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BACKGROUND: The naturally occurring amino acid 5-aminolevulinic acid (5-ALA) is a precursor of protoporphyrin IX (PpIX)
biosynthesised in the mitochondria. When accumulated PpIX is excited by light (wavelength of 625–635 nm), reactive oxygen
species (ROS) are generated. Here, we investigated whether 5-ALA may increase the sensitisation of prostate cancer (PCA) cells to
radiotherapy through the generation of ROS via its metabolite, PpIX.
METHODS: Effect of 5-ALA on PC-3 and DU-145 PCA cell lines treated with ionising radiation (IR) was examined in vitro and in vivo
with assessment by clonogenic assay, mitochondrial function and ROS production under normoxia or hypoxia condition.
RESULTS: 5-ALA enhanced intra-mitochondrial ROS production immediately after exposure to IR and decreased mitochondrial
membrane potential via increase of intra-cellular PpIX. IR with 5-ALA induced mitochondrial dysfunction and increased ATP
production, switching energy metabolism to the quiescence. Under hypoxic condition, ROS burst and mitochondrial dysfunction
were induced by IR with 5-ALA resulting reducing cancer stemness and radiation resistance.
CONCLUSION: These results suggest that combined therapy with 5-ALA and radiation therapy is a novel strategy to improve the
anti-cancer effects of radiation therapy for PCA.

British Journal of Cancer (2022) 127:350–363; https://doi.org/10.1038/s41416-022-01789-4

INTRODUCTION
Prostate cancer (PCA) is the most common cancer in men. The
estimated lifetime risk is 13%, in which the mortality is 20% [1, 2].
Radiation therapy (RT) is a curative primary treatment for patients
with localised PCA [3, 4]; however, 5.3–12.6% of patients with
high-risk PCA after primary RT and 50% of patients after salvage
RT experienced biochemical recurrence [5–7].
Ionising radiation (IR) induces cancer death in two different

mechanisms: a direct effect by DNA damage and an indirect anti-
tumour effect by generating reactive oxygen species (ROS), which
mainly comprise hydroxyl radicals, through water radiolysis
reaction with oxygen. Radiation-induced ROS destabilise cancer
cell integrity and DNA damage [8]. The levels of ROS and the
adaptive antioxidant defense system are associated with resis-
tance to RT for PCA [9].
Hypoxia has been defined as one of the most important causes

of RT resistance via several mechanisms. Devascularisation reduces
ROS production [10, 11]. Hypoxia-inducible factor-1 (HIF-1) reduces
ROS production under by reprogramming of mitochondrial energy
metabolism [12, 13]. Moreover, hypoxic conditions induce cancer

stem cells (CSCs), which have been defined as critical drivers of
tumour progression and metastasis [14, 15].
Several sensitisers of RT to overcome hypoxia-induced RT

resistance by enhancing intra-mitochondrial ROS have been demon-
strated [16–18]. The naturally occurring amino acid 5-aminolevulinic
acid (5-ALA), a precursor of haem biosynthesis, is synthesised from
succinyl coenzyme A and glycine. Exogenously administered 5-ALA
can be enzymatically converted into protoporphyrin IX (PpIX) in
mitochondria via the haem biosynthetic pathway. 5-ALA has been
used as a photosensitiser in photodynamic therapy (ALA-PDT) [8]. The
possibility that accumulated PpIX may enhance radiosensitivity has
been pointed out for a long time, and it has been suggested that it
may develop anti-tumour effects through activation of peripheral
benzodiazepine receptors and generation of hydroxyl radicals [19, 20].
In the present study, we prompted to establish a novel strategy

using 5-ALA to sensitise PCA cells to RT. For this, we performed
targeting mitochondrial dysfunction by induction of mitochondrial
ROS by ALA-PDT. We also investigated the mechanism of RT
resistance induced by hypoxia focusing the metabolic response to
hypoxia for establishing a method overcoming hypoxia-induced RT.
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MATERIALS AND METHODS
Cells
PC-3 and DU-145 human PCA cell lines and MyC-CaP mouse PCA cell line
were purchased from American Type Culture Center (Manassas, VA, USA).
Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM),
supplemented with 10% fetal bovine serum and 2% penicillin/streptomy-
cin at 37 °C, 5% CO2 conditions.

