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Abstract: Opuntia spp. is an economically important vegetable crop with high stress-tolerance and
health benefits. However, proteomic analysis of the plant has been difficult due to the composition of
its succulent cladodes; the abundant polysaccharides interfere with protein extraction. To facilitate
proteomic analysis of this plant, we present a rapid and simple protein extraction method for Opuntia
ficus-indica (L.) Miller. The optimized method produced highly reproducible protein patterns and
was compatible with a gel-free quantitative workflow without the need for additional purification.
We successfully analyzed the cladode mesocarp and exocarp tissues, resulting in the identification
of 319 proteins. In addition, we used this method to examine the relative changes in the Opuntia
proteome in response to salt stress to determine whether physiological changes could be captured.
Qualified observations were obtained, revealing that salt stress increased phosphoenolpyruvate car-
boxylase abundance and decreased ribulose-bisphosphate carboxylase in young O. ficus-indica plants.
These findings suggest that Crassulacean acid metabolism is promoted under salinity. This study
highlights the efficacy of our optimized protein extraction method for elucidating the metabolic
adaptations of Opuntia using gel-free proteomic analysis.

Keywords: Opuntia; succulent; protein extraction; gel-free proteomic analysis; abiotic stress;
environmental stress

1. Introduction

The Opuntia is a large genus of succulents (family: Cactaceae) comprising Crassulacean
acid metabolism (CAM) plants native to the New World. Opuntia spp. are grown as
vegetable and fruit crops in America, Africa, and the Mediterranean [1]. This genus has
become an important alternative crop in the context of climate change, due to the high
water-use efficiency and heat/drought tolerance of Opuntia spp. [2]. The undemanding
growth of Opuntia spp. under harsh conditions is supported by intricate growth–defense
tradeoffs, as demonstrated in plants attacked by carmine cochineal pests [3]. In addition,
Opuntia spp. accumulate various secondary metabolites with health-promoting effects.
Consuming the plant has a beneficial effect on serum glucose and insulin levels and its
efficacy in weight management has been demonstrated through in vitro experiments and
clinical populations [4,5]. The bioactive compound content varies considerably due to
several factors, including genetic profile, phenological stage, and environmental stress
exposure [6–8]. However, the molecular mechanisms underlying the metabolic regulation
of Opuntia spp. have not been elucidated.

Proteomic analysis is an increasingly common approach used to capture physiological
changes because this method explores the dynamic nature of proteins under various con-
ditions. Proteomic analysis using two-dimensional differential image gel electrophoresis
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(2D-DIGE) has contributed to the identification of stress-responsive genes in various crop
species [9,10]. More recently, proteomic analyses have also been performed in gel-free
conditions to compensate for the limitations of 2D-DIGE, such as poor reproducibility and
low sensitivity to low copy proteins [11]. In addition, the gel-free methodology can speed
up sample preparation, enabling large-scale comparisons across different developmen-
tal stages or environmental conditions [11]. Nevertheless, to the best of our knowledge,
gel-free proteomic analysis has not been widely applied to succulent plants. Only one
report has analyzed the chlorophyll proteome of agave after organelle isolation [12]. It is
difficult to prepare succulent plant samples for gel-free proteomic analysis, which is a
major limiting factor for the application of this method.

Complicated protein extraction methods have been employed to avoid interference
from the high levels of complex polysaccharides in succulents. The time-consuming
and labor-intensive method to prepare Aloe vera involves large-scale extraction, repeated
ultrafiltration, and vacuum evaporation [13]. Another method for Agave spp. extraction
entails an intricate filtration step that makes use of natural plant fibers as a filter [14].
The proteome of Opuntia spp. was successfully analyzed; however, the method was not
gel-free, containing gel electrophoresis as the last step [15]. The development of more rapid
and simple methods for succulent sample preparation will facilitate experimental processes
and research.

