
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



International Journal of Infectious Diseases 98 (2020) 90–108
Spatial modeling, risk mapping, change detection, and outbreak
trend analysis of coronavirus (COVID-19) in Iran (days between
February 19 and June 14, 2020)

Hamid Reza Pourghasemia,*, Soheila Pouyanb, Bahram Heidaric, Zakariya Farajzadehd,
Seyed Rashid Fallah Shamsia, Sedigheh Babaeia, Rasoul Khosravia, Mohammad Etemadie,
Gholamabbas Ghanbariana, Ahmad Farhadia, Roja Safaeiana, Zahra Heidarif,
Mohammad Hassan Tarazkard, John P. Tiefenbacherg, Amir Azmih, Faezeh Sadeghiani

aDepartment of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
bResearch Assistant, Department of Natural Resources and Environmental Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
cDepartment of Plant Production and Genetics, School of Agriculture, 7144165186, Shiraz University, Shiraz, Iran
dDepartment of Agricultural Economics, College of Agriculture, Shiraz University, Shiraz, Iran
eDepartment of Horticultural Science, School of Agriculture, Shiraz University, Shiraz, Iran
fDepartment of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medicinal Sciences, Shiraz, Iran
gDepartment of Geography, Texas State University, San Marcos, TX 78666, United States
hD.D.S, Msc in Dental Laser, Shiraz, Iran
i Shiraz Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

A R T I C L E I N F O

Article history:
Received 30 March 2020
Received in revised form 16 June 2020
Accepted 17 June 2020

Keywords:
Spatial modeling
Risk map
Outbreak trend
Heatmap
Regression model
Iran

A B S T R A C T

Objectives: Coronavirus disease 2019 (COVID-19) represents a major pandemic threat that has spread to
more than 212 countries with more than 432,902 recorded deaths and 7,898,442 confirmed cases
worldwide so far (on June 14, 2020). It is crucial to investigate the spatial drivers to prevent and control
the epidemic of COVID-19.
Methods: This is the first comprehensive study of COVID-19 in Iran; and it carries out spatial modeling,
risk mapping, change detection, and outbreak trend analysis of the disease spread. Four main steps were
taken: comparison of Iranian coronavirus data with the global trends, prediction of mortality trends using
regression modeling, spatial modeling, risk mapping, and change detection using the random forest (RF)
machine learning technique (MLT), and validation of the modeled risk map.
Results: The results show that from February 19 to June 14, 2020, the average growth rates (GR) of COVID-
19 deaths and the total number of COVID-19 cases in Iran were 1.08 and 1.10, respectively. Based on the
World Health Organisation (WHO) data, Iran’s fatality rate (deaths/0.1 M pop) is 10.53. Other countries’
fatality rates were, for comparison, Belgium – 83.32, UK – 61.39, Spain – 58.04, Italy – 56.73, Sweden –

48.28, France – 45.04, USA – 35.52, Canada – 21.49, Brazil – 20.10, Peru – 19.70, Chile – 16.20, Mexico–
12.80, and Germany – 10.58. The fatality rate for China is 0.32 (deaths/0.1 M pop). Over time, the heatmap
of the infected areas identified two critical time intervals for the COVID-19 outbreak in Iran. The
provinces were classified in terms of disease and death rates into a large primary group and three
provinces that had critical outbreaks were separate from the others. The heatmap of countries of the
world shows that China and Italy were distinguished from other countries in terms of nine viral infection-
related parameters. The regression models for death cases showed an increasing trend but with some
evidence of turning. A polynomial relationship was identified between the coronavirus infection rate and
the province population density. Also, a third-degree polynomial regression model for deaths showed an
increasing trend recently, indicating that subsequent measures taken to cope with the outbreak have
been insufficient and ineffective. The general trend of deaths in Iran is similar to the world's, but Iran’s
shows lower volatility. Change detection of COVID-19 risk maps with a random forest model for the
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period from March 11 to March 18 showed an increasing trend of COVID-19 in Iran’s provinces. It is worth
noting that using the LASSO MLT to evaluate variables’ importance, indicated that the most important
variables were the distance from bus stations, bakeries, hospitals, mosques, ATMs (automated teller
machines), banks, and the minimum temperature of the coldest month.
Conclusions: We believe that this study's risk maps are the primary, fundamental step to take for
managing and controlling COVID-19 in Iran and its provinces.
© 2020 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
Introduction

Phylogenetic analysis suggested that coronaviruses (CoV)
belong to the Coronavirinae subfamily, comprising Alphacoronavi-
rus,Betacoronavirus, Gammacoronavirus and Deltacoronavirus gen-
era (Zhong et al., 2003; Fouchier et al., 2003). Of the four genera,
alpha and beta coronaviruses result in respiratory illness in humans
and gastroenteritis in animals, and gamma and delta affect birds
(Cui et al., 2019). The first report of the pathogenic behavior of
alpha and beta coronaviruses was announced when the outbreak of
severe acute respiratory syndrome (SARS) occurred in 2002 in
Guangdong Province, China (Zhong et al., 2003; Fouchier et al.,
2003). Prior to the 2002 outbreak, the coronaviruses showed mild
infections among humans. A decade after SARS, the Middle East
respiratory syndrome coronavirus (MERS-CoV) was identified as a
highly pathogenic virus in Middle Eastern countries (Zaki et al.,
2015). Swine Pandemic (pH1N1) Influenza – a virus that emerged
in Mexico in 2009 – and the emergence of MERS-CoV in Saudi
Arabia were reported in other countries (El Zowalaty and Järhult,
2020; Wu et al., 2020). SARS-CoV infected more than 8000 people
and caused 774 deaths (Chang et al., 2020), but the MERS-CoV had
higher infection rates and lower fatality rates (Wu et al., 2020). The
pathogenic behavior of SARS- CoV, and MERS- CoV was not limited
to human communities; severe respiratory syndrome was also
reported in animals (Masters and Perlman, 2020). Analysis of
coronaviruses' genetics demonstrated the receptor-binding motif
of SARS- CoV has been mutated in humans and wild animals (bats
and civets) (Hu et al., 2015). A recombinant SARS- CoV was
detected in bats and transmitted to people through civets in
Guangdong Province (Cui et al., 2019). A virus outbreak in 2012
showing a similar scenario might have occurred for MERS-CoV. In
December 2019, a novel and alarmingly contagious primary
atypical (viral) pneumonia named COVID-19 broke out in Wuhan,
China, and aggressively spread over the world. COVID-19
reportedly shares an identical receptor, Angiotensin-converting
enzyme 2 (ACE2), with the SARS-Cov (Wu et al., 2020; Zhao et al.,
2020).

