
Retinal ganglion cells (RGCs) are the sole output 
neurons that aid in extending axons throughout the optic 
nerve to receive, process, and relay light-evoked signals to 
the brain via the optic nerve [1]. RGCs are one of the most 
important retinal cells. Their anatomic or functional impair-
ment is associated with or a consequence of many ophthalmic 
disorders, such as diabetic retinopathy or glaucomatous optic 
neuropathy [2-4], central retinal artery or vein occlusion, etc. 
[5], and may eventually result in optic neuropathy and vision 
loss [6]. Unfortunately, why and how the disease-associated 
RGCs degenerate are largely unknown [5]. Therefore, it is 
of vital importance to obtain an in-depth understanding of 
the mechanisms of RGC death to identify new therapeutic 
strategies for protecting RGCs.

An in vitro analysis of RGCs will be a crucial and almost 
indispensable tool for the study of retinal visual physiology 
and pathophysiology associated with various retinopathies 
and neuropathies, which cannot easily be realized in animal 
models. For instance, RGCs can be studied in isolation and 

observed over time, ruling out the effects of other types of 
cells in the retina. The RGC receptors and signaling pathways 
can be precisely and quantitatively perturbed using specific 
chemical factors or pharmacological agents or by introducing 
genes of interest, and the consequences for cell biology could 
be evaluated using molecular biology, electrophysiological, 
or imaging techniques. Using these techniques in situ within 
an animal model would be technically challenging. Based 
on their high research value and urgent need, several types 
of culture models, including mixed retinal cells [7], purified 
RGCs [8], transformed RGC cell lines [9,10], retinal explant 
cells [11,12], embryonic stem (ES) cells, and induced pluripo-
tent stem (iPS) cell cultures [13-15] have been established. 
However, most studies have limitations. For example, the 
immortalized RGC-5 cell line has been widely used to study 
the neurobiology of RGCs. However, Krishnamoorthy et al. 
demonstrated that the purported rat ganglion cell line RGC-5 
is in fact of mouse origin and contaminated with 661W cells; 
therefore, any findings using RGC-5 cells as an in vitro model 
for RGCs must be carefully interpreted [16], thus largely 
limiting their usefulness [7]. RGC explant cultures are a 
mixed culture of different retinal cell types, and studies have 
shown that RGCs constitute only 5% of the total retinal cells 
in the mixed culture, thus limiting the application of RGCs 
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in the study of RGC function [17]. IPS cells can directly 
differentiate into RGCs but require highly sophisticated tech-
niques, and the cells often exhibit a low differentiation rate. 
Therefore, there is a mounting need to establish an effective 
system for isolating primary RGCs.

RGCs comprise the innermost layer of the retina and 
represent less than 1% of the total population of various 
types of retinal neurons and non-neuronal cells [8], making 
the purification of the cells more difficult. There have been 
many methods for the isolation, purification, and culture of 
RGCs from retinas [18-24]. As each method has its pros and 
cons, identifying the optimal method for purifying RGCs 
for specific applications can be difficult. Until recently, 
no systematic study has analyzed the strengths and weak-
nesses of every approach. In this work, we used the three 
most common methods for purifying RGCs from newborn 
rat retinas and compared the efficiency of each method, 
providing a practical basis for selecting the method for puri-
fying RGCs for use in subsequent experiments.

METHODS

Experiments were approved by the Shanghai Jiao Tong 
University Institutional Animal Care and Use Committee 
(IACUC) and adhered to the ARVO Statement for Use of 
Animals. Here we describe the three most common methods 
for purifying the RGCs from newborn rat retinas and 
compared the efficiency of each method with different exper-
imental methods. An overview of the method is provided in 
the flowchart (Figure 1).