Cell treatment
Cells were pre-treated with 1mM 5-ALA (a gift from SBI Pharmaceuticals
Co., Ltd. (Tokyo, Japan) for 4 h, followed by treatment with X-ray IR using
150 kVp X-ray generator (Model MBR-1520R; Hitachi, Tokyo, Japan) as
previously described [21].

Reagents
Cobalt (II) chloride (CoCl2) and ammonium iron (II) sulfate hexahydrate (Fe2+)
(FUJIFILM Wako Pure Chemical, Osaka, Japan), N-acetyl-L-cysteine (NAC,
Sigma–Aldrich (St. Louis, MO) and deferoxamine (DFO, Cayman Chemical,
Ann Arbor, MI, USA) were purchased.

Accumulated intra-cellular PpIX quantification
The accumulated intra-cellular PpIX in 5-ALA-treated cells was quantified
using a microplate spectrophotometer (Infinite 200 M PRO, Tecan,
Männedorf, Switzerland) equipped with i-control (version 1.8) software,
as described previously [22]. The fluorescence intensity at 635 nm was
measured using an excitation wave (400 nm) as accumulated PpIX. PpIX
fluorescence image was observed by BZ-X710 (KEYENCE, Osaka, Japan).

Clonogenic assay
Colony survival was assessed using clonogenic assay to quantify cell
survival after treatment according to our previous report [22]. Colonies
containing more than 50 cells were counted as viable.

Mitochondrial ROS and membrane potential measurement
To analyse mitochondrial ROS production and mitochondrial membrane
potential (MMP) after treatment, MitoSOX (mitochondrial superoxide,
Thermo Fisher Scientific, Waltham, MA, USA) and Si-DMA (mitochondrial
singlet oxygen, DOJINDO, Kumamoto, Japan) were used. JC-1 assay
(Cayman Chemical, Ann Arbor, MI, USA) was performed to determine MMP.
The images fluorescence intensities were analysed by BZ-X710 (KEYENCE)
at 1, 6 and 12 h after treatment.

Apoptosis assay
Apoptotic cells were evaluated using MEBCYTO Apoptosis Kit (MBL,
Nagoya, Japan) according to the annexin-based manufacturer’s protocol.
Apoptotic cells were analysed immediately using a FACSCaliburTM flow
cytometer (Becton-Dickinson, Franklin Lakes, NJ, USA).

Seahorse assay
To analyse mitochondrial respiration and ATP production, an Extracellular
Flux Analyzer XFp (Agilent Technologies, Santa Clara, CA, USA) was used.
Assay was performed according to our previous report [23].

Immunoblot analysis
Whole-cell protein was extracted from the cells 24 h after treatment using
the assay buffer with protease inhibitor cocktail (Nacalai Tesque, Kyoto,
Japan). The extracted proteins (20–40 µg) were subjected to immunoblot
analysis according to our previous report [24]. Primary antibodies (1/1000)
used for detecting were as follows: against B-cell lymphoma 2 (BCL-2)-
associated X protein (BAX), BCL-2 (D55G8) and Glut1 (D3J3A)(Cell Signaling
Technology, Danvers, MA, USA); BCL-2-associated agonist of cell death
(BAD, C-2), BCL extra-large (BcL-xL, H-5) and β-actin (AC-15) (Santa Cruz
Biotechnology, Dallas, CA, USA); HIF-1 alpha (EP1215Y) (Abcam,
Cambridge, UK).

Tumour-bearing syngeneic mouse model
This animal study was approved by the Committee on Animal Research of
Nara Medical University (approval no. 12733, 2020/1/17). All animal
experiments were conducted in accordance with the Guidelines for
Welfare of Animals in Experimental Neoplasia. FVB/NJcl mice (5 week old,

male, CLEA Japan Tokyo, Japan) were used. For a subcutaneous tumour
model, syngeneic MyC-CaP cells (1 × 105) in matrigel (BD Bioscience, San
Jose, USA) were inoculated into the pelvic subcutaneous.
Treatments were initiated at day 14 when tumours reached 1000mm3.

Mice were divided into four groups (six mice each): normal control, 5-ALA
alone, IR alone and IR with 5-ALA. Mice were administered 2 Gy/fraction (1
Gy/min) for 10 days under body protection using a lead collimator. In the
IR with 5-ALA group, 5-ALA (30mg/kg) was administered orally 3 h before
irradiation in the dark phase to avoid PDT. Tumour volumes were
calculated using the standard formula: 0.52 × (long diameter) × (short
diameter) × 2. Mice were euthanised at 4 h (①) (n= 3) and day 7 (②) (n= 3)
after treatment.

