 0.02673332 −0.04594797 0.50138891 −0.48485077 
i2 0.44804795 0.45046774 −0.05731613 0.08927231 −0.76002034 0.08629170 
i3 0.40956062 −0.56947041 −0.18574529 0.04102918 −0.15327503 −0.66954134 
i4 0.55772042 −0.17916516 0.17892539 0.59525799 0.32511366 0.40595876 
i5 −0.31588577 0.04253838 0.72852310 0.44514023 −0.20425092 −0.35748077 
i6 0.35450381 −0.15222972 0.63145758 −0.66011661 0.00822715 0.12881324 

a Loadings greater than 0.7 are boldfaced. 

The PCA F1–F3 profile for the vector property is listed in Table 5. For F1, variable i4 shows the 

greatest weight in the profile; however, F1 cannot be reduced to two variables {i2,i4} without 49% 

error. For F2, variable i1 presents the greatest weight; notwithstanding, F2 cannot be reduced to  

two variables {i1,i3} without 26% error. For F3, variable i5 displays the greatest weight; nevertheless, 

F3 cannot be reduced to two variables {i5,i6} without 7% error. For F4, variable i6 exhibits the greatest 

weight; however, F4 cannot be reduced to two variables {i4,i6} without 21% error. For F5, variable i2 

reveals the greatest weight; notwithstanding, F5 cannot be reduced to two variables {i1,i2} without 17% 

error. For F6, variable i3 bares the greatest weight; nevertheless, F6 cannot be reduced to two variables 

{i1,i3} without 32% error. Factors F1–6 can be considered as the linear combinations of {i2,i4}, {i1,i3}, 

{i5,i6}, {i4,i6}, {i1,i2} and {i1,i3} with 49%, 26%, 7%, 21%, 17% and 32% errors. 
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Table 5. Profile of the principal component analysis factors for the vector property  

of pesticides. 

 Percentage of i1 
a % of i2 % of i3 % of i4 % of i5 % of i6 

F1 9.50 20.07 16.77 31.11 9.98 12.57 
F2 41.57 20.29 32.43 3.21 0.18 2.32 
F3 0.07 0.33 3.45 3.20 53.07 39.87 
F4 0.21 0.80 0.17 35.43 19.81 43.58 
F5 25.14 57.76 2.35 10.57 4.17 0.01 
F6 23.51 0.74 44.83 16.48 12.78 1.66 

a Percentages greater than 50% are boldfaced. 

In PCA F2–F1 scores plot (cf. Figure 5), points 4 and 5 appear superimposed on 3. It shows different 

behaviour depending on number of cyles. It distinguishes three clusters: class 1 (two molecules,  

F1 < F2, left), grouping 2 (three compounds, F1 << F2, top) and cluster 3 (four units, F1 >> F2, right). 

Figure 5. F2 versus F1 scores plot of the principal component analysis for the pesticides. 

 

From PCA factor loadings of pesticides, F2–F1 loadings plot (cf. Figure 6) depicts the six 

properties. In addition as a complement to the scores plot (Figure 5) for the loadings (Figure 6), it is 

confirmed that pesticide 2 located on the left side presents a contribution of cyc123 situated near the 

same side of Figure 5. Class 2 on the top shows more pronounced contribution of O0345 placed in the 

same position (Figure 6). Two classes of properties are clearly distinguished in the loadings plot: class 

1 {cyc123,O0345,N13} (F1 < F2, top) and grouping 2 {NP,S=,Cl3} (F1 >> F2, bottom). 
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Figure 6. F2 versus F1 loadings plot of the principal component analysis for the pesticides. 

 

Instead of nine pesticides in the ℜ6 space of six vector properties, consider six properties in the ℜ9 

space of nine molecules. The upper triangle of matrix R between pairs of properties resulted in:  

R =

0.998 0.748 0.029 0.514 0.475 0.502

0.998 0.279 0.764 0.225 0.752

0.998 0.482 0.506 0.471

0.998 0.021 0.986

0.998 0.025

0.998
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 

 
 
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Correlations are high, e.g., R4,6 = 0.986. Properties dendrogram (cf. Figure 7) separates cyc123 and 

O0345 from N13 (class 1), and Cl3 from NP/S= (cluster 2) in agreement with PCA loadings plot (Figure 6). 