In this study, we developed a phenol extraction method for preparing cladodes of
Opuntia ficus-indica (L.) Miller, the most domesticated and economically important species in
the genus, for proteomic analysis. The aim of this study was to optimize protein extraction
to facilitate gel-free proteomic analysis of Opuntia spp. In addition, we investigated whether
this method is sensitive enough to capture physiological changes under environmental
stresses by applying our novel gel-free proteomic analysis method to monitor the responses
of O. ficus-indica to salt stress.

2. Results and Discussion
2.1. The Optimization of the Protein Extraction Method for Gel-Free Proteomic Analysis

The succulent cladodes of O. ficus-indica (Supplementary Materials Table S1) contain
high levels of polysaccharides that constrain protein purification from this plant. Protein
precipitation using TCA/acetone is a common sample preparation strategy for the gel-free
proteomic analysis of major crops, such as soybean [16]. In this study, TCA/acetone pre-
cipitation produced a sticky protein pellet, but the remaining polysaccharides presented
an obstacle to achieving protein solubilization by the lysis buffer. To provide high-quality
protein samples, we removed the polysaccharides using a combination of aqueous solubi-
lization, filtration with 0.45-µm filter, and purification with alkaline phenol (Figure 1A).

After the phenol extraction, a white pellet was obtained. The reproducibility of extrac-
tion was evaluated using four technical replicates prepared from one cladode, showing
similar SDS-PADE patterns to each other (Supplementary Materials Figure S1). This mod-
ified extraction method produced protein patterns that were highly reproducible with
defined bands in the 17–100 kDa range from both the exocarp and mesocarp samples
(Figure 1B). No low-molecular-weight smear was observed, suggesting that protein degra-
dation did not occur. The band sharpness was similar to that obtained from soybean
samples prepared by TCA/acetone precipitation. Thus, this method is an efficient protocol
for extracting proteins from Opuntia tissues; the resulting samples were suitable for direct
LC–MS/MS analysis without further purification (Figure 1A).

LC–MS/MS analysis was used to produce a catalog of proteins extracted from the Opuntia
exocarp and the mesocarp samples. Using the SwissProt Viridiplantae database, 319 pro-
teins were identified with ≥2 unique peptides (Supplementary Materials Table S2).
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Figure 1. (A) Our optimized protein extraction method enables LC–MS/MS analysis of Opuntia
proteins without electrophoretic separation. (B) Comparison of the optimized protein extraction
method for O. ficus-indica and the TCA/acetone method applied to soybean. Proteins (5 µg for
each sample) were visualized with Coomassie Brilliant Blue stain. (C) The number of detected
proteins belonging to each functional category is shown. Differentially abundant proteins between
tissues are grouped. Abbreviations: TCA/OC, tricarboxylic acid/organic acid transformations;
CHO metabolism, carbohydrate metabolism; mitochondrial ETC, mitochondrial electron transport
chain. Other includes development, C1 metabolism, hormone metabolism, biodegradation of xenobi-
otics, DNA, N-metabolism, oxidative pentose phosphate pathway, and miscellaneous function.

The number of identified proteins was smaller than those in a previous gel-based
report, which ranged from 590–1506 among different Opuntia species [15]. Filter-based
purification might have reduced the protein species in the samples. Yet, major proteispecies
identified in the previous study were also detected in this study (45%, 57/127 proteins),
suggesting that this rapid method done without time-consuming in-gel digestion is useful
for analyzing Opuntia proteome. Functional classification of these proteins revealed that
protein homeostasis was the most represented function followed by amino acid metabolism
(Figure 1C). Regarding the nutritional value of O. ficus-indica, some enzymes involved in
secondary metabolism were detected (Supplementary Materials Table S2). Enzymes related
to the biosynthesis of health-promoting compounds are difficult to detect because they are
often present in relatively low levels, especially enzymes lying downstream of sequential
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reactions [17]. Because O. ficus-indica is characterized by flavonoid-like compounds such as
nicotiflorin and narcissin, the removal of highly abundant proteins is required for further
evaluation of the functional food resource potential of this plant [6]. Comparative analysis
of diverse Opuntia spp. will facilitate the identification of characteristic metabolic pathways,
accelerating the development of new value-adding varieties.