Immunohistochemistry
Tumours excised at 4 h were fixed in 4% paraformaldehyde for 24 h and
paraffin-embedded. Consecutive sections were processed for immunohis-
tochemical analysis of primary antibodies (1/100) as follows: Ki-67 (SP6,
Abcam), hydroxynonenal (4HNE, Abcam) and cleaved-caspase-3 (Cell
Signaling). Positive cells were counted in five high-power fields of three
sections from each group.

Hypoxic conditions
To establish hypoxic conditions at varying oxygen tensions, we used
BIONIX-1 hypoxic culture kit (Sugiyamagen, Tokyo, Japan). CoCl2 was used
to mimic some hypoxic responses, including upregulation of HIF-1 [25].

Reverse transcription-polymerase chain reaction (RT-PCR)
RT-PCR was performed according to our previous report [26]. The primer
sets are listed in Supplementary Table 1. The thermocycler settings were
25 cycles of 96, 64 and 72 °C/30 s, followed by 72 °C/10min.

Sphere formation assay
To perform sphere formation assay, single cells collected immediately after
different treatments were cultured according to our previous report [27].

Detection of intra-mitochondrial Fe2+ under hypoxic
conditions
To detect the accumulation of Fe2+ in mitochondria, Mito-FerroGreen
(Doujindo, Kumamoto, Japan) was used according to the manufacturer’s
protocol. Fluorescence images were captured using BZ-X710 (KEYENCE).

Statistical analysis
Statistically significant differences were analysed using two-tailed Stu-
dent’s t-test or one-way analysis of variance using GraphPad Prism 7.00
(GraphPad Software, San Diego, CA, USA). A p-value of <0.05 was
considered to indicate statistical significance.

RESULTS
Effect of 5-ALA on PpIX accumulation in PCA cells
Intra-cellular accumulation of PpIX in PCA cells was measured
using a microplate spectrophotometer. The peak fluorescence
intensity of PpIX with an excitation wavelength of 400 nm was
observed at 635 nm. Intra-cellular accumulation of PpIX in PC-3
and DU-145 cells was observed after treatment with 5-ALA (1 mM,
4 h) (Fig. S1A). To determine whether PpIX localised in mitochon-
dria, cells labeled with a mitochondrial dye, MitoGreen (PromoCell,
Heidelberg, Germany), with or without 5-ALA treatment, were
imaged by fluorescence microscopy. As shown in Fig. S1B, 5-ALA
led to the biosynthesis of PpIX in mitochondria of PCA cells.

Effect of 5-ALA on the sensitivity of PCA cells to RT
To evaluate the effect of 5-ALA as a radiosensitiser of castration-
resistant PCA cells, survival of cells after different treatments was
evaluated using clonogenic assay. As shown in Fig. 1a, treatment
with 5-ALA led to a reduction in colony survival after exposure to
IR compared with IR alone in PC-3 and DU-145 cells. Furthermore,
the apoptosis-inducing effect of 5-ALA was evaluated using
annexin V-FITC and PI staining by flow cytometry, and 5-ALA was
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Fig. 1 Effect of 5-ALA on the sensitivity of PCA cells to RT. a Effect of pre-treatment with 5-ALA (1mM) for 4 h on sensitivity to ionising
radiation (IR) was examined by clonogenic assay in PC-3 and DU-145 cells. b Cell apoptosis analysed by flow cytometry after different
treatments. c Colony survival after different treatments including pre-treatment with ROS inhibitor, NAC (500 μM) for 24 h. Dose of IR: 3 Gy.
Statistical analysis; by Student’s t-test (mean ± SEM, n= 3).
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found to increase the apoptotic rates 24 h after exposure to IR
compared with IR alone (5-ALA+ IR vs. IR alone, 30.1 ± 1.2% vs.
5.1 ± 0.2% and 28.2 ± 1.5% vs. 8.8 ± 0.2% in PC-3 and DU-145 cells,
respectively) (Fig. 1b). Most importantly, as shown in Fig. 1c, the
reductions in survival of PC-3 and DU-145 cells treated with 5-ALA
was recovered by pre-treatment with the ROS inhibitor NAC (500
μM), suggesting that the main mechanism of 5-ALA-mediated
radiosensitisation may be attributed to ROS production.