The radial tree for the vector properties (cf. Figure 8) separates the same two classes as PCA 

loadings plot and dendrogram (Figures 6 and 7). Splits graph for properties (cf. Figure 9) reveals 

conflicting relation between classes because of interdependences. It is in agreement with PCA loadings 

plot and binary/radial trees (Figures 6–8). 

A PCA was performed for the vector properties. Factor F1 explains 50% of variance (50% error), 

factors F1/2 account for 69% of variance (31% error), factors F1–3 rationalize 82% of variance (18% 

error), etc. In PCA F2–F1 scores plot, the same two groupings of properties are distinguished: class 1 

{cyc123,O0345,N13} (F1 >> F2, cf. Figure 10, right) and grouping 2 {NP,S=,Cl3} (F1 << F2, left) in 

qualitative agreement with PCA loadings plot, binary/radial trees and splits graph (Figures 6–9). 
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Figure 7. Dendrogram for the vector properties corresponding to the pesticides. 

 

Figure 8. Radial tree for the vector properties corresponding to the pesticides. 
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Figure 9. Splits graph for the vector properties corresponding to the pesticides. 

 

Figure 10. PCA F2 vs. F1 scores plot for the vector properties corresponding to pesticides. 

 

The recommended format of the pesticides periodic table (PT, cf. Table 6) shows that they are 

classified first by i1, i2, i3, i4, i5 and, finally, by i6. Vertical groups are defined by <i1,i2,i3,i4,i5> and 

horizontal periods, by <i6>. Periods of eight units are assumed; e.g., group g00101 stands for 

<i1,i2,i3,i4,i5> = <00101>: <001010> (cyc0,O2,NP,S=0,N1,Cl0), etc. Pesticides in the same column 

appear close in partial correlation diagram, binary/radial trees, splits graph and PCA scores (Figures 1–5). 
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Phenylurea herbicides were determined in tap water/soft drink samples by HPLC–UV [49]. Table 6 

includes five phenylureas: metazachlor is similar to carbendazim. Can et al. determined 

sulphonyl/phenylurea herbicides toxicities [50]. Table 6 includes 27 sulphonyl/phenylurea herbicides: 

(1) phenylureas are similar to metoxuron, monuron, diuron and linuron; (2) sulphonylureas 

flazasulphuron, triasulphuron, azimsulphuron and chlorsulphuron go with TPP. High-resolution and 

ultratrace analyses of pesticides were reported via silica (SiO2) monoliths [51]. Table 6 takes in six 

new pesticides: (1) metamitron and phenylurea isoproturon match metoxuron; (2) metolachlor goes 

with carbendazim; (3) carbofuran agrees with thiabendazole. Qualitative LC–MS analysis of pesticides 

was informed via monolithic SiO2 capillaries [52]. Table 6 contains two novel pesticides: phenylurea 

pencycuron tallies metamitron. Analytical standards were provided for persistent organic pollutants 

(POPs) [53]. Table 6 embraces five POPs: lindane and pentachlorobenzene equal carbetamide 

Property P variation of vector <i1,i2,i3,i4,i5,i6> (cf. Figure 11) is expressed in decimal system,  

P = 105i1 + 104i2 + 103i3 + 102i4 + 10i5 + i6, vs. structural parameters {i1,i2,i3,i4,i5,i6} for the pesticides. 

Most points and lines i3/i5 collapse. For instance, for molecule 1 (methamidophos) <001010>, vector 

property P = 105·0 + 104·0 + 103·1 + 102·0 + 10·1 + 0 = 1010 where the structural parameters are 0 

and 1, and the corresponding points are (i1 = i2 = i4 = i6 = 0, P = 1010) and (i3 = i5 = 1, P = 1010). The 

results show parameters hierarchy: i1 > i2 > i3 > i4 > i5 > i6 in agreement with PT of properties (Table 6) 

with vertical groups defined by {i1,i2,i3,i4,i5} and horizontal periods described by {i6}. The property 

was not used in PT development and validates it. 

Figure 11. Variation of vector property P(p) of the pesticides versus counts of {i1,i2,i3}. 
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Table 6. Table of periodic properties for pesticides, persistent organic pollutants, phenylureas and sulphonylureas. 