Preparation of the retinal cell suspensions: The retinal 
tissues were separated from the enucleated eyeballs of 
newborn Sprague-Dawley rats on postnatal days 1 to 4 
and incubated in precooled calcium-free and magnesium-
free Earle’s Balanced Salt Solution (EBSS; Gibco, Grand 
Island, NY) and Hank’s Balanced Salt Solution (Life Tech-
nologies, Grand Island, NY) containing 5 mg/ml of papain, 
0.24 mg/ml of L-cysteine, and 10 U/ml of DNase І for 30 
min. Then, an ovomucoid solution containing 0.1% bovine 
serum albumin (BSA, Sigma-Aldrich, St. Louis, MO), 0.1% 
ovomucoid (Sigma-Aldrich), and 1% DNase І (4 mg/ml, 
Sigma-Aldrich) in minimum essential media (MEM, Gibco) 
was subsequently used to fully quench any residual papain 
activity. After centrifugation at 200 ×g for 10 min, the cells 
were resuspended in MEM containing 0.5 mg/ml of BSA, and 

Figure 1. The protocol steps for isolating and analyzing RGCs are outlined and illustrated in this schematic procedure workflow.
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then the cell suspension was filtered through the mesh filter 
(pore size 40 μm, BD Falcon, Franklin Lakes, NJ) to yield 
a single cell suspension. The procedures were conducted at 
room temperature in a laminar flow hood.

RGC purification:

Preparation of panning dishes and cell culture dishes/
plates—The antibody-coated 10-cm Petri dishes (one dish 
per every eight rats) were prepared for negative or positive 
selection by adding 15 μl of a rabbit anti-rat macrophage/
Thy-1 antibody and 7 ml of 50 mM Tris-HCl (pH 9.5) per 
dish. The plates were swirled until the surfaces were evenly 
coated with the antibody-Tris solution. The panning plates 
were incubated overnight at 4 °C. Immediately before use, the 
plates were rinsed three times with Dulbecco’s PBS (1X; 0.9 
mM CaCl2, 0.49 mM MgCl2-6H2O, 137.9 mM NaCl, 2.67 mM 
KCl, 8.06 mM Na2HPO4-7H2O, 1.47 mM KH2PO4, pH 7.4; 
D-PBS, Gibco). Then 1×Poly-D-lysine stock (PDL, Sigma-
Aldrich) was added to the cell culture plates (50 μl for the 
96-well plates, 100 μl for the 24-well plates, and 500 μl for 
the six-well plates), and the plates were incubated overnight at 
room temperature. The plates were rinsed three to four times 
with sterile H2O and aspirated to dryness. Mouse laminin 
(1 mg/ml) was diluted to a final concentration of 50 μg/ml 
by adding 10 μl of the laminin stock to 5 ml of Neurobasal 
medium (Gibco, Grand Island, NY). The diluted laminin 
solution was mixed well, added to the dried cell culture 
plates, and incubated in a 37 °C incubator for 2 h. The plates 
were rinsed with D-PBS three times before use. To isolate 
RGCs with immunopanning (IP), we adapted a protocol from 
Cold Spring Harbor Protocols [25].

Removing the retinal macrophages: In the retina, at least two 
types of cells, RGCs and macrophages, express Thy-1; most 
are macrophages [8]. Thus, it was necessary to deplete the 
macrophages and other Thy l-positive contaminants that are 
not RGCs and then select the Thy l-positive RGCs. Therefore, 
the retinal cell suspensions were first incubated in flasks 
coated with an anti-rat macrophage monoclonal antibody 
(OX-41; 1:50) for 45–60 min to exclude the macrophages; the 
plate was agitated every 15 min to ensure good cell adhe-
sion. The non-adherent cells were collected. This procedure 
allowed us to rapidly isolate a population of pure RGCs with 
excellent viability.

IP for RGCs: The RGCs were isolated as previously described 
[8,25]. The retinal cell suspension excluding macrophages 
(or not) was incubated in a 100-mm Petri dish coated with 
a mouse anti-rat Thy-1 antibody (1:50 dilution; Abcam, 
Cambridge, MA) for 1 h; the plate was shaken every 15 min 
during this time period. The supernatant was discarded, and 

the plate was washed six times with D-PBS. The adherent 
cells were collected as RGCs. (Note: we abbreviated the direct 
immunopanning in a plate coated with an anti-rat Thy-1 anti-
body as IP and the immunopanning in two plates coated with 
anti-rat macrophage and Thy-1 antibodies as TIP.)