Comparing the protein abundance between tissues (p < 0.05, fold change cutoff at
1.5 (>|0.5849|)) revealed that the proteins accumulated in the exocarp were mainly related
to energy metabolism, namely photosynthesis and glycolysis/fermentation, in addition to
protein homeostasis (Figure 2C). In the mesocarp, proteins related to stress/signaling and
cellular processes were dominant (Figure 2C). The presence of calcium-related proteins,
such as calmodulin and calreticulin, was also noteworthy because the cladodes contain
substantial amounts of calcium that can bind to chaperones in a stress response (Supple-
mentary Materials Table S2) [18,19]. These results demonstrate that our optimized protein
extraction method permitted high sensitivity for detecting proteins in both the exocarp and
the mesocarp.

Figure 2. (A) Morphological changes of young O. ficus-indica plants grown from cladode cuttings after 11 days of salt stress
treatment. Cladode thickness is expressed as the ratio to the value at the beginning of stress treatment. The pH of the hot
water cladode tissue extracts was measured using a glass electrode pH meter. Each bar represents the mean ± S.D. (n = 5
independent experiments) (* p < 0.05). (B) Principal component analysis of the change in plant protein profiles in response
to salt stress. Each sample had three biological replicates. (C) Pathway mapping of the affected proteins. Proteins that
increased or decreased in abundance with salt stress are shown in red and blue boxes, respectively.
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2.2. Opuntia Ficus-Indica Salt Stress Response

To determine whether this method is sensitive enough to capture physiological adap-
tations to environmental stress, we monitored the morphological changes in young plants
grown from cladode cuttings. A 19% decline in cladode thickness relative to the control
was observed after 11 days of salt stress (Figure 2A). The pH of hot water cladode extracts
was measured [20] and the resulting differences suggested that malate metabolism was
altered in response to salt stress (Figure 2A). To characterize the effects of salt stress on
the physiological status, the cladodes were collected in the morning, and proteins were
subjected to LC–MS/MS analysis. In total, 39 proteins were differentially accumulated
(p < 0.05, fold change cutoff at 1.5 (>|0,5849|)) (Supplementary Materials Table S3). Prin-
ciple component analysis (PCA) was used to assess the effects of salt stress (Figure 2B).
In the scores along the direction of the first two principal component axes (PC1 and PC2),
samples from plants subjected to salt stress were classified as different from control with a
cumulative contribution of 86.4%, confirming that the stress intensity and the treatment
period altered the physiological status of Opuntia (Figure 2B).

The differentially accumulated proteins were mapped on Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway maps to visualize the influence of salt stress. Changes
in sugar metabolism were shown by an increased protein abundance of fructose-1,6-
bisphosphatase (FBP), phosphoenolpyruvate carboxylase (PEPC), alcohol dehydrogenase
(ADH), and two other enzymes (Figure 2C). Conversely, the abundance of enzymes in-
volved in the Calvin–Benson cycle, such as glyceraldehyde-3-phosphate dehydrogenase
(GAP), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ribulose-bisphosphate
carboxylase (RBC), decreased in response to salt stress (Figure 2C). Among the mapped
enzymes, the width of the increase or decrease in protein abundance was highest in PEPC
and RBC, respectively (Supplementary Materials Table S3).

CAM photosynthesis is characterized by temporal compartmentation of carboxylation,
involving primary CO2 fixation by PEPC in the dark and secondary CO2 assimilation by
RBC under light conditions [21]. The differential analysis results demonstrated that salt
stress impacts CAM by enhancing primary CO2 fixation. Circadian rhythmicity of the CAM
pathway metabolite levels has been reported [22,23]; however, a previous study showed
that PEPC transcript accumulation patterns in O. ficus-indica were arrhythmic [23]. In this
study, a change in PEPC protein abundance was captured, illustrating the importance
of CAM machinery regulation at the protein level (Supplementary Materials Table S3;
Figure 2C).