P. g00100 g00101 g01100 g10000 g10001 g10100 g11000 g11001 g11100 g11110 g11111 

p0 Chlordecone ** Methamidophos PFOS ** 

Metamitron * 

BDE-99 ** 

Metoxuron 

Monuron 

Diuron 

Linuron 

Buturon 

Chlorotoluron 

Daimuron 

Fenuron 

Methyldimuron 

Fluometuron 

Siduron 

Neburon 

Isoproturon 

Pencycuron 

Carbendazim 

Metolachlor * 

Metazachlor 

AMS 

BSM 

CME 

CNS 

EMS 

MSM 

NCS 

OXS 

PSE 

TFS 

TBM 

TFO 

3FS 

RMS 

IDS 

Carbetamide * 

Prometryne * 

Lindane ** 

PCB ** 

Thiabendazole 

Pyrimethanil 

Cyprodinil 

Carbofuran * 

TPP 

Flazasulphuron 

Triasulphuron 

Azimsulphuron 

Chlorsulphuron 

Diazinone Pyrazophos 

p1         Chlorfenvinphos **  Chlorpyrifos 

PFOS: perfluoroctane sulphonate. BDE-99: 2,2',4,4',5-pentabromodiphenylether. AMS: amidosulphuron. BSM: bensulphuron-methyl. CME: Chlorimuron-ethyl. CNS: Cinosulphuron. EMS: 

ethametsulphuron-methyl. MSM: metsulphuron-methyl. NCS: nicosulphuron. OXS: oxasulphuron. PSE: pyrazosulphuron-ethyl. TFS: Thifensulphuron-methyl. TBM: Tribenuron-methyl. 

TFO: Trifloxysulphuron-Na. 3FS: triflusulphuron-methyl. RMS: rimsulphuron. IDS: iodosulphuron. PCB: pentachlorobenzene. Regular typeface: pesticides (this work). Regular typeface *: 

pesticides taken from Ref. [51]. Regular typeface **: persistent organic pollutants. Italics: phenylureas. Bold: sulphonylureas. 
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Property P change of vector <i1,i2,i3,i4,i5,i6> in base 10 (cf. Figure 12) is represented vs. number of 

group in PT, for pesticides (Table 1 subset of Table 6). It reveals minima corresponding to compounds 

with <i1,i2,i3,i4,i5> ca. <00101> (group g00101) and maxima with <i1,i2,i3,i4,i5> ca. <11111> (group 

g11111). For group 6, period 2 is superimposed on 1. For instance, for group g001010 and period p0, 

molecule 1 (methamidophos) <001010> lies in the first group in the subset with P = 1010 and the point 

is (group = 1, P = 1010). Periods p0 and p1 represent rows 1 and 2, respectively, in Table 6. Function 

P(i1,i2,i3,i4,i5,i6) denotes two periodic waves clearly limited by two maxima, which suggest a periodic 

behaviour that recalls form of a trigonometric function. For <i1,i2,i3,i4,i5,i6>, a maximum is shown. 

Distance in <i1,i2,i3,i4,i5,i6> units between each pair of consecutive maxima is six, which coincides with 

pesticide sets in successive periods. The maxima occupy analogous positions and are in phase. The 

representative points in phase should correspond to elements in the same group in PT. For both 

maxima, <i1,i2,i3,i4,i5,i6> some coherence exists between two representations; however, the consistency 

is not general. Waves comparison shows two differences: period 1 is somewhat step-like and period 2 

is incomplete. The most characteristic points are maxima, which lie about group g11111. The values of 

<i1,i2,i3,i4,i5,i6> are repeated as the periodic law (PL) states. 

Figure 12. Variation of the vector property P(p) of the pesticides versus group number. 

 

An empirical function P(p) reproduces the different <i1,i2,i3,i4,i5,i6> values. The minimum of P(p) 

has meaning only if it is compared with former P(p – 1) and later P(p + 1) points needing to fulfill:  

Pmin p( )< P p − 1( )  

Pmin p( )< P p + 1( )  
(6)

The order relations (6) should repeat at determined intervals equal to period size and are equivalent to:  
( ) ( ) 01min <−− pPpP  

P p + 1( )− Pmin p( ) > 0  
(7)
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As relations (7) are valid only for minima, more general ones are desired for all values of p. 