Effect of 5-ALA on intra-cellular mitochondrial ROS production
and MMP
MitoSOXTM Red mitochondrial superoxide indicator was used and
JC-1 staining was performed for real-time monitoring of intra-
mitochondrial ROS production and MMP. The peak fluorescence
intensity of mitochondrial ROS was observed 12 h after exposure
to IR alone. In contrast, IR with 5-ALA treatment exhibited intra-
mitochondrial ROS burst immediately after exposure to IR, and the
peak fluorescence intensity continued to 6 h after treatment. The
level of mitochondrial ROS in the IR with 5-ALA group during 1–6
h after treatment was significantly higher among all groups in PC-
3 (Fig. 2a, c) and DU-145 (Fig. S2A, C) cells. It has been
demonstrated that the loss of MMP occurs during the induction
of apoptosis [28]. The green monomer of JC-1 could enter the
cytoplasm and aggregate in normal mitochondria, with the
formation of numerous red J-aggregates, and the fluorescence
transition from red to green suggested the loss of MMP and thus
significant mitochondrial damage. Representative merged photo-
graphs of J-aggregates (green) and J-monomers (red) are shown
in Fig. 2b and Fig. S2B. IR with 5-ALA treatment significantly
decreased MMP (red/green fluorescence intensity) among all
groups along with increased intra-mitochondrial ROS production
during 1–6 h after treatment in PC-3 (Fig. 2b, d) and DU-145
(Fig. S2B, D) cells, suggesting that mitochondrial ROS burst
induced by IR with 5-ALA treatment caused a reduction in MMP,
which promoted apoptosis.

Effect of combined treatment of RT with 5-ALA on
mitochondrial function
Mitochondrial dysfunction plays a key role in the induction of
apoptosis. Several studies have demonstrated that increased
mitochondrial ROS exhibits a suppressive effect on mitochondrial
function, eventually inducing apoptosis and developing sensitivity
to RT in cancer cells [16, 17]. To evaluate the effect of IR with
5-ALA treatment on mitochondrial metabolic function, we
investigated the mitochondrial OCR value in different respiratory
states after each treatment using Extracellular Flux Analyzer XFp.
OCR of PC-3 and DU-145 cells in the IR alone group exhibited
opposite effects (Fig. 3a, b); OCR of PC-3 cells was increased by IR
alone, but OCR of DU-145 cells was decreased. This result might be
affected by the nature of the PCA cell lines. Jayakumar S et al.
demonstrated that the level of ROS inducible by IR in DU-145 cells
was lower than that in PC-3 cells, and it was one of the major
mechanisms of RT resistance in DU-145 cells [29]. In contrast, OCR
of the IR with 5-ALA group was significantly decreased among all
groups in both PC-3 and DU-145 cells. In particular, this effect was
remarkable in PC-3 cells (Fig. 3a, b). IR with 5-ALA treatment led to
a significant reduction in the basal and maximal OCR and ATP
production in PC-3 and DU-145 cells among all groups (Fig. 3c, d).
These results indicated that intra-mitochondrial ROS burst induced
by IR with 5-ALA caused a reduction in ATP production and shifted
the mitochondrial energy metabolism from oxidative phosphor-
ylation (OXPHOS) status to the quiescent status.

Effect of combined treatment of RT with 5-ALA on expression
of apoptosis-related proteins
Next, the expression of mitochondria-mediated apoptotic signal
proteins was evaluated using immunoblotting. BCL-2 family
protein regulates the outer MMP and mitochondria-mediated

apoptosis. As shown in Fig. 3e, the expression level of the pro-
apoptotic BAX and BAD increased 24 h after treatment with IR and
5-ALA. Conversely, the expressions of anti-apoptotic BCL-2 and
BcL-xL were significantly inhibited.