On February 11, 2020, the World Health Organization (WHO)
named the novel viral pneumonia “Corona Virus Disease (COVID-
19)” (Chang et al., 2020). Recently, the International Committee on
Taxonomy of Viruses (ICTV) proposed this novel coronavirus be
named “SARS-CoV-2” as a result of the phylogenetic and taxonomic
analysis of this novel coronavirus (Gorbalenya et al., 2020). These
three globally spreading emerging infectious diseases (SARS-CoV,
MERS-CoV, and COVID-19) are caused by β-coronaviruses, mainly
infecting bats, but also found in camels and rabbits (Chang et al.,
2020). There is currently neither a vaccine against COVID-19 nor
any specific, proven, antiviral medication (World Health Organi-
zation, 2020a; Coalition for Epidemic Preparedness Innovations,
2020), making it a severe global threat.

Coronaviruses are a continuing pandemic threat that has spread
to more than 212 countries, with over 432,902 recorded deaths and
7,898,442 confirmed global infections (as of June 14, 2020); the
number of new confirmed cases continues to rise. As of mid-June,
83,132 COVID-19 cases have been confirmed in mainland China of
whom 4634 have died. There have been 187,427 confirmed cases of
infection in Iran, and the death toll has reached 8837 (Anon.,
2020a). The WHO’s decision (Velavan and Meyer, 2020) was partly
based on the fact that most of the virus’s global spread can still be
traced to countries that have experienced large outbreaks, such as
the USA, Iran, India, and Brazil (Velavan and Meyer, 2020).
Therefore, health boards, governments, and public services need to
co-operate globally to prevent its further spread. Many publica-
tions have addressed the new coronavirus in terms of its clinical
characteristics, immunological studies, and the international
spread of COVID-19 (El Zowalaty and Järhult, 2020; Wu et al.,
2020; Chang et al., 2020; Velavan and Meyer, 2020; Ahmed et al.,
2020; Al-rabiaah et al., 2020; Chen et al., 2020; Gao et al., 2020; Lai
et al., 2020a; Lai et al., 2020b; Level et al., 2019; Mallapaty, 2020;
Xu et al., 2020; Zhang et al., 2020. A few studies investigating its
spread have produced risk maps either for COVID-19 during an
outbreak or for similar coronavirus respiratory syndromes (Wu
et al., 2020; Chen et al., 2018), or even for risk assessments of other
global viral diseases (Dom et al., 2016; Li et al., 2017; Sabir et al.,
2015; Saito et al., 2015; Sarfraz et al., 2014; Tu et al., 2014. Given the
clinical severity of COVID-19 infection, the extent of the outbreak,
and public concern, it is important to establish accurate
epidemiological limitations, thus solid information is essential
for inputs into models. In general, there are too many factors on
each pandemic disease, including environmental, agro-ecological,
and meteorological variables. Each disease and the risk mapping
related to it has some effective factors, and each disease can be
connected to climate, water, animals, humans, and even soils
(Brevik et al., 2019; Kumar et al., 2019; Yadav et al., 2020). So, it is
important to select the most important effective factors for each
pandemic disease. It is also vital to rapidly develop robust
information using unbiased and reliable methods to provide
situational awareness and to improve response to the pandemic
(Wu et al., 2020). This study aims to conduct spatial modeling, risk
mapping, change detection, and outbreak trend analysis of COVID-
19 in Iran (Figure 1) to produce the first comprehensive
investigation that may assist with the management and control
of the COVID-19 crisis.

Methods

Study area

The country of Iran has an area of 1,648,195 square kilometers
located between 25�305000 and 39�4601600 N and between 44�201900

and 63�1901800 E. Iran borders Armenia, Azerbaijan, and
Turkmenistan on its north, Afghanistan, and Pakistan on its east,
Turkey and Iraq on its west, and the Persian Gulf and Oman Sea to
the south. Unfortunately, at various times, Iran has faced a number
of serious infectious diseases, many of which have been
successfully controlled. Plague, a pandemic disease that still
occurs in some regions around the world, has affected Iran at
different times from 1829 to 1966 with an estimated two million
deaths (Hashemi Shahraki et al., 2016). Between January 2000 and
September 2010, 738 cases of Crimean–Congo Haemorrhagic Fever

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1. Trend of COVID-19 outbreak in the provinces of Iran since February 19, 2020.
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(CCHF) with 108 deaths were described in Iran (Askarian et al.,
2012). Tuberculosis has been well controlled in Iran; the incidence
of tuberculosis was 17/100,000 population, and its spread was 23/
100,000 population. Tuberculosis has a mortality ratio of 1.8/
100,000 people (Askarian et al., 2012; World Health Organization,
2020b). The annual outbreak of malaria in Iran was predicted to be
0.14–8.74/1000 people in 2010. According to the WHO, there were
nearly 70,000 confirmed malaria cases in Iran in 2010 (Askarian
et al., 2012; World Health Organization, 2020c).

This study is composed of four steps:

a Comparing Iranian coronavirus data with other countries
b Predicting the trends of deaths from COVID-19 using regression
c Spatial modeling, risk mapping, and change detection of COVID-
19 using the random forest (RF) machine learning technique
(MLT)

d Validation of the modeled risk maps (Figure 2)

Comparing Iran’s COVID-19 trend with the global trend

First, we assess the growth rates (GRs) of active cases and
deaths in Iran. The data were extracted from daily reports
produced by Iran's Ministry of Health and Medical Education
(IMHME). All active cases, deaths, and recoveries were compiled in
Excel. An analysis of the correlation between the number of active



Figure 2. The flowchart of methodologies for risk mapping coronavirus in Iran.
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cases and the number of deaths was conducted using Spearman’s
Rho. Another analysis examined the relationships between ages
and sexes of active cases and deaths. Following the IMHME
approach, these age groups were used to produce nine classes: 1) <
= 9, 2) 10–19, 3) 20–29, 4) 30–39, 5) 40–49, 6) 50–59, 7) 60–69, 8)
70–79, and 9) > = 80. All analyses were done using Excel, SPSS, SAS,
and ArcGIS. The data for Iran were compared to data describing
other countries' experiences, particularly the 24 countries with the
highest COVID-19 confirmed death rates. The data for the other
countries were collected from the “Worldometer” page (https://
www.worldometers.info/coronavirus/) (Anon., 2020b). The coro-
navirus cases of six continents (Europe, North America, Asia, South
America, Africa, and Oceania) were compared in total active cases,
total number recovered, and total deaths (Anon., 2020b).