Differences D(p) = P(p + 1) − P(p) are calculated assigning every value to pesticide p:  

D p( )= P p + 1( )− P p( )  (8)

Instead of D(p), R(p) = P(p + 1)/P(p) is taken, assigning them to pesticide p. If PL were general, 

elements in the same group in analogous positions in different periodic waves would satisfy: 

either D p( )> 0  or D p( )< 0  (9)

and either R p( )> 1  or R p( )< 1  (10)

However, the results show that this is not the case so that PL is not general, existing some 

anomalies; e.g., D(p) variation vs. group number (cf. Figure 13) presents lack of coherence between 

<i1,i2,i3,i4,i5,i6> Cartesian and PT representations. For instance, for group g001010 and period p0, 

pesticide 1 (methamidophos) <001010> (group = 1, P = 1010) presents, in the next PT position, 

molecule 2 (carbendazim) <100010> (g100010, group = 2, P = 100010), D = 100010 − 1010 = 99000 

and the point is (group = 1, D = 99000). If consistency were rigorous, all points in each period would 

have the same sign. In general, a trend exists in points to give D(p) > 0, especially for lower groups. 

Figure 13. Variation of property D(p) = P(p + 1) − P(p) versus group. P: vector property.  

 

The change of R(p) vs. group number (cf. Figure 14) confirms the lack of constancy between 

Cartesian and PT charts. For instance, for group g001010 and period p0, pesticide 1 (methamidophos) 

<001010> (group = 1, P = 1010) shows, in the next PT cell, molecule 2 (carbendazim) <100010> 

(g100010, group = 2, P = 100010), R = 100010/1010 = 99.0198 and the point is (group = 1,  

R = 99.0198). If the steadiness were exact, all points in each period would show R(p) either lesser or 

greater than one. A trend exists to give R(p) > 1, especially for the lower groups. 
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Figure 14. Variation of property R(p) = P(p + 1)/P(p) vs. group number. P: vector property. 

 

3. Experimental  

The key problem in classification studies is to define similarity indices when several criteria of 

comparison are involved. The first step in quantifying similarity concept for pesticides is to list the 

most important chemical characteristics of molecules. The vector of properties i  = <i1,i2,…ik,…> 

should be associated with every pesticide i, whose components correspond to different molecular 

features in a hierarchical order according to their expected importance in retention. If characteristic  

m-th is chromatographically more significant for retention than k-th then m < k. Components ik are 

either “1” or “0”, according to whether a similar characteristic of rank k is either present or absent in 

pesticide i compared to a reference. Analysis includes six structural and constitutional characteristics: 

presence of cycle (cyc123), occurrence of either none or 3–5 O atoms (O0345), nonplanarity (NP), 

double-bonded S atom (S=), incidence of either one or three N atoms (N13) and existence of three Cl 

atoms (Cl3, cf. Figure 15). It is assumed that the chemical characteristics can be ranked according to 

their contribution to retention in the following order of decaying importance: cyc123 > O0345 > NP > S= 

> N13 > Cl3. Index i1 = 1 denotes cyc123 (i1 = 0 for cyc0), i2 = 1 means O0345 (i2 = 0 for O2), i3 = 1 

signifies NP, i4 = 1 indicates S=, i5 = 1 stands for N13 (i5 = 0 for N0 or N2) and i6 = 1 represents  

Cl3 (i6 = 0 for Cl0). In chlorpyrifos number of cycles is one, O is three, it is NP and S=, number of N is 

one and number of Cl atoms is three; obviously its associated vector is <111111>. In this study 

chlorpyrifos was selected as reference because of its greatest retention. Table 1 contains vectors 

associated with nine pesticides. Vector <001010> is associated with methamidophos since it shows 

cyc0, O2, NP, not S=, N1 and Cl0. 
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Let us denote by rij (0 ≤ rij ≤ 1) similarity index of two pesticides associated with vectors  i  and  j , 

respectively. Similitude relation is characterized by similarity matrix R = [rij]. Similarity index 

between two pesticides   i  = <i1,i2,…ik…> and  j  = <j1,j2,…jk…> is defined as:  

rij = tk ak( )k

k
    (k = 1,2,…)  (11)

where 0 ≤ ak ≤ 1 and tk = 1 if ik = jk but tk = 0 if ik ≠ jk. Definition assigns a weight (ak)
k to any property 

involved in description of molecule i or j. 

Figure 15. Pesticides: (a) methamidophos, (b) carbendazim, (c) thiabendazole,  

(d) pyrimethanil, (e) cyprodinil, (f) diazinone, (g) pyrazophos and (h) chlorpyrifos. 