Effect of combined treatment of RT with 5-ALA in
subcutaneous tumour-bearing syngeneic mouse model
The treatment protocol to evaluate the therapeutic effect in vivo is
shown in Fig. 4a. A MyC-CaP tumour-bearing syngeneic mouse
model was used to evaluate the anti-tumour effect of IR with
5-ALA compared with IR alone in vivo. MyC-CaP cells (1 × 105 cells
per mouse) were injected into the subcutaneous tissue at the
pelvic area of the male FVB/NJcl mice. Mice were randomly
divided into four different groups: normal control, 5-ALA alone, IR
alone and IR with 5-ALA. The 5-ALA alone group showed no anti-
tumour effect (Fig. 4b, c). IR prevented tumour growth, and the
reduction rate was ~50% compared with the normal control and
5-ALA alone groups. Moreover, the therapeutic effect of IR was
further enhanced by the addition of orally administered 5-ALA.
However, it did not eliminate the tumour. Further, 4 h after
treatment, three of the six mice were euthanised (①) and tumour
tissues were excised (Fig. 4d, e). Immunohistochemical analysis of
Ki-67, 4HNE and cleaved-caspase-3 was performed to investigate
tumour proliferation, ROS production and apoptosis in the
different groups. The number of Ki-67-positive cells was sig-
nificantly decreased in the IR with 5-ALA group. To evaluate ROS
production in vivo, 4HNE immunohistochemical analysis, a
commonly used marker for oxidative stress, was used. The
expression of 4HNE was dramatically increased in the IR with
5-ALA group. Moreover, cleaved-caspase-3, an apoptosis marker
that plays a key role in apoptotic cell death, was activated by
treatment with IR and 5-ALA compared with IR alone. These results
suggested that increased ROS production after IR was enhanced
by the addition of orally administered 5-ALA to cause apoptotic
cell death in vivo.

Effect of combined treatment of RT with 5-ALA on hypoxia-
induced radiation resistance
Hypoxia is a common feature of solid tumours [30] and is one of
the most important causes of radiation resistance in PCA cells [31].
We investigated whether 5-ALA exerted an additional therapeutic
effect on RT for PCA cells under hypoxic conditions. We produced
hypoxia-mimicking conditions using CoCl2 at a concentration of
100 μM before and after treatment for 24 h to avoid reoxygena-
tion during treatment. Clonogenic assay demonstrated that the
reduction in cell survival in the IR alone group was significantly
lower under CoCl2-treated conditions than under normoxic
conditions. Conversely, similar to normoxic conditions, 5-ALA
enhanced radiosensitivity under CoCl2-treated conditions in PC-3
and DU-145 cells (Fig. 5a). Moreover, as expected, we demon-
strated that enhanced radiosensitivity by 5-ALA was inhibited by
pre-treatment with the ROS inhibitor NAC (500 μM). These results
indicated that 5-ALA exerted a therapeutic effect of enhancing
radiosensitivity under hypoxic conditions by enhancing ROS
production.
Next, we investigated whether IR with 5-ALA could induce

mitochondrial damage caused by intra-mitochondrial ROS burst
under hypoxic conditions, similar to the results of normoxic
conditions. An intrinsic feature of hypoxia is the lack of oxygen,
resulting in less ROS production by IR [11, 18]. First, we
investigated mitochondrial ROS production after RT (Fig. 5b). As
shown previously, with respect to IR alone, the peak fluorescence
intensity of mitochondrial ROS was observed at 12 h after
exposure to IR. The peak fluorescence intensity after IR was
significantly lower under the hypoxia conditions (CoCl2 and 1%
O2) than under normoxic conditions. Conversely, it was interesting
to observe that 5-ALA could sustain higher mitochondrial ROS
production at 12 h after exposure to IR under hypoxia conditions
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(CoCl2 and 1% O2) than under normoxic conditions. Next, we
evaluated the production of singlet oxygen, which is the main ROS
produced by ALA-PDT, in mitochondria. Although mitochondrial
singlet oxygen production was observed 1 h after exposure to IR
with 5-ALA, it could not be detected at 12 h (Fig. S3A, B).
Therefore, higher levels of mitochondrial ROS induced by IR with

5-ALA under hypoxic conditions comprised mitochondrial super-
oxide. Next, we compared MMP after IR between normoxic and
hypoxia conditions (CoCl2 and 1% O2) using the MitoProbe TM JC-1
assay (Fig. 5c). Reflecting the reduction of mitochondrial ROS
production, MMP after IR alone was significantly higher under
hypoxia conditions (CoCl2 and 1% O2) than under normoxic
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conditions. Conversely, 5-ALA retained lower MMP levels under
hypoxia conditions (CoCl2 and 1% O2) 12 h after exposure to IR.