Heatmap and correlation analysis

Simple correlation coefficients for the number of the infected
cases in Iran’s 31 provinces were calculated with SAS software. A
heatmap was created using cluster analysis and shiny heatmap
tools (Khomtchouk et al., 2017). The data used for heatmap
construction were normalized based on Z-scores (Eq. 1)

z ¼ Xi � X
s

ð1Þ

where Xi, X, and s are raw data, mean, and standard deviation for
each tested trait. The number of infected cases (y) and the number
of days (x) after the first report of coronavirus in each province
were subjected to regression to identify the best model param-
eters. The number of infected cases (y) was also regressed on the
province population (x).

Prediction of death cases trend using a regression model

The trend of deaths was captured by a cubic or third-degree
polynomial specification as:

Daily death tð Þ ¼ a0 þ a1t þ a2t2 þ a3t3 ð2Þ
where Daily death tð Þs represent the death cases in a day, and t
denotes the number of days starting from February 19. This model
was extracted from the equation applied to estimate total deaths as
an accumulation of daily cases. Other specifications, including
quadratic or fourth-degree polynomial forms, were examined, but
it was determined that the cubic form produced the most accurate
predictions (Aik et al., 2018). We also used an ARMA model to
compare the processes used to generate the data for Iran and the
rest of the world. This model includes two procedures: the
autoregressive (AR) and moving-average (MA) processes. An ARMA
model of order (p, q) can be written as (Enders, 2004):

y tð Þ ¼ b0 þ
Xp

i¼1

biyt�i þ
Xq

j¼1

bjet�j ð3Þ

where y is the dependent variable and e is the white noise
stochastic error term. In this model, y denotes the total number of
deaths, and t is the number of days since the date on which the first
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death was reported. In the case of significant fluctuations in the
numbers of deaths per day, a volatility model, the autoregressive
conditional heteroskedasticity (ARCH) model, was applied so that
p can be presented as:

s2 tð Þ ¼ u0 þ
Xp

i¼1

uiet�i ð4Þ

where s2 tð Þ is the one-period ahead forecast variance, it is
obtained from past information.

Spatial modeling and risk mapping using RF MLT

One of the most important spatial modeling and risk mapping
steps is to prepare data matrices that include the dependent
variables (the total number of cases) and sets of independent (or
predictor) variables. In this study, data describing several
anthropogenic and climatic factors were compiled and mapped.
These variables included: distances from bus stations, bakeshop
(bakeries), hospitals, mosques, automated teller machines (ATMs),
banks, fuel stations, and attraction sites, the density of cities,
human footprint, distance from roads, the density of villages,
minimum temperature of the coldest month (MTCM), the
maximum temperature of the warmest month (MTWM), precipi-
tation of wettest month (PWM), and precipitation of driest month
(PDM) (Figure 3 (a–p)).

Predictor variables

The 16 predictor variables were chosen based on a review of
the literature and on expert knowledge. There is much debate on
the impact of local climate coalitions on the outbreak of COVID-
19. Previous studies have confirmed the effects of weather
conditions on the survival and spread of droplet-mediated viral
diseases (Shaman et al., 2011; Barreca and Shimshack, 2012), and
the roles of temperature and humidity on rates of COVID-19
spread have been assessed in a few studies. One study (Luo et al.,
2020) showed that changes in temperature and humidity alone
do not necessarily lead to decreased transmission of COVID-19.
More research into the effects of climatic variables on COVID-19
transmission is needed. MTCM, MTWM, PWM, and PDM were
acquired at a spatial resolution of 30 s (�1 km (Fouchier et al.,
2003)) from WorldClim datasets (https://www.worldclim.org/
data/index.html) (Hijmans et al., 2005; Anon., 2020c) to spatially
model COVID-19. To account for anthropogenic factors that may
increase infection risk through contact with contaminated
surfaces or person-to-person contact, public spaces of primary
importance were included in the modeling. These data were
acquired from Open Street Map (https://www.openstreetmap.
org/) (Anon., 2020d). The Euclidian distance to the most critical
social concentration spaces and facilities, including banks,
bakeries, ATMs, bus stations, fuel stations, hospitals, and
mosques, were measured using ArcGIS Spatial Analyst Tools. To
evaluate the effects of settlements and infrastructure on a
broader scale, we calculated geographic distances to road
networks and the densities of cities and towns. To factor in the
effects of other human-features on the outbreak, the human
footprint layer was integrated into the models. This layer is
measured using variables related to human development (e.g.,
population, electric power) and combined into one seamless layer
at a spatial resolution of �1 km (Venter et al., 2016). Because of
the human footprint map's coarse precision, we also included the
village density across the country using a kernel density function
applied to village locality-layer obtained from a topographic map
of the country at a scale of 1: 50,000.
Random forest (RF)

RF (Breiman, 2001) is an extensively employed robust MLT that
applies numerous trees to attain superior classification precision
because single trees produce feeble results due to greater
adjustment and bias (Arabameri et al., 2018). RF is highly efficient
for handling obscure and unknown data and functions well, even if
a dataset is large and complex (Rahmati et al., 2019). RF has been
used in many fields and has demonstrated very high forecast
accuracy (Chen et al., 2018; Masetic and Subasi, 2018; Hong et al.,
2016; Pham et al., 2017; Al-Quraishi et al., 2018; Heddam and Kisi,
2018; Pourghasemi and Rahmati, 2018; Kim et al., 2018; Patel et al.,
2019; Hashimoto et al., 2019. It consists of two major internal
phases: the algorithm constructs copious bootstrap trials, which
are considered calibration sets, and builds categorization con-
ditions for every tree. During the former process, a few datasets not
used during bootstrapping are left behind; these are known as out-
of-bag trials (OOB) and are used to evaluate the accuracy of
categorization and to estimate precision. Afterward, several factors
are selected arbitrarily from the entire set of factors to reduce
interdependence among all sets of trees, thereby reducing the
chances of miscalculation (Genuer et al., 2010). The advantages of
the RF technique are: (a) elimination of overfitting, (b) minimizing
preconception and inconsistency owing to the assimilation of
outcomes of each tree, (c) less association due to the large number
of trees and the restriction of the number of factors, (d) error
measurements through OOB information, and (e) maximized
forecast precision (Prasad et al., 2006; Wiesmeier et al., 2011). The
execution of RF is expressed as follows:

1 For c = 1 to C,
(2) Drag a bootstrap trial X* of amount M from the calibration

dataset.
(3) Develop the RF tree Yc to the bootstrapped dataset through

iteration of the subsequent measures for all concluding tree
nodes, until the least node extent of Mmin is arrived at.