Immunopanning-magnetic (IPM) for RGCs: The retinal cell 
suspension excluding macrophages was centrifuged at 300 g 
for 10 min at 4 °C. After the supernatant had been completely 
aspirated, the cell pellet was resuspended in a concentration 
of 107 cells per 90 μl buffer. Subsequently, 10 μl of CD90.1 
MicroBeads (Miltenyi Biotec, GmbH, Bergisch Gladbach, 
Germany) per 107 total cells was added, mixed well, and 
incubated at 4 °C for 15 min. Then, the cells were carefully 
washed twice with magnetic cell sorter (MACS) separation 
buffer. After being resuspended, the cell suspension was 
applied onto the MS column (Miltenyi Biotec GmbH) in the 
magnetic fields of a MiniMACS (Miltenyi Biotec GmbH). 
When the column reservoir was empty, the column was 
washed with 1.5 ml of MACS separation buffer and then 
removed from the magnetic field. To increase the purity of 
the RGCs, the eluted fraction was enriched over a second MS 
column. The magnetic separation procedure was repeated as 
described with a new column. Upon completion, the column 
was removed from the separator, and the retained cells were 
eluted as a magnetically labeled RGC fraction. (Note: we 
abbreviated the direct magnetic separation as IPM; if the 
retina macrophages had been removed before the magnetic 
separation, we referred to it as TIPM.)

Flow cytometry (FC) method for RGCs: The non-adherent 
cell suspension in flasks coated with an anti-rat macrophage 
monoclonal antibody was centrifuged at 300 ×g for 10 min at 
4 °C. After the supernatant had been completely aspirated, up 
to 106 cells were resuspended in 45 μl of buffer and incubated 
with 5 μl of phycoerythrin (PE)-conjugated anti-rat CD90.1 
or PE-conjugated lgG1 isotype control antibodies (eBiosci-
ence, San Diego, CA) for 15 min at 4 °C. The cells were then 
carefully washed twice. After being resuspended, the cell 
suspension was sorted with a flow cytometer (FACS Caliber; 
Becton Dickinson, San Jose, CA). The cells were counted 
automatically, and cells that were not incubated with the 
PE-conjugated anti-rat CD90.1 antibody served as the blank 
(Figure 2A). To improve the RGCs’ yield, the sort gates were 
set as R10 and R21 (Figure 2); the RGCs in R21 were high 
purity (HP-RGCs), while the cells in R10 were low-purity 
RGCs (LP-RGCs).

Cell culture: The purified RGCs were seeded at the desired 
density on the PDL- and laminin-coated coverslips in 24-well 
or six-well plates in prewarmed RGC growth medium 
and maintained in a 37  °C cell culture incubator with a 
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humidified atmosphere containing 5% CO2 and 95% air. The 
RGC growth medium was improved from the formulation 
described in the Cold Spring Harbor Protocols [25], based 
on our repeated experiments, and contained Neurobasal 
medium, BSA (0.1 mg/ml; Sigma), transferrin (0.1 mg/ml; 
Sigma), progesterone (60 ng/ml; Sigma), putrescine (16 µg/
ml; Sigma), selenium (40 ng/ml; Sigma), 3,5,3-triiodothyro-
nine T3 (40 ng/ml; Sigma), thyroxine T4 (40 ng/ml; Sigma), 
B27 (20 µl/ml; Invitrogen), sodium pyruvate (1 mM; Gibco), 
glutamine (2 mM; Gibco), N-acetyl-L-cysteine (NAC, 5 µg/
ml; Sigma), insulin (5  µg/ml; Sigma), forskolin (5  µM; 
Sigma), brain-derived neurotrophic factor (BDNF, 50 ng/
ml; PeproTech, Rocky Hill, NJ), ciliary neurotrophic factor 
(CNTF, 10 ng/ml; PeproTech), basic fibroblast growth factor 
(bFGF, 10 ng/ml; PeproTech), and penicillin-streptomycin 
(100 U/ml; Gibco). Half of the medium was replenished every 
3 days. However, although a high level of purity was obtained 

with FACS, the level of cell survival was low. The causes of 
this low survival are unclear.