Effect of combined treatment of RT with 5-ALA on hypoxia-
induced glycolysis
The concept of tumour metabolism is characterised by the
Warburg effect, which is attributed to the unique metabolism of
cancer cells that shifts the ATP production from OXPHOS to
glycolysis, even under normoxic as well as hypoxic conditions [32].
Under hypoxic conditions, HIF-1-mediated metabolic reprogram-
ing, especially the increased expression of glycolytic enzymes,
including glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and
pyruvate dehydrogenase kinase 1 (PDK1), has been associated
with antioxidant capacity and RT resistance [12, 33, 34]. To
evaluate mitochondria-mediated metabolism after treatment
under hypoxic conditions, we first investigated the expressions
of HIF-1α, GLUT1, HK2 and PDK1. Western blotting demonstrated
that the expressions of HIF-1α and GLUT1 were higher under
hypoxic (1% O2 and CoCl2 treatment) conditions than under
normoxic conditions (Fig. 6a). These upregulated protein levels
were markedly decreased by IR treatment with 5-ALA. Similar to
the results of western blotting, RT-PCR demonstrated that the
upregulated expressions of mRNAs of HIF-1α and glycolytic
enzymes, including GLUT1, HK2 and PDK1, were significantly
inhibited by IR treatment with 5-ALA under hypoxic conditions
(Fig. 6b). Next, to evaluate mitochondrial energy metabolism
under hypoxia and the mechanism of the downregulated
expression of glycolytic enzymes after treatment with IR and 5-
ALA, we investigated mitochondrial ATP production, OCR and
extracellular acidification rate (ECAR), which represents glycolysis,
using Extracellular Flux Analyzer XFp. As shown in Fig. 6c, hypoxic
conditions led to the reduction of OCR and ATP production.
Moreover, IR with 5-ALA led to a dramatic reduction in OCR and
ATP production (Fig. 6d). The changes in mitochondrial energy
metabolism phenotype after different treatments from normoxic
to CoCl2-treated conditions are shown in Fig. 6e. Although OCR
under CoCl2-treated conditions was significantly lower than that
under normoxic conditions, there were no significant differences
in ECAR of normal control and IR alone groups between CoCl2-
treated and normoxic conditions (Fig. 6f, g). These findings
indicated that hypoxic conditions switched the mitochondria-
mediated tumour metabolism to glycolysis due to the Warburg
effect. In contrast, IR with 5-ALA led to the downregulation of both
OCR and ECAR (Fig. 6f, g), demonstrating that mitochondrial
metabolism was switched to the quiescent stage by treatment
with IR and 5-ALA.

Effect of combined treatment of RT with 5-ALA on hypoxia-
induced cancer stemness
Hypoxia and hypoxia-mediated glycolysis enhance CSC repro-
graming [35]. CSCs are regarded as major contributors to RT
resistance [36]. We examined whether hypoxic conditions caused
cancer stemness in PCA cells and whether IR and 5-ALA treatment
could inhibit hypoxia-induced cancer stemness through the
inhibition of hypoxia-induced glycolysis. We first measured the
gene expression of cancer stemness-related factors, including
CD44, CD133 and SOX2, which are major stemness markers of PCA
[37, 38]. As shown in the RT-PCR data in Fig. 7a, the expression
levels of CD44, CD133 and SOX2 under hypoxic conditions were
significantly higher than those under normoxic conditions in PC-3
cells. Further, the expression levels of CD133 and SOX2 under
hypoxic conditions were significantly higher than those under
normoxic conditions in DU-145 cells. Most importantly, the
upregulation of cancer stemness markers induced under hypoxic
conditions was inhibited by IR with 5-ALA treatment. Subse-
quently, we performed a sphere formation assay and observed a
significant reduction in sphere number and diameter in both PC-3
and DU-145 cells treated with IR and 5-ALA (Fig. 7b). Collectively,

these findings suggest that IR with 5-ALA has the potential to
inhibit hypoxia-induced cancer stemness through the inhibition of
glycolysis.