3. Materials and Methods
3.1. Plant Materials

The donor O. ficus-indica plants, which have been maintained at the University of
Tsukuba since 1990 for experimental purposes, were grown under natural environmen-
tal conditions in Tsukuba, Japan. Cladode tissue was excised from plants in June 2019
and prepared as specimens to optimize our protein extraction method for gel-free pro-
teomic analysis. The exocarp and mesocarp samples were excised from three different
cladodes from three different plants as biological replicates. The elemental composition
of the cladode tissue was measured using a UNICUBE elemental analyzer (Elementar,
Langenselbold, Hessen, Germany). For the salt stress response analysis, young cladode
cuttings were collected from plants from May–June 2020, transported to the laboratory, and
planted in slit pots (100 mL) with a mixture of pumice, Akadama (red granular) soil, and
Kanuma trass (1:1:1). Pots were maintained in a growth chamber at 23 ◦C under a 16 h
light (300µmol m−2 s−1 PPFD) and 8 h dark cycle. Plants were watered once a week after
rooting. Starting from the fourth week after planting, salt stress was induced as previously
described by placing the pots on a plastic container filled with water containing 250 mM
NaCl until the water rose from the bottom slits to the surface of the pot soil once every three
days [24]. Samples subjected to salt stress were prepared from three different plantlets as
biological replicates. The pH of the hot water cladode extracts was measured as described
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previously to estimate the malate content [20]. Briefly, cladode tissues (1 g) were ground in
liquid nitrogen, put in test tubes with distilled water, and heated by microwave oven for
2 min. The extracts were brought up to 20 mL with distilled water. After filtration with a
cheesecloth, the pH of the extracts was directly measured with a glass electrode pH meter.

3.2. Protein Extraction, Enrichment, and Digestion for Mass Spectrometry Analysis

In this work, we present an optimized protein extraction method for gel-free pro-
teomic analysis of O. ficus-indica. Briefly, cladode tissue samples (1 g) were ground and
transferred to a 15 mL solution of 100 mM Tris-HCl (pH 8.0), 1.5 mM potassium chloride,
10 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, and 0.1% SDS. The resulting
suspension was sonicated for 20 min, followed by centrifugation at 4 ◦C for 20 min at
13,000× g, after which the supernatant was carefully collected to exclude the gelatinous
polysaccharides. Collecting only the thin, clear supernatant is of vital importance to the suc-
cess of this extraction process. Lyophilization of the tissue sample reduced the viscosity of
gelatinous substances, enhancing our ability to separate the supernatant, especially when
mesocarp tissue was used. After the supernatant was passed through a 0.45-µm filter
(Millipore, Billerica, MA, USA), an equal volume of Tris-HCl-saturated phenol (pH 8.0)
was added and mixed well by vigorous vortexing. Next, the mixture was centrifuged at
4 ◦C for 30 min at 3500× g and the top phenol phase was collected. The proteins were
precipitated by adding three volumes of cold methanol containing 0.1 M ammonium
acetate at −20 ◦C for 2 h. The precipitated proteins were recovered by centrifugation at
4 ◦C for 20 min at 13,000× g and then washed three times with cold methanol containing
0.1 M ammonium acetate. The protein pellet was air-dried and solubilized in a lysis buffer
containing 7 M urea, 2 M thiourea, 5% CHAPS, and 2 mM tributylphosphine. The protein
concentration was determined using a Bradford assay with bovine serum albumin as
the standard. Next, the proteins (100 µg) were enriched with methanol and chloroform to
remove any remaining detergent from the sample solutions. The reduction and alkylation
of proteins were performed as described previously [16]. The supernatant was collected
and analyzed using nanoscale liquid chromatography with tandem mass spectrometry
(LC–MS/MS), as described in Section 3.3. Three independent experiments were performed
as biological replicates.