(4) Choose d variables arbitrarily from the s variables.
(5) Choose the best variable amongst the d.
(6) Make two daughter nodes by rifting the node.
7 Produce the ensemble of trees ½Yc�C1

For doing a forecast for an instance, y:

Regression : f^gjðyÞ ¼ 1
C

XC

c¼1

YcðyÞ

Classification: L^c ðyÞ is the forecast classification of the cth RF

tree. Now, L^gjðyÞ = maximum opt for ½L^c ðyÞ�C1.
The RF can be conducted using the ‘randomForest’ package

(Breiman et al., 2018) in R software.

Variable importance using the least absolute shrinkage and selection
operator (LASSO)

LASSO is based on ridge regression (Frank and Friedman, 1993)
and non-negative Garrote (Breiman, 1995). It regularizes, manages
collinearity, and performs feature selection (Frank and Friedman,
1993; Vasquez et al., 2016). In regularization, the model sets an
upper limit to the sum of the absolute values of the selected
variables of the regression model. If the sum exceeds the limit, the
model shrinks the coefficients by penalizing (l1 norms) with a
shrinkage factor and making some coefficients equal to 0 (Li and
Sillanpää, 2012). In particular, it reduces the residual sum of
squares (RSS) subject to an l1 penalty term:

b ¼ argmin k C � Bb k22 þl k bk1 ð5Þ

https://www.worldclim.org/data/index.html
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Figure 3. Predictor variables used for COVID-19 risk mapping in Iran.
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Figure 3. (Continued)
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where l refers to the tuning parameter determined based on the
crosscheck. However, the non-zero coefficients are also chosen in
the variable-selection procedure to reduce the prediction-accuracy
error. The model is suitable for several statistical problems and
multi-dimensional problems due to its accurate predictions and
ease of interpretability (Bühlmann and van de Geer, 2011).

Validation of COVID-19 risk maps

The receiver operating characteristics (ROC) curve was applied
to the verification and validation of the model. The ROC curve and
its AUC (area under the curve) values were sorted into five classes
(Yesilnacar, 2005; Pourghasemi et al., 2019; Pourghasemi et al.,
2020a; Pourghasemi et al., 2020b): poor (0.5�0.6), moderate
(0.6�0.7), good (0.7�0.8), very good (0.8�0.9), and excellent (0.9–
1.00). AUC values close to 1 indicate high accuracy; values closer to
0.5 indicate low accuracy.

Results and discussion

Data for the 24 countries with the highest confirmed total cases
(more than 50,000), deaths, total recovered, active cases, serious/
critical, and test rates per 0.1 M pop (as of June 13, 2020) were
compiled (https://www.worldometers.info/coronavirus/)40 and
analyzed (Table 1). Results are Belgium – 83.32, UK – 61.39, Spain
– 58.04, Italy – 56.73, Sweden – 48.28, France – 45.04, USA – 35.52,
Canada – 21.49, Brazil – 20.10, Peru – 19.70, Chile – 16.20, Mexico–
12.80, Iran – 10.40, and Germany – 10.58. The lowest deaths/0.1 M
pop among these top 24 countries were between 0.3 and 5.7 in
China – 0.3, Bangladesh – 0.7, India – 0.7, Pakistan – 1.20, South
Africa – 2.40, Qatar – 2.50, Saudi Arabia – 2.70, Russia – 4.70, and
Turkey – 5.70. Iran’s portions of the world pandemic were 2.35% of
all active cases, 2.02% of all deaths, 3.64% of all recovered, 0.87% of
active cases, 5.09% of serious/critical cases, and 220.3 total cases
per 0.1 M population. Also, Table 1 shows that countries with more
than 200 cases per 0.1 M population are Qatar (2792.8), Chile
(875.8), Peru (683.3), USA (647.4), Spain (621.7), Belarus (563.40),
Belgium (517.10), UK (433.7), Brazil (400.4), Italy (391.4), Russia
(356.4), Saudi Arabia (354.5), Canada (260.9), France (240.3),
Germany (223.7), Iran (220.3), and Turkey (209.6), respectively.
The active cases of > 100 people per 0.1 M population were found in
Qatar, USA, Peru, Brazil, Russia, Chile, and Saudi Arabia, respec-
tively, whereas the highest number of severe cases are in Chile
(8.67), Qatar (8.26), Saudi Arabia (5.3), Canada (5.13) and USA

https://www.worldometers.info/coronavirus/


Table 1
Top 24 countries with high case rate per 0.1 M pop.

Country Total Cases/0.1 M Deaths/0.1 M Total Recovered/ 0.1 M Active Cases/0.1 M Serious, Critical/0.1 M Tests/0.1 M

Qatar 2792.80 2.50 1967.80 822.49 8.26 10215.50
Chile 875.80 16.20 718.50 141.08 8.67 4291.20
Peru 683.30 19.70 339.07 324.46 3.38 4062.20
USA 647.40 35.50 259.86 351.99 5.06 7340.90
Spain 621.70 58.00 – – 1.32 9550.70
Belarus 563.40 3.20 308.07 252.15 0.97 7559.40
Belgium 517.10 83.30 142.80 291.01 0.76 8716.80
Sweden 515.00 48.30 – – 2.69 3218.90
UK 433.70 61.40 – – 0.72 9760.80
Brazil 400.40 20.10 201.24 179.02 3.91 694.60
Italy 391.40 56.70 289.20 45.46 0.36 7548.40
Russia 356.40 4.70 188.20 163.54 1.58 9986.90
Saudi Arabia 354.50 2.70 237.29 114.49 5.30 3124.80
Canada 260.80 21.50 157.32 82.03 5.13 5603.20
France 240.30 45.00 111.55 83.67 1.33 2121.50
Germany 223.70 10.60 205.20 7.95 0.53 5603.40
Iran 220.30 10.40 174.82 35.12 3.28 1452.70
Turkey 209.60 5.70 178.05 25.86 0.81 3068.90
South Africa 110.90 2.40 62.17 46.33 0.35 1835.40
Mexico 108.00 12.80 78.97 16.28 0.29 305.50
Pakistan 60.00 1.20 22.68 36.16 0.05 380.20
Bangladesh 51.30 0.70 10.83 39.74 0.00 297.60
India 23.30 0.70 11.77 10.88 0.65 399.20
China 5.80 0.30 5.44 0.01 0.00 0.00
World 100.8 5.54 51.64 43.62 0.69 –
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(5.06). The coronavirus cases of six continents (Europe, North
America, Asia, South America, Africa, and Oceania) were compared
for total active cases, total recovered, and total deaths (Figure 4).
Results show that the highest total deaths were observed in Europe
(42.21%), North America (33.40%), South America (13.70%), Asia
(9.20%), Africa (1.45%), and Oceania (.03%). The highest total active
cases were found in North America (31.12%), Europe (27.86%), Asia
(20.28%), South America (17.62%), Africa (2.99. %), Oceania (0.11%).
Also, the highest total recovered cases are found in Europe
(29.83%), North America (26.99%), Asia (25.07%), South America
(15.10%), Africa (2.80. %), Oceania (0.22%), respectively (as of June
13, 2020).