 

3.1. Classification Algorithm 

Grouping algorithm uses the stabilized similarity matrix by applying max–min composition rule o:  

R oS( )ij = max k mink rik ,skj( )[ ]
 (12)
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where R = [rij] and S = [sij] are matrices of equal type and (RoS)ij is the (i,j)-th element of matrix  

RoS [54–57]. When applying composition rule max–min iteratively so that R(n + 1) = R(n) o R, an 

integer n exists such that: R(n) = R(n + 1) = … Matrix R(n) is called stabilized similarity matrix. Its 

importance lies in fact that in classification it generates partition into disjoint classes. Stabilized matrix 

is designated by R(n) = [rij(n)]. Grouping rule follows: i and j are assigned to the same class if rij(n) ≥ b. 

Class of i noted   

i  is set of species j that satisfies rule: rij(n) ≥ b. Matrix of classes is:  



R n( ) = 

r 
i 

j [ ]= max s,t rst( )   (s ∈


i ,  t ∈


j )  (13)

where s stands for any index of species belonging to class  

i  (similarly for t and   


j ). Rule (13) means 

finding largest similarity index between species of two different classes. 

3.2. Information Entropy 

In information theory, information entropy h measures the surprise that source emitting sequences, 

e.g., cannon-shots, can give [58,59]. Consider use of qualitative spot test to determine the presence of 

Fe in a water sample. Without any history of testing the analyst must begin by assuming that the two 

outcomes 0/1 (Fe absent/present) are equiprobable with probabilities 1/2. When up to two metals may 

be present in sample, e.g., Fe or Ni, four possible outcomes exist, ranging from neither (0,0) to both 

present (1,1) with equal probabilities 1/4. Which of four possibilities turns up can be determined via 

two tests each having two observable states. Similarly with three elements eight possibilities exist each 

with probability of 1/8 = 1/23; three tests are needed. Pattern relates uncertainty and information 

needed to resolve it. Number of possibilities is expressed to power of 2. Power to which 2 must be 

raised to give number of possibilities N is defined as logarithm to base 2 of that number. 

Information/uncertainty can be defined in terms of logarithm to base 2 of number of possible analytical 

outcomes: I = H = log2 N = log2 1/p = –log2 p, where I is information contained in answer given that N 

possibilities existed, H, initial uncertainty resulting from need to consider N possibilities and p, 

probability of each outcome if all N possibilities are equally likely to occur. The expression is 

generalized to a situation in which the probability of every outcome is unequal. If one knows from past 

experience that some elements are more likely to be present than others, the equation is adjusted so that 

logarithms of individual probabilities suitable weighted are summed: H = – Σ pi log2 pi, where Σ pi = 1. 

Consider original example except that now past experience showed that 90% of samples contained no 

Fe. Degree of uncertainty is calculated using: H = –(0.9 log2 0.9 + 0.1 log2 0.1) = 0.469 bits. For a 

single event occurring with probability p degree of surprise is proportional to −ln p. Generalizing result 

to random variable X (which can take N possible values x1, …, xN with probabilities p1, …, pN) average 

surprise received on learning X value is: – Σ pi ln pi. Information entropy associated with similarity 

matrix R is:  

h R( ) = − rij ln rij
i , j
 − 1 − rij( )ln 1− rij( )

i, j
  (14)

Denote by Cb set of classes and by 

R b  similarity matrix at grouping level b. Information entropy 

satisfies following properties. (1) h(R) = 0 if either rij = 0 or rij = 1; (2) h(R) is maximum if rij = 0.5, 
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i.e., when imprecision is maximum; (3) ( ) ( )RR hh b ≤
  for any b, i.e., classification leads to entropy 

loss; (4) 
h

R b1
( )≤ h


R b2

( ) if b1 < b2, i.e., entropy is monotone function of grouping level b. 

3.3. Equipartition Conjecture of Entropy Production 

In classification algorithm every hierarchical tree corresponds to entropy dependence on grouping 

level and diagram h − b is obtained. Tondeur and Kvaalen equipartition conjecture of entropy 

production is proposed as selection criterion among hierarchical trees. According to conjecture for 

given charge, dendrogram (binary tree) with best configuration is that in which entropy production is 

most uniformly distributed. One proceeds by analogy using information instead of thermodynamic 

one. Equipartition implies linear dependence so that equipartition line results:  

heqp = hmax b  (15)

Since classification is discrete, way of expressing equipartition would be regular staircase function. 