3.3. Nanoliquid Chromatography–Tandem Mass Spectrometry Analysis

The peptides were loaded onto the LC system (EASY-nLC 1000; Thermo Fisher Sci-
entific, San Jose, CA, USA) equipped with a trap column (Acclaim PepMap 100 C18 LC
column, 3 µm, 75 µm ID × 20 mm; Thermo Fisher Scientific), equilibrated with 0.1% formic
acid, and eluted with a linear acetonitrile gradient (0–35%) in 0.1% formic acid at a flow
rate of 300 nL min−1. The eluted peptides were loaded and separated on an EASY-Spray
C18 LC column (3 µm, 75 µm ID × 150 mm; Thermo Fisher Scientific, San Jose, CA, USA)
with a spray voltage of 2 kV (ion transfer tube temperature: 275 ◦C). The peptide ions
were detected using MS (Orbitrap Fusion ETD MS; Thermo Fisher Scientific, San Jose,
CA, USA) in the data-dependent acquisition mode using the installed Xcalibur software
(version 4.0; Thermo Fisher Scientific, San Jose, CA, USA). Full-scan mass spectra were
acquired using a Fourier-transform (FT) MS over 375–1500 m/z with a resolution of 120,000.
The most intense precursor ions were selected for collision-induced dissociation (CID) at
a normalized collision energy of 35%. Dynamic exclusion was employed within 60 s to
prevent repetitive selection of peptides.

3.4. Analysis of the Differential Abundance of Proteins Acquired Using Mass Spectrometry

Proteins in the samples were identified from the SwissProt Viridiplantae database
(25 October 2017) using the MASCOT (version 2.6.1, Matrix Science, London, UK) and
Sequest HT search engine. The acquired raw data files were processed using Proteome Dis-
coverer software 2.2 (version 2.2.0.388; Thermo Fisher Scientific, San Jose, CA, USA) using
precursor ions quantifiler nodes. Target-decoy database searches used for the calculation
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of false discovery rate (FDR) and for peptide identification FDR was set at 1%. PERSEUS
software (version 1.6.10.43) [25] was used for differential analysis of the relative abundance
of peptides based on extracted ion chromatogram (XIC). Abundance of proteins was esti-
mated based on all peptides (FDR < 1%) contributing to an individual protein [25]. Proteins
with ≥2 unique peptides were selected as identified. Duplicated protein identifications
resulting from orthologous proteins in the database were removed manually.

3.5. Bioinformatic and Statistical Analyses

Proteins were categorized based on function using MapMan bin codes [26]. To de-
termine which biological processes are affected by salt stress, the differently abundant
proteins were mapped using the Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
ways [27]. Statistical significance was evaluated by one-way ANOVA using SPSS statistical
software (version 23.0; IBM, Armonk, NY, USA). p-values less than 0.05 were considered
statistically significant. Principle component analysis (PCA) was performed using XLSTAT
software, comparing the mean logarithmically transformed protein abundance ratios with
the non-treated control.

4. Conclusions

In the current study, a protein extraction method that accommodates gel-free quantita-
tive workflow was established for O. ficus-indica. Successful gel-free proteomic analysis
was performed for the first time using this plant. Cladode proteins from the exocarp and
the mesocarp were analyzed separately and in combination. Functional differentiation
between tissues was recognized, and the environmental control of CAM in response to salt
stress was demonstrated in young plants using pot experiments. The method established
in this study will facilitate large-scale gel-free analyses of succulent proteomes. The impact
of environmental factors on the quality of O. ficus-indica will be investigated in our future
work using proteome analysis to determine physiological responses.

Supplementary Materials: The following are available online at https://www.mdpi.com/2223-774
7/10/1/115/s1, Table S1: Elemental composition of cladode tissues, Table S2: List of cladode proteins,
Table S3: List of affected proteins by salt stress. Figure S1: SDS-PAGE gel of exocarp proteins.