Cell Counting Kit-8 assay for RGC viability: The RGCs were 
seeded in 96-well plates at a density of 3×104 cells/100 μl and 
were cultured for 1, 3, 5, 7, 9, 11, 14, 17, and 20 days. Then, 
10 μl of Cell Counting Kit-8 solution (Dojindo Laboratories, 
Kumamoto, Japan) was added to each well of the plate. After 
a 4-h incubation at 37 °C, the plates were analyzed with a 
Tecan Genios (Synergy H1, BIOtAK) at 450 nm. All values 
are reported as the mean ± standard error of the mean (SEM) 
of at least three wells and at least three separate experiments.

RGC purity and identification:

Immunocytochemical staining—Two days after 
seeding, the RGCs isolated using the TIP and TIPM methods 
were fixed with 4% paraformaldehyde for 30 min, treated 
with 0.1% Triton X-100 (Sigma) for 20 min, and then blocked 

Figure 2. Design of FC cell sorting 
gates. A: Blank control. Staining 
with control antibodies conju-
gated with phycoerythrin (PE). B: 
Retinal ganglion cell (RGC) sorting 
strategy. RGCs were identified by 
staining with PE-conjugated mAb 
directed against Thy-1 (R10 and 
R21). R10 is regarded as a low-
purity group and R21 as a high-
purity group. R16 consists mainly 
of non-RGCs. Y axes = side scatter 
(SSC), X axes = forward scatter 
(FSC), fluorescence intensity on the 
FL2 channel.
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with 3% BSA (Sigma-Aldrich) for 1 h. The cells were incu-
bated with anti-rat γ-synuclein (1:400 dilution; Abcam), 
anti-rat Thy-1 (1:800 dilution; Abcam), anti-rat microtubule 
associated protein-2 (MAP2, 1:800 dilution; Abcam), anti-rat 
neuron-specific class III beta tubulin (TUJ-1,1:400 dilution; 
Abcam), anti-rat Brn3b (1:400 dilution; Abcam), anti-rat 
Islet1 (1:400 dilution; Abcam), astrocyte-specific anti-rat 
glial fibrillary acidic protein (GFAP; 1:100 dilution; Abcam), 
and amacrine-specific anti-rat syntaxin 1 antibodies (1:50 
dilution; Abcam) overnight at 4 °C. They were then exposed 
to the appropriate fluorescent secondary antibodies (1:400 
dilution, Life Technologies) for 1 h at room temperature. The 
nuclei were counterstained with 4’,6-diamidino-2-phenylin-
dole (DAPI; Life Technologies). The cells were imaged with 
a confocal microscope (Leica SP8).

Quantitative real-time PCR analysis: The RNA extraction 
and cDNA synthesis were performed as previously described 
[26]. The gene-specific primers for β-actin, Thy-1, TUJ1, 
Brn3b, syntaxin 1, and GFAP were verified before use (Table 
1 for primer sequences). Quantitative real-time PCR (Applied 
Biosystems, 7500 Fast) was performed in duplicate with 10 ng 
of cDNA and 10 pmol of each primer. The thermal conditions 
were 10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C 
and 60 s at 60 °C. The specificity of the detected signals was 
confirmed with a dissociation curve, which consisted of a 
single peak. Using the SYBR Green data, the relative RNA 
expression was normalized to β-actin. All samples were run 
in triplicate in each experiment. The data were analyzed 
using the 2-△△CT method.

Flow cytometry analysis: The RGCs’ purity was evaluated 
using a flow cytometer (FACSCaliber; Becton Dickinson). 
As most of the Thy-1 antigens on the surface of the RGCs 

were bound to the corresponding antibody during the sepa-
ration and purification process, we adopted another RGC-
specific marker, Brn3a, as a surrogate marker for the RGCs. 
The steps are summarized as follows: The RGCs that had 
been separated and purified using the three methods were 
separately fixed with 4% paraformaldehyde in PBS for 20 min 
at room temperature. Then, the cells were centrifuged and 
resuspended in PBS containing 0.4% Triton X-100 (Sigma), 
and 3% BSA was added to block non-specific binding of the 
antibodies. Each sample was subsequently centrifuged and 
incubated with a rabbit anti-rat Brn3a antibody (1:50, Abcam) 
for 60 min at 4 °C. After washing with PBS, the cells were 
exposed to fluorescein isothiocyanate (FITC)–conjugated 
goat anti-rabbit immunoglobulin G (IgG; 1:400, Life Tech-
nologies) in 1.0 ml of PBS for 1 h at RT. After washing twice 
with PBS, the cells were excited with a 488-nm laser and 
collected in the FITC (515–545 nm) channels. Cell Quest 
Acquisition and Analysis software (Becton Dickinson) was 
used to quantify the intensities of the fluorescent signals and 
to construct dot density plots.