Distribution of the GR of total active cases in Iran is presented in
Figure 5. Results show that the two days with the lowest growth
rates of cases in Iran were March 04 (GR = 0.67) and March 08 (GR
= 0.69). The five days with the highest growth rates of Iranian cases
occurred on February 21 (GR = 3.67), February 27 (GR = 2.41),
February 25 (GR = 1.89), March 01 (GR = 1.88), and March 06 (1.85).
The average GR during the 116 days was 1.10. It decreased from
March 31 to June 14.

Of 187,427 people who were confirmed to have been infected by
Covid-19 in Iran between February 19 and June 14, 2020, 8837 died
(Figure 6). The days with the highest GR of deaths were February
22 (3.00), March 03 (2.50), March 07 (2.38), and February 26 (2.33).
The days with the lowest death GR were February 21 (GR = 0.5),
Figure 4. Coronavirus cases on six continents.
May 25 (GR = 0.59), May 15 (GR = 0.68), May 16 (GR = 0.73), Feb 25
(GR = 0.75), May 22 (GR = 0.77), May 22 and June 2 (GR = 0.79). We
had a decreasing trend from March 25, but in our analyses, we
observed some increasing trends on April 01 and April 04. The
average death GR over the 116 days was 1.08. Also, the number of
total active cases and deaths (Table 2) was highly correlated (0.921)
at a confidence level of 99%.

The number of infected patients per 100,000 inhabitants and
the cumulative curves for Iranian provinces (Figure 7) is relatively
high, particularly for residents of Qom County. The rate of infection
per 100,000 was highest in Semnan Province.

In terms of the outbreak among age groups and by sex (Figure 8),
the highest number of active cases was among 50�59-year-olds. In
this cohort, the percentages of women (23.7%) and men (21.6%) were
similar. The group with the second-highest risk was the 60�69-year-
old cohort. The percentages of active cases in this class were 20.2%
and 18.2% for women and men, respectively. The age cohort with the
fewest cases was children younger than nine years old. There was no
discernible difference between the sexes in this age group. Women
have more risk than men, especially in age groups 10–19, 30–39, 40–
49, 70–79, and >80years old. Betweenthe ages40and 69, men have a
lower (58.2%) rate of infection than women (59.1%).

The reports of deaths (Figure 9) indicate that the group with the
largest percentage of deaths from COVID-19 was the 60 to 69-year-
olds. Men constituted a greater proportion of the deaths in this
cohort. The average percentage of deaths by sex for this age group
was equal at 25.12%. The analysis indicated 70 to 79-year-olds had
the second-highest death rate at 22.3% (men = 20.3% and women =
24.3%). People older than 50 are the most vulnerable category
based on deaths (average = 84.15, men = 85.6, and women = 82.7%)
(Figure 9). There are more deaths among the elderly than among
youth. The age group with the greatest number of deaths among
women was the younger-than-39 group, however, the number of
men who died in this group exceeded the number of women.

Virus infections in the provinces of Iran

The number of infections in Isfahan province was strongly
correlated (above 0.80) with the number of infections in Semnan,



Figure 5. Distribution of the GR of total active cases in Iran.

Figure 6. Distribution of the GR of total death cases in Iran.

Table 2
Correlation of total cases and deaths using Spearman’s Rho calculator.

Total cases Total deaths

Spearman's Rho Total cases Correlation Coefficient 1.000 .921**
Sig. (2-tailed) . .000
N 39 39

Total deaths Correlation Coefficient .921** 1.000
Sig. (2-tailed) .000 .
N 39 39
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Zanjan, and Yazd provinces (Table 3). Yazd borders Isfahan,
demonstrating close communication between these provinces
enables the spread of the virus. Alborz, also showing a high level
of infection, was highly correlated with Qazvin. The centers of these
provinces are relatively close to each other; a highway connecting
them facilitated social contact and consequently, communication of
the virus to Qazvin. East Azerbaijan was highly correlated with
Tehran and West Azerbaijan. Although these provinces are not
neighbors, there isairtravelandethnicaffinity between thepeople of
these provinces. Tehran was weakly correlated with neighboring
Alborz province. One reason for this low correlation may be that
there was a timely alert about the virus in the centers of these
provinces, discouraging intercity traffic. Qom, the center of the
coronavirus outbreak in the country, was strongly correlated with



Figure 7. COVID-19 infected patients per 100,000 population and the cumulative curve in Iran’s provinces.

Figure 8. Relationship between various age groups and sex in active cases.

Figure 9. Relationship between various age groups and sex in death cases.
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Golestan, Guilan, and Mazandaran. These three Northern provinces
have good weather and many tourist attractions. The Ministry of
Transportation reported that there was heavy traffic between Qom
and the northern provinces during the first days of the COVID-19
outbreak in Qom. Sistan-o-Balouchistan, with low infection rates, was
stronglycorrelated (r = 0.76) with itsneighboring province,Kerman. In
conclusion, correlation analysis suggests that distance, tourism
attraction, and ethnic affinity might promote the inter-province
spread of the virus; the role of other factors remains unclear.
Heatmap for coronavirus spread in Iran and other countries

The heat map represents the provinces grouped by similarity
using color intensity (= COVID-19 contamination rate) (Figure 10).
The heatmap shows two critical time intervals for the COVID-19
outbreak in Iran. Similar color patterns from February 19–28
establish the first time-interval, which had low numbers of
diagnosed cases in all provinces. The second interval was in March
when infection aggressively spread to most provinces. The virus



Table 3
Correlation coefficients of the number of coronavirus infection cases among Iran's 31 provinces (days between 19 February to 22 March 2020).