Author Contributions: Conceptualization, A.H. and K.W.; Methodology, A.H., H.Y. and K.H.; Soft-
ware, H.Y.; Validation, A.H.; Formal Analysis, A.H.; Investigation, A.H.; Resources, K.W.; Data
Curation, A.H.; Writing—Original Draft Preparation, A.H.; Writing—Review & Editing, K.W.; Visual-
ization, A.H.; Supervision, K.W.; Project Administration, K.W.; Funding Acquisition, A.H. and K.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Cooperative Research Grant (Grants No. 2012) of the Plant
Transgenic Design Initiative (PTraD) by Gene Research Center, Tsukuba-Plant Innovation Research
Center, University of Tsukuba.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The mass spectrometry data have been deposited to the ProteomeX-
change Consortium with the dataset identifier PXD022276.

Acknowledgments: We thank Koji Okabayashi and Kazuyoshi Sato of the University of Tsukuba for
fruitful discussion and experimental help. The authors would like to thank Enago (www.enago.jp)
for the English language review.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Griffith, M.P. The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): New molecular evidence. Am. J. Bot. 2004,

91, 1915–1921. [CrossRef] [PubMed]
2. Scalisi, A.; Morandi, B.; Inglese, P.; Bianco, R.L. Cladode growth dynamics in Opuntia ficus-indica under drought. Environ. Exp. Bot.

2016, 122, 158–167. [CrossRef]

https://www.mdpi.com/2223-7747/10/1/115/s1
https://www.mdpi.com/2223-7747/10/1/115/s1
www.enago.jp
http://doi.org/10.3732/ajb.91.11.1915
http://www.ncbi.nlm.nih.gov/pubmed/21652337
http://doi.org/10.1016/j.envexpbot.2015.10.003


Plants 2021, 10, 115 8 of 8

3. Falcão, H.M.; Oliveira, M.T.; Mergulhão, A.C.; Silva, M.V.; Santos, M.G. Ecophysiological performance of three Opuntia ficus-indica
cultivars exposed to carmine cochineal under field conditions. Sci. Hort. 2013, 150, 419–424. [CrossRef]

4. Gouws, C.A.; Georgousopoulou, E.N.; Mellor, D.D.; McKune, A.; Naumovski, N. Effects of the consumption of prickly pear cacti
(Opuntia spp.) and its products on blood glucose levels and insulin: A systematic review. Medicina 2019, 55, 138. [CrossRef]
[PubMed]

5. Héliès-Toussaint, C.; Fouché, E.; Naud, N.; Estrada, F.B.Y.; Díaz, M.D.S.S.; Salvayre, A.N.; De La Rosa, A.P.B.; Guéraud, F. Opuntia
cladode powders inhibit adipogenesis in 3 T3-F442A adipocytes and a high-fat-diet rat model by modifying metabolic parameters
and favouring faecal fat excretion. BMC Complement. Med. Ther. 2020, 20, 33. [CrossRef]

6. Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.-W.; De León-Rodríguez, A.;
Fomsgaard, I.S.; Barba de la Rosa, A.P. Proximate composition, phenolic acids, and flavonoids characterization of commercial and
wild nopal (Opuntia spp.). J. Food Compos. Anal. 2010, 23, 525–532. [CrossRef]

7. Al Juhaimi, F.; Ghafoor, K.; Uslu, N.; Mohamed Ahmed, I.A.; Babiker, E.E.; Özcan, M.M.; Fadimu, G.J. The effect of harvest times
on bioactive properties and fatty acid compositions of prickly pear (Opuntia ficus-barbarica A. Berger) fruits. Food Chem. 2020,
303, 125387. [CrossRef]

8. Silva-Ortega, C.O.; Ochoa-Alfaro, A.E.; Reyes-Agüero, J.A.; Aguado-Santacruz, G.A.; Jiménez-Bremont, J.F. Salt stress increases
the expression of P5CS gene and induces proline accumulation in cactus pear. Plant Physiol. Biochem. 2008, 46, 82–92. [CrossRef]