Electrophysiology of purified RGCs: Electrophysiological 
recordings were performed on the primary cultured RGCs 
that had been purified with the TIP and TIPM methods on 
the second to fourth day. The bath solution contained the 
following components: 125 mM NaCl, 3 mM KCl, 1 mM 
MgCl2.6H2O, 2 mM CaCl2.2H2O, 26 mM NaHCO3, 1.25 mM 
NaH2PO4, and 15 mM glucose, pH 7.4. The pipette solution 
for the current-clamp recordings consisted of the following 
components: 120 mM K-gluconate, 10 mM HEPES, 1 mM 
EGTA, 1 mM MgCl2.6H2O, 0.1 mM CaCl2.2H2O, 4 mM 
ATP-Mg, 0.3 mM GTP-Na, and 10 mM phosphocreatine. 
The pH was adjusted to 7.2 with KOH, and the osmolarity 
was adjusted to 280–290 mOsm/l. The pipette resistance was 
typically 3–7 MΩ after it was filled with the internal solu-
tion. The spontaneous action potentials were recorded in the 
whole-cell current-clamp configuration using a Multiclamp 
700B amplifier (Molecular Devices, Sunnyvale, CA) with a 
Digidata 1440A data acquisition board. The data were digi-
tized at 10 kHz with a 1 kHz low-pass filter. The data were 
analyzed using Clampfit 10.02 (Axon Instruments, Foster 
City, CA). The membrane potentials were maintained at 
approximately −55 mV.

Statistical analysis: The TIP, TIPM, and FC methods were 
separately repeated 18, 15, and five times, respectively, 
and approximately 50–60 Sprague-Dawley rats were used 
for each experiment. The RGC yield, purity, and quantitative 
RT–PCR data were expressed as the mean ± standard error 
of the mean (SEM) and compared with the Kruskal–Wallis 
one-way ANOVA (ANOVA) using the PASW Statistics 18 for 

Table 1. List of the primer sequences for PCR studies. 

Target Sequence (5'-3')
β-actin F: TGACGTGGACATCCGCAAAG
  R: CTGGAAGGTGGACAGCGAGG
Thy1.1 F: GGCAGTGAAGAGGCAGGATA
  R: AGGCACAGACACAGTCCAAC
TUJ1 F: TGCTGGCCATTCAGAGTAAGA
  R: TGCTGGCCATTCAGAGTAAGA
Brn3b F: GGCTGGAGGAAGCAGAGAAA
  R: TTGGCTGGATGGCGAAGTAG
syntaxin 1 F: AGGCACGCAGGAAGAAGAT
  R: CAGGGAGACCCATCCAGAA
GFAP F: ACCGCATCACCATTCCTGTA
  R: GCATCTCCACCGTCTTTACC
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Windows, version 18.0.0 (SPSS, Chicago, IL). A p value of 
less than 0.05 was considered statistically significant.

RESULTS

RGC yield: Approximately 4.24±0.62 million cells were 
collected per retina. First, we tried to leave the macrophages 
in the suspension and directly incubated the retinal cells with 
the Thy l antibodies. The results (Figure 3A and Table 2) show 
that 136.29±50.20 × 104 and 64.40±29.98 × 104 RGCs were 
achieved per retina using the IP and IPM methods, respec-
tively, which accounted for 33.04±9.23% and 14.26±5.90% 
of the total retinal cells. These values were far higher than 
the actual numbers [8]. However, when the macrophages 
were removed first, the RGC yields were 24.60±15.98 × 104 
(5.91±3.38%) and 5.28±4.42 × 104 (1.31±0.94%) using the TIP 
and TIPM methods, respectively. This yield is within (TIP) 
or below (TIPM) the statistical error of the 110,000 ganglion 
cells per adult rat retina that was previously determined 
[27-29]. Flow cytometry is a versatile technique for cell 
sorting. It is quantitative, highly reproducible, and relatively 
easy to perform. As the density of Thy-1 on the surface varies 
greatly in specific subsets of RGCs, two regions, R10 and 
R21, would appear when flow cytometry is used to measure 
the Thy-1 protein, as shown in Figure 2B. We regarded the 
cells in the R21 region as high-purity RGCs (HP-RGCs) and 
the cells in the R10 region as low-purity RGCs (LP-RGCs). 
In our experiment, we obtained only approximately 2.7 × 103 
RGCs per retina in the R21 region, while 5.4 × 103 RGCs 
were obtained in R21+R10, comprising only 0.05–0.35% of 
the total retinal cells.