Effect of accumulated Fe2+ under hypoxia on efficiency of
combined treatment of RT with 5-ALA
We demonstrated that exposure to hypoxic conditions (1% O2 or
CoCl2 treatment) for 24 h induced the accumulation of Fe2+ in
mitochondria (Fig. S4A). We hypothesise that the mechanism of
the remain higher level of intra-mitochondrial ROS induced by IR
with 5-ALA under hypoxic condition was associated with the intra-
mitochondrial Fe2+ accumulation induced by hypoxia. To
determine the correlation between intra-mitochondrial Fe2+ and
the higher levels of ROS induced by IR with 5-ALA, we evaluated
mitochondrial ROS production, MMP, and the therapeutic effect in
normal culture medium and under Fe2+ (100 μM), CoCl2 and CoCl2
with iron chelator (DFO, 100 μM) conditions. First, we evaluated
intra-mitochondrial ROS production 12 h after exposure to IR
(Fig. S4B). Although fluorescence intensity after IR alone was
significantly lower under CoCl2 than under normal conditions,
there were no significant differences in fluorescence intensity
between the normal and Fe2+ conditions. In contrast, fluorescence
intensity after IR with 5-ALA treatment was significantly higher
under Fe2+ and CoCl2 conditions than under normal conditions.
Moreover, higher levels of ROS production under CoCl2 conditions
were inhibited by DFO. Next, we evaluated MMP at 12 h after IR
treatment under different conditions (Fig. S4C). IR with 5-ALA
significantly decreased MMP simultaneously with increased intra-
mitochondrial ROS production under Fe2+ and CoCl2 conditions
than under normal conditions. The reduction of MMP under CoCl2
conditions was also inhibited by DFO. Moreover, as shown in
Fig. S5, the additional therapeutic effect of 5-ALA under CoCl2
conditions was inhibited by DFO. These results indicated that Fe2+

could enhance the additional therapeutic effect of 5-ALA in RT for
PCA through the activation of intra-mitochondrial ROS production.
Thus, under hypoxic conditions, increased advantages of RT
combined with 5-ALA could be obtained by Fe2+ accumulation in
mitochondria.

DISCUSSION
RT is one of the primary treatment approaches for PCA. In the
present study, our therapeutic strategy focused on enhancing
mitochondrial ROS production, which plays a key role in the
therapeutic efficacy of RT. We demonstrated that 5-ALA could be a
radiosensitiser in PCA cells through increased intra-mitochondrial
ROS production. ROS burst in mitochondria induced the loss of
MMP and ATP production, resulting in mitochondria-mediated
apoptosis.
5-ALA is widely applied to PDT by ROS generation via PpIX in

mitochondria [8]. ALA-PDT has been approved for the treatment
of superficial malignancy in skin, oesophageal and lung cancer
[39]. However, the application of ALA-PDT for PCA is anatomically
difficult [40]. In the present study, we evaluated the therapeutic
potential of 5-ALA as a radiosensitiser for PCA. We demonstrated
the accumulation of PpIX in PCA cells by 5-ALA treatment
(Supplementary Fig. 1). We already demonstrated the accumula-
tion of PpIX in urine sediments of PCA patients treated with 5-ALA
[41]. In view of safety of patients, it is important that the excessive
accumulation of PpIX in mitochondria is tumour-specific because
ferrochelatase is inactive in tumour cells owing to the lack of
electron supply from the tricarboxylic acid cycle due to the
Warburg effect. Thus, normal tissues are protected from ALA
damage [21].
In this study, it was shown that ALA-PDT mainly produced

singlet oxygen [8, 42], whereas ALA-IR produced and maintained
superoxide. In PDT, after 5-ALA administration PpIX accumulated
in mitochondria is excited with a peak wavelength of 630–635 nm
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[43]. In contrast, the overproduction of ROS by X-ray IR at different
wavelengths may be different from the mechanism of ALA-PDT.
The generation of singlet oxygen by ALA-PDT induces necroptosis
via RIP-3 [44]. In contrast, our observations showed that the effect

of ALA-IR is increased in hypoxia, which is accompanied by an
increase in intra-cellular Fe2+. Furthermore, the cytotoxic effect of
IR was enhanced by Fe2+ loading, which was further enhanced by
the combination of 5-ALA with IR. IR-activated Fe2+ induces
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Fenton reaction, which leads to superoxide formation and induces
ferroptosis [45, 46]. It has been reported that 5-ALA induces
ferroptosis in oesophageal cancer [47]. These findings suggest
that 5-ALA-induced intra-cellular PpIX accumulation may promote
IR-induced Fe2+-mediated superoxide production, resulting in
ferroptosis. The mechanism of cytotoxicity induced by 5-ALA+ IR
is different from that induced by 5-ALA-PDT and needs to be
investigated in more detail.
Mitochondria are the major site for ROS production and have