9. Hashiguchi, A.; Sakata, K.; Komatsu, S. Proteome Analysis of Early-Stage Soybean Seedlings under Flooding Stress. J. Proteome Res.
2009, 8, 2058–2069. [CrossRef]

10. Barkla, B.J.; Vera-Estrella, R.; Raymond, C. Single-cell-type quantitative proteomic and ionomic analysis of epidermal bladder
cells from the halophyte model plant Mesembryanthemum crystallinum to identify salt-responsive proteins. BMC Plant Biol.
2016, 16, 110. [CrossRef]

11. Vadivel, A.-K.-A. Gel-based proteomics in plants: Time to move on from the tradition. Front. Plant Sci. 2015, 6, 369.
12. Shakeel, S.N.; Aman, S.; Haq, N.U.; Heckathorn, S.A.; Luthe, D. Proteomic and transcriptomic analyses of Agave americana in

response to heat stress. Plant Mol. Biol. Rep. 2013, 31, 840–851. [CrossRef]
13. Cabello-Ruiz, E.D.; Torres-de la Cruz, V.M.; Rivas-Morales, C.; Molina-Salinas, G.M.; Núñez-González, M.A.; Verde-Star, M.J.;

Leos-Rivas, C. Proteomic analysis of a bioactive Aloe vera extract. Curr. Proteome 2019, 16, 181–187. [CrossRef]
14. Lledías, F.; Hernández, F.; Rivas, V.; García-Mendoza, A.; Cassab, G.I.; Nieto-Sotelo, J. A Rapid and Reliable Method for Total

Protein Extraction from Succulent Plants for Proteomic Analysis. Protein J. 2017, 36, 308–321. [CrossRef] [PubMed]
15. Pichereaux, C.; Hernández-Domínguez, E.-E.; Santos-Diaz, M.D.S.; Reyes-Agüero, A.; Astello-García, M.; Guéraud, F.; Salvayre,

A.N.; Schiltz, O.; Rossignol, M.; De La Rosa, A.P.B. Comparative shotgun proteomic analysis of wild and domesticated Opuntia
spp. species shows a metabolic adaptation through domestication. J. Proteom. 2016, 143, 353–364. [CrossRef]

16. Tran, N.T.; Oguchi, T.; Akatsuka, N.; Matsunaga, E.; Kawaoka, A.; Yamada, A.; Ozeki, Y.; Watanabe, K.N.; Kikuchi, A. Develop-
ment and evaluation of novel salt-tolerant Eucalyptus trees by molecular breeding using an RNA-Binding-Protein gene derived
from common ice plant (Mesembryanthemum crystallinum L.). Plant Biotechnol. J. 2019, 17, 801–811. [CrossRef]

17. Kubota, S.; Hisamatsu, T.; Koshioka, M. Estimation of malic acid metabolism by measuring pH of hot water extracts of
Phalaenopsis leaves. Sci. Hortic. 1997, 71, 251–255. [CrossRef]

18. Nanjo, Y.; Škultéty, L.; Ashraf, Y.; Komatsu, S. Comparative Proteomic Analysis of Early-Stage Soybean Seedlings Responses to
Flooding by Using Gel and Gel-Free Techniques. J. Proteome Res. 2010, 9, 3989–4002. [CrossRef]

19. Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for
compre-hensive analysis of (prote) omics data. Nat. Methods 2016, 13, 731–740. [CrossRef]

20. Usadel, B.; Poree, F.; Nagel, A.; Lohse, M.; Czedik-Eysenberg, A.; Stitt, M. A guide to using MapMan to visualize and compare
Omics data in plants: A case study in the crop species, Maize. Plant Cell Environ. 2009, 32, 1211–1229. [CrossRef]

21. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [CrossRef]
[PubMed]

22. Zhu, W.; Xu, X.; Tian, J.; Zhang, L.; Komatsu, S. Proteomic analysis of Lonicera japonica Thunb. immature flower buds using
combinatorial peptide ligand libraries and polyethylene glycol fractionation. J. Proteome Res. 2016, 15, 166–181. [CrossRef]
[PubMed]