RGC viability and longevity: The data from the Cell Counting 
Kit-8 (CCK-8) assay showed (Figure 3B) that there was no 
significant difference in RGC5 viability between the TIP and 
TIPM methods after the cells were cultured for 24 h. Then, 
the viability of the cells that were purified using both methods 
increased during the first 3 days and with prolonged culture 
times. The TIP-RGC viability was always greater than that 
of the TIPM-RGCs (p<0.05). However, the viability of the 
TIPM-RGCs began to decrease, and most of the cells had died 
by the 9th day (the absorption value was 0.09). Interestingly, 
the viability of the TIP-RGCs reached the highest value at the 
same time point (the absorption value was 1.2) and began to 
slowly decrease until the 20th day (the absorption value was 
0.48). Therefore, we can see that the TIP-RGCs could survive 
for more than 20 days with higher viability, while the TIPM-
RGCs survived for less than 9 days.

RGC identification: The RGCs were identified by their 
morphology, immunofluorescence staining and whole-cell 
patch-clamp recordings. Neurons typically have dendrites 

Figure 3. The yield, purity, and viability of RGCs from different 
methods. A: The yield of retinal ganglion cells (RGCs) from IP is 
the highest, while that from flow cytometry (FC) is the lowest. B: 
The viability of two-step immunopanning–retinal ganglion cells 
(TIP-RGCs) was increased at the first 9 days with culture time 
and was much higher than that of the two-step immunopanning-
magnetic–retinal ganglion cells (TIPM-RGCs). Although the 
activity of the TIP-RGCs began to decline slowly, they still survived 
for 20 days, which was far longer than the TIPM-RGCs. C: The 
purity of the RGCs isolated from TIP is around 81% and much lower 
than that from the TIPM method (about 95%).
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and axons that appear at opposing poles of the cell. We 
screened the survival and morphology of RGC isolated by 
the two immunopanning methods (TIP, TIPM) every day as 
shown Figure 4. Under standard culture conditions, the RGCs 
tended to form cell clusters with small to medium round cell 
bodies, and some extended fine neurites after a 24-h culture, 
but there were no significant differences between the two 
groups. However, from the third day, the RGCs purified using 
the two methods showed obvious differences. The majority 
of the TIP-RGCs exhibited uniform, round cell bodies and 
their neurites gradually extended to connect each other. At 
day 14, most cells developed a complex dendritic network 
with numerous neurites and branches. By replenishing half 
of the medium with fresh medium every 3 to 4 days, the TIP-
RGCs were maintained for up to one month in culture, which 
was the longest time point in our examination (Figure 4A). 
However, the TIPM-RGCs neurites were obviously shorter 
than those from the TIP-RGCs beginning at day 3, and its 
cell body began shrinking. Although its neurites were still 

extended, they ultimately survived for no more than 9 days 
(Figure 4B).

In retinas, many types of cells, such as rod and cone 
photoreceptors, horizontal, bipolar and amacrine cells, have 
neurites and round cell bodies, similar to the RGCs [30]. 
Therefore, we could not identify the RGCs by morphology 
alone. Several cell-specific markers have been suggested to 
be expressed in RGCs, such as Thy1 [31], Brn3a/b [32, 33], 
βIII tubulin [31], MAP2 [34], Islet-1 [35,36], and γ-synuclein 
[37]. As none of these are specifically expressed in all RGC 
subgroups, we used six common RGC-specific immunocy-
tochemical markers to provide a more accurate identification 
of the RGCs and further analyzed their expression in RGCs. 
γ-Synuclein and MAP2 (Figure 5A-D) were expressed in the 
soma and neurites in almost all of the RGCs, and their expres-
sion perfectly coincided with each other. TUJ1 and Thy1 were 
expressed in the cytoplasm of the soma and neurites in some 
of the RGCs, particularly those with long axons, while Brn3b 
and Islet-1 were predominantly localized in the nuclei in all 

Table 2. Comparative analysis of three purification protocols for RGCs. 