Province 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1-Ardabil 1
2-Isfahan 0.50 1
3-Alborz 0.60 0.65 1
4-Ilam 0.40 0.20 0.25 1
5-East Azerbaijan 0.58 0.59 0.46 0.37 1
6-West Azerbaijan 0.69 0.66 0.49 0.42 0.72 1
7-Bushehr 0.67 0.51 0.65 0.62 0.40 0.55 1
8-Tehran 0.39 0.48 0.46 0.37 0.67 0.53 0.39 1
9-Charmahal-
Bakhtiari

0.49 0.13 0.31 0.47 0.0008 0.21 0.51 0.17 1

10-South-
Khorasan

0.23 0.50 0.41 0.30 0.34 0.38 0.48 0.44 0.40 1

11-Razavi-
Khorasan

0.21 0.52 0.31 0.60 0.64 0.56 0.50 0.44 0.14 0.42 1

12-North-
Khorasan

0.47 0.46 0.23 0.06 0.17 0.50 0.27 0.11 0.12 0.19 �0.007 1

13-Khuzestan 0.66 0.40 0.55 0.55 0.51 0.61 0.73 0.60 0.29 0.38 0.36 0.46 1
14-Zanjan 0.53 0.75 0.68 0.51 0.46 0.54 0.56 0.42 0.27 0.39 0.51 0.35 0.54 1
15-Semnan 0.54 0.81 0.70 0.46 0.58 0.61 0.65 0.59 0.47 0.69 0.51 0.33 0.59 0.77 1
16-Sistan-
Baluchistan

0.34 0.40 0.40 0.33 0.30 0.58 0.56 0.36 0.33 0.27 0.40 0.49 0.57 0.22 0.47 1

17-Fars 0.73 0.51 0.42 0.45 0.63 0.79 0.43 0.54 0.5 0.33 0.44 0.59 0.62 0.46 0.57 0.64 1
18-Ghazvin 0.69 0.71 0.75 0.20 0.37 0.51 0.50 0.45 0.55 0.47 0.23 0.40 0.37 0.68 0.65 0.24 0.58 1
19-Qom 0.005 0.48 0.37 0.25 0.08 0.18 0.26 0.33 0.17 0.15 0.32 0.16 0.14 0.47 0.46 0.53 0.24 0.32 1
20-Kordistan 0.46 0.60 0.46 0.33 0.31 0.34 0.54 0.25 0.37 0.62 0.35 0.65 0.49 0.67 0.66 0.34 0.47 0.58 0.34 1
21-Kerman 0.18 0.52 0.35 0.18 0.50 0.63 0.18 0.43 0.03 0.33 0.42 0.44 0.41 0.32 0.54 0.76 0.63 0.19 0.53 0.29 1
22-Kermanshah 0.57 0.38 0.40 0.54 0.53 0.69 0.45 0.57 0.37 0.34 0.46 0.54 0.77 0.6 0.56 0.6 0.82 0.41 0.30 0.54 0.62 1
23-Kohgiluye-
BoyerAhmad

0.30 0.01 0.31 0.12 �0.03 0.19 0.27 0.23 0.64 0.39 �0.003 0.23 0.37 0.3 0.38 0.25 0.41 0.41 0.10 0.42 0.14 0.55 1

24-Golestan 0.28 0.53 0.45 0.08 0.23 0.39 0.34 0.16 0.26 0.3 0.26 0.52 0.21 0.45 0.54 0.63 0.49 0.42 0.70 0.64 0.62 0.43 0.36 1
25-Guilan 0.47 0.55 0.69 0.10 0.40 0.42 0.42 0.52 0.26 0.07 0.38 0.02 0.31 0.57 0.47 0.33 0.41 0.66 0.56 0.22 0.26 0.37 0.28 0.44 1
26-Lorestan 0.22 0.52 0.51 0.46 0.40 0.34 0.53 0.34 0.43 0.68 0.65 0.07 0.21 0.55 0.68 0.41 0.36 0.44 0.58 0.64 0.42 0.37 0.31 0.66 0.39 1
27-Mazandaran 0.31 0.41 0.23 0.44 0.27 0.34 0.49 0.18 0.46 0.12 0.43 0.25 0.25 0.37 0.56 0.60 0.46 0.20 0.63 0.41 0.43 0.35 0.20 0.69 0.37 0.59 1
28-Markazi 0.64 0.48 0.60 0.21 0.51 0.54 0.45 0.69 0.42 0.37 0.22 0.005 0.4 0.47 0.58 0.16 0.48 0.60 0.23 0.19 0.16 0.37 0.39 0.23 0.69 0.35 0.23 1
29-Hormozgan 0.48 0.41 0.11 0.63 0.25 0.54 0.46 0.22 0.44 0.3 0.29 0.62 0.4 0.35 0.43 0.48 0.63 0.34 0.31 0.49 0.36 0.45 0.07 0.38 �0.006 0.34 0.56 0.14 1
30-Hamadan 0.41 0.49 0.35 0.40 0.47 0.42 0.62 0.53 0.57 0.8 0.49 0.12 0.4 0.34 0.74 0.41 0.44 0.41 0.27 0.57 0.31 0.36 0.38 0.41 0.24 0.74 0.54 0.55 0.41 1
31-Yazd 0.74 0.73 0.76 0.44 0.71 0.71 0.74 0.48 0.22 0.36 0.48 0.43 0.72 0.75 0.8 0.51 0.60 0.54 0.35 0.60 0.50 0.60 0.23 0.57 0.55 0.52 0.55 0.54 0.41 0.50 1
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Figure 10. Heatmap of coronavirus outbreak and classification of Iran’s provinces.
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outbreak was critical in Tehran, Qom, Markazi, and East Azerbaijan
in the third interval. The heatmap divided provinces into several
groups concerning disease rate and days since February 19. Tehran,
Isfahan, and Mazandaran were distinct from many of the other
provinces. Qom, Alborz, and Markazi, three neighbors, were
grouped. The color spectrum of the heatmap shows that March
6th, 10th, and 14th were critical infection days for all provinces.

Other countries with more than 100 infected coronavirus cases
were clustered in the heat map based on nine parameters (Figure
11). The heat map suggested that there are twomultiple-member
groups, and that China and Italy are set off separately. France,
Germany, Iran, Spain, and South Korea constituted a distinct group.
Of the nine coronavirus related parameters, the total recovered and
the number of cases of infection were detected to be separate from
the rest of the parameters.
Figure 11. Heatmap of coronavirus outbreak a
Goodness-of-fit for the relationship between the number of diagnosed
infections and the number of days after the first appearance of
coronavirus

The results of regression models of the relationship between
the number of infected cases and the number of days after the first
virus outbreak in Iran are shown in Figure 12. No single response
curve was significant for all provinces, but the cubic model
represented the highest coefficient of determination (R2) for most
provinces. The number of diagnosed cases in Kohgiluye and Boyer-
Ahmad provinces showed no significant relationship to the day
since the outbreak began. The quadratic model was the best fit for
Bushehr, North Khorasan, Golestan, and Yazd provinces. For the
remaining provinces, cubic was the best model for the relationship
between infections and elapsed time. The highest coefficients of
nd classification of the world's countries.