23. Jin, H.; Hong, Z.; Su, W.; Li, J. A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the
endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2009, 106, 13612–13617. [CrossRef] [PubMed]

24. Ginestra, G.; Parker, M.L.; Bennett, R.N.; Robertson, J.; Mandalari, G.; Narbad, A.; Lo Curto, R.B.; Bisignano, G.; Faulds, C.B.;
Waldron, K.W. Anatomical, chemical, and biochemical characterization of cladodes from prickly pear (Opuntia ficus-indica (L.)
Mill.). J. Agric. Food Chem. 2009, 57, 10323–10330. [CrossRef]

25. DePaoli, H.C.; Borland, A.M.; Tuskan, G.A.; Cushman, J.C.; Yang, X. Synthetic biology as it relates to CAM photosynthesis:
Challenges and opportunities. J. Exp. Bot. 2014, 65, 3381–3393. [CrossRef]

26. Ceusters, N.; Luca, S.; Feil, R.; Claes, J.E.; Lunn, J.E.; Ende, W.V.D.; Ceusters, J. Hierarchical clustering reveals unique features in
the diel dynamics of metabolites in the CAM orchid Phalaenopsis. J. Exp. Bot. 2019, 70, 3269–3281. [CrossRef]

27. Mallona, I.; Egea-Cortines, M.; Weiss, J. Conserved and Divergent Rhythms of Crassulacean Acid Metabolism-Related and Core
Clock Gene Expression in the Cactus Opuntia ficus-indica. Plant Physiol. 2011, 156, 1978–1989. [CrossRef]

http://doi.org/10.1016/j.scienta.2012.11.021
http://doi.org/10.3390/medicina55050138
http://www.ncbi.nlm.nih.gov/pubmed/31096667
http://doi.org/10.1186/s12906-020-2824-x
http://doi.org/10.1016/j.jfca.2009.12.003
http://doi.org/10.1016/j.foodchem.2019.125387
http://doi.org/10.1016/j.plaphy.2007.10.011
http://doi.org/10.1021/pr801051m
http://doi.org/10.1186/s12870-016-0797-1
http://doi.org/10.1007/s11105-013-0555-6
http://doi.org/10.2174/1570164615666180925150839
http://doi.org/10.1007/s10930-017-9720-3
http://www.ncbi.nlm.nih.gov/pubmed/28497409
http://doi.org/10.1016/j.jprot.2016.04.003
http://doi.org/10.1111/pbi.13016
http://doi.org/10.1016/S0304-4238(97)00063-0
http://doi.org/10.1021/pr100179f
http://doi.org/10.1038/nmeth.3901
http://doi.org/10.1111/j.1365-3040.2009.01978.x
http://doi.org/10.1002/pro.3715
http://www.ncbi.nlm.nih.gov/pubmed/31441146
http://doi.org/10.1021/acs.jproteome.5b00910
http://www.ncbi.nlm.nih.gov/pubmed/26573373
http://doi.org/10.1073/pnas.0906144106
http://www.ncbi.nlm.nih.gov/pubmed/19597144
http://doi.org/10.1021/jf9022096
http://doi.org/10.1093/jxb/eru038
http://doi.org/10.1093/jxb/erz170
http://doi.org/10.1104/pp.111.179275

	Introduction 
	Results and Discussion 
	The Optimization of the Protein Extraction Method for Gel-Free Proteomic Analysis 
	Opuntia Ficus-Indica Salt Stress Response 

	Materials and Methods 
	Plant Materials 
	Protein Extraction, Enrichment, and Digestion for Mass Spectrometry Analysis 
	Nanoliquid Chromatography–Tandem Mass Spectrometry Analysis 
	Analysis of the Differential Abundance of Proteins Acquired Using Mass Spectrometry 
	Bioinformatic and Statistical Analyses 

	Conclusions 
	References