been well-recognised as a treatment target for apoptosis [16, 48].
Although ROS production induced by IR mainly includes produc-
tion of hydroxyl radicals, IR increased intra-mitochondrial ROS
level through the upregulation of mitochondria electron transport
chain and mitochondrial volume [49]. Our data showed that a
peak level of intra-mitochondrial ROS was observed at 12 h after IR
in the IR alone group. However, in the IR with 5-ALA group,
dramatic increase in intra-mitochondrial ROS production was
observed immediately after IR. Moreover, 5-ALA significantly
decreased MMP and ATP production after IR. The decreased
MMP and ATP synthesis led to further ROS production [50].
Moreover, intra-mitochondrial ROS burst and the loss of MMP
triggered BAX translocation to mitochondria and downregulated
BCL-2/BcL-xL. BAX decreases the permeability of the outer
membrane, resulting in sensitivity to voltage-dependent anion
channel deficiency and release of cytochrome C [50, 51]. Our
findings suggest that IR with 5-ALA treatment caused the decrease
of MMP and ATP production by ROS burst in mitochondria,
upregulating BAX and downregulating BCL-2/BcL-xL, resulting in
mitochondria-dependent apoptosis.
Hypoxia is characteristic in many solid tumours and the

important risk factor of disease progression and recurrence after
RT. In patients with PCA treated with RT, hypoxia is an
independent predictor of biochemical and local recurrence [52].
Under hypoxic conditions, HIF-1 accelerates glycolysis and
biogenesis of antioxidant agents [34]. Activation of HIF-1 and
glycolysis induces CSCs, which contribute to RT resistance
[35, 36, 52]. In the present study, hypoxia increased the expression
of HIF-1 and glycolytic enzymes, resulting in the switch of energy
metabolism from OXPHOS to glycolysis. Furthermore, hypoxic
treatment promoted the stemness of PCA cells. CD44, CD133 and
SOX2 are considered to be the major cancer stem cell markers in
prostate cancer [38]. It has been shown that cancer stem cells in
prostate cancer are strongly involved in RT resistance [53, 54].
Therefore, targeting of cancer stem cells is important to enhance
the efficacy of radiotherapy over targeting of non-stem cells. In
the present study, the combination of IR and 5-ALA reduced the
expression of stem cell markers induced by hypoxia and
suppressed sphere formation. These results suggest that the
combination of IR and 5-ALA may help overcome hypoxia-induced
RT resistance in prostate cancer.
Hypoxia and the HIF-1 activation led to enhanced Fe2+

accumulation in tumours [55]. We demonstrated that higher
levels of Fe2+ accumulation in mitochondria was induced by
hypoxic conditions (Fig. S4A). Fe2+ enhances the ROS production,
and mitochondrial depolarisation, and then therapeutic effect of
mitochondria-mediated PDT via Fenton reaction [56, 57]. Our data
demonstrated that increase of intra-mitochondrial ROS production
in hypoxia was abrogated by Fe chelator, DFO. Moreover, DFO
inhibited the enhanced therapeutic effect of RT with 5-ALA in
hypoxia (Fig. S5) In contrast, IR with 5-ALA treatment impaired
mitochondrial energy metabolism (Fig. 6e) and redox balance.
Thus enhancement of RT effect by 5-ALA could be promoted by
Fe2+ accumulation in mitochondria even in hypoxia.
In conclusion, our study revealed that intra-mitochondrial ROS

production after RT was enhanced by 5-ALA-derived PpIX. 5-ALA-
induced ROS burst provided a loss of MMP and mitochondrial
dysfunction, causing mitochondria-dependent apoptosis. The
mitochondrial damage inhibited cancer stemness in hypoxia,

which might enables overcome hypoxia-induced RT resistance.
These findings suggest that taking advantage of the radio-
sensitising effect of ALA-derived PpIX by combining 5-ALA with RT
may be a novel strategy to improve the efficacy of RT for patients
with PCA. Future clinical studies are considered to be important.

DATA AVAILABILITY
The data that support the findings of this study are available upon request from the
corresponding author. The data are not publicly available due to privacy and ethical
restrictions.
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