Figure 12. Test for the best fit of regression models for the number of infected with
coronavirus and days after the first day of infected cases in the 31 Iranian provinces.

Figure 13. Relation of the population of Iran’s provinces with the number of
infected cases with coronavirus.

Table 4
Regression results for Covid-19 death cases in Iran.

Regressor Coefficient Standard error t-statistics probability

Constant �69.762 124.662 �0.537 0.591
t 11.645 1.039 11.208 0.000
t2 �0.210 0.019 �10.952 0.000
t3 0.001 0.0001 10.150 0.000

Adjusted R2 0.999

Q(1)a 1.014 0.314
Q(2)a 1.306 0.520
Jarque Berra 4.382 0.111

a QðpÞ is the significance level of the Ljung–Box statistics in which the first p of the
residual autocorrelations is equal to zero.
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determination (R2) were observed in the regression model fitted
for West Azerbaijan (R2 = 79.3%), and then Semnan, Fars, and Yazd.
In 14 of the 31 provinces, the number of infections slowed down
after several days of outbreak and spread in Iran, but infections
continued to rise in Yazd until March 17. The results showed that
the infection rate was related to population densities in Iran's
provinces. Apart from virus evolution and adaptation, the human
factors of population growth, urbanization, movement and travel,
and vector travel are the most important factors driving virus
outbreaks (Enria et al., 1998; Hu, 2006). The number of people
required for virus circulation in an area is at least 200,000. The
results revealed that the coronavirus outbreak was critical in
Tehran, the country’s most crowded city. Coronaviruses need to
maintain themselves in the population, and larger populations
facilitate the spread of the virus and incidence of disease in
susceptible individuals (Hu, 2006). Infection with coronavirus was
more critical in Iran’s more-populated provinces (i.e., Tehran and
Isfahan). Isfahan is an industrial city with many factories, and
heavy human traffic might assist higher rates of spread around the
urban area. It has been shown that low-income citizens migrating
from the countryside for work have driven disease-spread to high-
density urban areas in African countries (Patel et al., 2019).

The regression models suggested a cubic trend for the
relationship between the province’s population and infections
(Figure 13).

The trends of deaths in Iran

A regression model was used to determine trends in death rates
in Iran (Table 4). The explanatory variables that are exponents of
the lag of days after outbreak explain more than 99% of the
variation in the patterns of deaths. The Ljung–Box Q-statistics
(Table 4) indicated that the residuals are not significantly
correlated. Also, the Jarque-Bera test of normality shows that
residuals are normally distributed. Evaluation of prediction
accuracy (Figure 14) determined that predicted values were, to a
great extent, able to keep pace with the actual values.

The main point is that the deaths are increasing over the
prediction horizon; however, it shows two turning points. Around
mid-April, a turning point is observed. In other words, based on the
data applied to estimate the regression model, the death trend
slowly reveals the turning point. Regarding the global context, for
instance, for the incidence of SARS (Wong, 2008), HAV (Alberts
et al., 2019), ARI (Leonenko et al., 2016), and A (H1N1) v (Flasche
et al., 2011), a turning point is expected to occur, meaning that after
passing the peak, the frequency of deaths should decease. An
emerging, slowly increasing trend simply means that the Iranian
government's measures might have been effective in coping with
the outbreak at that time. However, the slowly increasing trend, on
June 01, tends to reveal a rapidly increasing trend, which may be
considered a second turning point. This fact simply means that the
subsequent measures taken by the Iranian government have not
yet been enough to cope with the outbreak and that there is a need
for more restrictive measures, like widespread quarantine. Note
that the model is more appropriate for investigating the
effectiveness of the Iranian government's measures than predict-
ing the future values of mortality rate. In general, we should see a
decreasing trend; however, the current situation is far from that,
indicating that there has been an inadequate impact of control
measures, and there is a lot of room for improvement.

Comparing global and Iranian death rates

Both the global and Iranian models are presented with a fourth-
degree polynomial specification (Figure 15). For both, deaths are
increasing exponentially, but there is a steeper rate for Iran's
increase of deaths in the beginning. This fact has been examined
more deeply and in a quantitative way, using ARMA time-series
estimation (Table 5).

These models may show the activities of the variables in a specific
time horizon. To ensure comparability, a 116-day time horizon was



Figure 14. Actual deaths cases versus estimated cases.
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used for both. This is the period for which data are available for Iran
(February 19 to June 14). The world model is generated by an AR
(31,2,8) process (Table 5), while the Iranian modeling of the death
trend was obtained with a moving average, resulting in an ARMA (2,
1). However, the absolute value of the AR terms for Iran is higher than
that of the world model, indicating a faster increase. Also, the death
Figure 15. Comparing trends of 
trend is characterized by volatility since a moving average process
(Iran), and autoregressive conditional heteroskedasticity (ARCH)
(World) were calculated. These processes model volatility. Given the
significant coefficients for these variables, the deaths in the world
tend to fluctuate more than those occurring in Iran. This is not easily
captured in the trends (Figure 15).
deaths in Iran to the world.



Table 5
The results of ARMA model for Covid-19 death cases of world and Iran.

Regressor Coefficient Standard error t-statistics probability

World Constant 221.902 25.073 8.85 0.000
AR(1) 1.311 0.003 331.90 0.000
AR(2) �0.268 0.004 �60.67 0.000
AR(8) �0.128 0.002 �51.55 0.000
Resid^2(-1) 2.812 0.261 10.761 0.000

Adjusted R2 0.918

Q(1)a 1.803 0.179
Q(2)a 2.511 0.285
Jarque Berra 8.704 0.012

Iran Constant 5427.451 3119.420 1.73 0.084
AR(1) 1.999 0.018 109.53 0.000
AR(2) �0.999 0.018 �54.75 0.000
MA(2) �0.286 0.090 �3.15 0.002

Adjusted R2 0.996

Q(1)a 1.200 0.273
Q(2)a 1.359 0.507
Jarque Berra 1.226 0.120

a QðpÞ is the significance level of the Ljung–Box statistics in which the first p of the
residual autocorrelations is equal to zero.