Best variant is chosen to be that minimizing sum of squares of deviations:  

SS = h − heqp( )2

bi

  (16)

3.4. Learning Procedure 

Learning procedures were implemented similar to those encountered in stochastic methods [60]. 

Consider a given partition into classes as good from practical observations, which corresponds to 

reference similarity matrix S = [sij] obtained for equal weights a1 = a2 = … = a and for an arbitrary 

number of fictious properties. Next consider the same set of species as in the good classification and 

actual properties. Degree of similarity rij is computed with Equation (11) giving matrix R. Number of 

properties for R and S differs. Learning procedure consists in finding classification results for R as 

close as possible to good classification. First weight a1 is taken constant and only following weights a2, 

a3,… are subjected to random variations. New similarity matrix is obtained using Equation (11) and 

new weights. Distance between partitions into classes characterized by R and S is:  

D = − 1 − rij( )ln
1 − rij

1− sijij
 − rij ln

rij

sijij
    ∀0 ≤ rij , sij ≤ 1( ) 

(17)

Definition was suggested by that introduced in information theory to measure distance between two 

probability distributions [61]. In the present case it is distance between matrices R and S. Since for 

every matrix a corresponding classification exists two classifications will be compared by distance, 

which is nonnegative quantity that approaches zero as resemblance between R and S increases. The 

algorithm result is a set of weights allowing classification. The procedure was applied to the synthesis 

of complex dendrograms using information entropy [62–65]. Our program MolClas is simple, reliable, 

efficient and fast procedure for molecular classification, based on equipartition conjecture of entropy 

production according to Equations (11)–(17); it reads number of properties and molecular properties; it 

allows optimization of coefficients; it optionally reads starting coefficients and number of iteration 

cycles. Correlation matrix can be either calculated by program or read from input file. The MolClas 

calculates property similarity matrix in symmetric storage mode; it applies graphical correlation model 
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for partial correlation diagram; it computes classifications, calculates distances between clusters, 

computes groupings similarity matrices, works out classifications information entropy, optimizes 

coefficients, performs single/complete-linkage hierarchical cluster analyses and plots cluster diagrams; 

it was written not only to analyze the equipartition conjecture of entropy production but also to explore 

the world of molecular classification. 

4. Conclusions 

From the present results and discussion the following conclusions can be drawn: 

(1) The objective was to develop a structure–property relation for qualitative and quantitative 

prediction of chromatographic retention times of pesticides. Results of the present work 

contribute to relation prediction of pesticide residues, in food and environmental samples. 

Code TOPO allows fractal dimensions, and SCAP, solvation free energies and partition 

coefficient, which show that for a given atom energies and partitions are sensitive to the 

presence in the molecule of other atoms and functional groups. Fractal dimensions, 

partition coefficient, etc. differentiated pesticides. Parameters needed for co-ordination 

index are molar formation enthalpy, molecular weight and surface area. The morphological 

and co-ordination indices barely improved equations. Correlation between molecular area 

and weight points not only to a homogeneous molecular structure of pesticides,  

but also to the ability to predict and tailor their properties; the latter is nontrivial in  

environmental toxicology. 

(2) Several criteria selected to reduce the analysis to a manageable quantity of pesticides, 

referred to structural and constituent characteristics related to nonplanarity, and the number 

of rings, and O, double-bonded S, N and Cl atoms. Classification was in agreement with 

the principal component analyses. Program MolClas is a simple, reliable, efficient and fast 

procedure for molecular classification based on equipartition conjecture of entropy 

production. It was written to analyze equipartition conjecture of entropy production and 

explore molecular-classification world. 

(3) Periodic law does not satisfy physics-law status: (a) pesticides retentions are not repeated; 

perhaps chemical character; (b) order relations are repeated with exceptions. Analysis 

forces statement: Relations that any compound p has with its neighbour, p + 1, are 

approximately repeated for each period. Periodicity is not general; however, if substance 

natural order is accepted law must be phenomenological. Retention is not used in periodic-

table generation and serves to validate it. The analysis of other properties would give an 

insight into the possible generality of the periodic table. The periodic classification was 

extended to phenylureas and sulphonylureas. 
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