Table 6
Confusion matrix of the random forest model (On March 11th, 2020).

0 (No) 1 (Yes) Class error

0 (No) 4312 951 0.181
1 (Yes) 1274 3989 0.242
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The diagnostic statistics indicate that the models are acceptable
since Q-statistics indicate that the residuals are not significantly
correlated. The Jarque Berra statistic supports the normality of
residuals at a conventional significance level for Iran's specifica-
tion. However, for World specifications, residuals are not normally
distributed, thus, one needs to exercise caution. All coefficients are
significant at 99 percent.

Relative importance of variables using LASSO MLT

As stated in the methods section, the LASSO MLT was used to
determine the relative importance of the variables and to
determine the impact of each factor on the COVID-19 outbreak
in Iran (Figure 16). The most important variables were the
distances from bus stations, bakeshop, hospitals, mosques, ATMs,
and banks, and MTCM. On the other hand, the outbreak was least
related to the village’s density, PWM, and PDM.
Figure 16. Relative importance of variables in outbreak trend of using the LASSO MLT.
COVID-19 risk mapping using the RF MLT

In the current study, the RF MLT was used for spatial modeling
and mapping COVID-19 in Iran twice, on March 11 and March 18. To
run the RF, the tree and variables numbers were set on 1000 and 4,
respectively. The results of the confusion matrix (Table 6) indicate
the classification model’s performance. In total, 5263 active cases
were predicted as classes of coronavirus. Among that set, almost
4940 cases were predicted in the correct class, whereas 323 cases
were predicted in the wrong class. The value of OOB as an error rate
was 21.14%, meaning that the accuracy of the training dataset (the
modeling process) is 78.86%. Finally, the COVID-19 risk map (Figure
17 (a–b)) on March 11 was prepared and divided into four classes
according to the natural break method. The visual interpretation
shows that the provinces of Tehran, Qom, Alborz, Mazandaran, and
Guilan, are classified as high risk of coronavirus (COVID-19). In
Figure 17. COVID-19 risk map of active cases in Iran ; a) On March 11, and b) On
March 18.



Figure 18. The ROC curve of RF MLT for mapping risk of COVID-19; a) On March 11, and b) On March 18.

Table 7
The AUC value of COVID-19 risk maps using RF MLT.

AUC values Standard
Error

Asymptotic Significant Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

March 11th 0.866 0.005 0.000 0.856 0.877
March 17th 0.836 0.004 0.000 0.829 0.844
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contrast, Sistan-o-Balochistan, Hormozgan, Bushehr, Kerman, and
South Khorasan are all low-risk provinces.

The classification risk map on March 18 shows an increasing
trend in the outbreak of COVID-19 in Iran after a week. Also, our
analysis (Figure 16) indicates that, in addition to Tehran, Alborz,
Qom, Mazandaran, and Guilan, the provinces of Qazvin, Markazi,
Golestan, Ardabil, Isfahan, East Azerbaijan, and parts of provinces
of Khorasan Razavi, Semnan, and Lorestan are also high-risk
regions. This suggests that the COVID-19 outbreak is increasing
every day, and therefore it is important to consider some different
tactics, particularly quarantines, to control and manage the virus.
At the moment (March 17), parts of southern and southwestern
Iran are safer than other regions. So, risk mapping can be
introduced as an important tool in assessing the speed of
pandemic trends for each country. There are too many machine
learning and expert-based techniques for this purpose, so we
have suggested a model, namely the RF in this study. A boosted
regression tree (BRT) was used for the spread mapping of Avian
influenza A (H7N9) in China. For this aim, some environmental,
agro-ecological, and meteorological factors are applied, and the
model's ability to be measured using the ROC curve (Fang et al.,
2013). In this line, spatial risk maps were prepared for monitoring
and a trend analysis of influenza A H5N1 and H7N9 in China. For
this research, a MaxEnt (Maximum Entropy) model was applied
using several environmental factors and its results were validated
by ROC curve (Bui et al., 2017). Currently a WEB GIS-based
approach is a common tool for mapping various epidemic
outbreaks. One of these applications was mapping dengue
outbreaks in the tropical and sub-tropical areas including, the
Lahore district. Results of mapping using climate, land use/ land
cover, NDVI (Normalized Difference Vegetation Index), and
population density showed that the most important factor for
this disease was population density (Butt et al., 2020). Concerning
COVID-19, John Hopkins University is pioneered mapping daily
reports of active cases and deaths (https://coronavirus.jhu.edu/
map.html). This site is known as a coronavirus resource center
and can be effective for other countries to simulate and estimate
COVID-19 outbreaks using various machine learning techniques
by creating a risk mapping. This map is a robust information tool
for managers, prime ministries, and governments to decrease
socioeconomic effects, as well as deaths in each country, and it
can provide situational awareness to improve responses to the
pandemic.

Validation of the RF MLT

The validation of the COVID-19 risk maps (Figure 18 and
Table 7) shows that the accuracy of these maps for March 11 and
March 17 is 0.866 and 0.836, with standard errors of 0.005 and
0.004, respectively. Hence, according to the ROC-AUC categoriza-
tion (Yesilnacar, 2005), the maps can be considered very good
(0.8�0.9).

Conclusions

Coronavirus disease 2019 (COVID-19) represents a continuing
pandemic threat and has spread globally. It is crucial to investigate
the spatial drivers to prevent and control this epidemic. An RF MLT
with 16 independent variables was used to model and map the risk
of COVID-19. The LASSO algorithm determined the relative

https://coronavirus.jhu.edu/map.html
https://coronavirus.jhu.edu/map.html
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importance of each of these 16 variables. The GR of active cases,
deaths, and correlations between them, age cohorts, and sexes
were considered. Some comparisons were made of the death rates
in Iran with 18 other countries. Finally, a non-linear regression
model was used to evaluate the general trend of daily deaths. The
estimation equation shows how a variable would behave if the
current management protocols are continued. Comparing the
general trends of Iran and the world revealed that the death trends
are similar, but the world's trend shows significant volatility. The
greater volatility for the world suggests that some countries are
experiencing coronavirus death volatility with a different severity
than that experienced in Iran. The main policy implication is that
deaths, to some extent, may be limited by using more effective
management measures. These measures may be more important
and more effective, particularly when the early-experiencing
countries' measures are taken into consideration. We speculate
that the risk map and analyses provided in this study imply that
this analysis may be the first and most important step in the future
management and control of COVID-19 in Iran and in its provinces.
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