 Various TIP TIPM FC
Yield(*104) 24.60±15.98 5.28±4.42 0.54±0.27
RGCs/retina cell (%) 5.91±3.38 1.31±0.94 0.05–0.35
Purity (%) 80.97±5.45 95.41±3.23 Controlled, up to 100
viability +++ ++ -
Longevity (days) >20 ≤9 -
operation time (hour) 3–4 2–3 3–4
stability + ++ +++
cost + ++ +++

+:low, ++: medium, +++:maximum -:we did not get.

Figure 4. Morphological changes in RGCs. A: Two-step immunopanning–retinal ganglion cells (TIP-RGCs). B: Two-step immunopanning-
magnetic–retinal ganglion cells (TIPM-RGCs). Scale bar = 10 μm. 
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of the RGCs, and little expression was observed in the cyto-
plasm (Figure 5E-L).

To further investigate whether the primary cultured 
RGCs have functional membrane properties, we performed 
whole-cell patch-clamp recordings of the RGCs on day 2 to 
4 after they were cultured. For the majority of the analyzed 
primary cultured RGCs (TIP-RGC: 86.7%; TIPM-RGC: 
63.1%, n=15), action potentials could be spontaneously 
elicited in current-clamp mode (Figure 6A). These action 
potentials could be blocked by tetrodotoxin (TTX), a specific 
inhibitor of Na+ ion channels (not shown). For the other 
mixed cells, such as glial cells, action potentials could not 
be spontaneously produced in current-clamp mode (Figure 
6B). Action potentials could not be elicited by depolarizing 
the membrane from -90 mV to + 50 mV at 10 mV intervals 
(not shown).

RGC purity: The purity of the RGCs isolated with the two 
methods was first determined with immunofluorescence 
staining (Figure 7). Nearly all of the TIPM-RGCs were posi-
tive for Thy-1 and MAP2, and only three cells in the field 
were negative (Figure 7D). The number of negative TIP-
RGCs was much higher, as approximately seven cells in equal 
visual fields were not labeled (Figure 7H). To further analyze 
the source of these negative cells, we stained the cells for the 
expression of GFAP (the marker for glia cells) and syntaxin-1 
(the marker for amacrine cells). As shown in Figure 8, large, 
star-shaped, GFAP-positive astrocytes (Figure 8B) and small, 
round, syntaxin 1-positive amacrine cells with multiple short 
neurites (Figure 8A) were rarely observed in the entire field.

The quantitative RT–PCR data for Thy-1, syntaxin 1 
and GFAP were calculated as a relative RNA ratio to the 
housekeeping gene, β-actin (Figure 9A). The GFAP levels in 

Figure 5. RGC identification. Immunofluorescence of retinal ganglion cells (RGCs) at day 2 of culture shows costaining of γ-synuclein (green) 
and MAP2 (red; A–D), TUJ1 (green), and Brn3b (red; E–H), Thy-1 (green), and Islet 1 (red; I–L). 4’,6-diamidino-2-phenylindole (DAPI) 
nuclear staining is shown in C, G, and K, and the merged images are shown in D, H and L. Scale bar = 50 μm.
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the TIP- and TIPM-RGCs were obviously higher than in the 
FC-RGCs (p<0.01), whereas the syntaxin 1 levels in the TIP-
RGCs were significantly higher than in the other two groups 
(p<0.05), while there were no significant differences in the 
TIPM- and FC-RGCs. This is consistent with the immunoflu-
orescence staining results. As we had divided the FC-RGCs 
into HP-RGCs and LP-RGCs, an additional, more detailed 
quantitation of the quantitative RT–PCR data was performed 

to examine whether our assumption was valid (Figure 9B). 
The expression of the Thy-1, TUJ 1, Brn3b, syntaxin 1, and 
GFAP mRNAs was analyzed in the HP and LP groups, and 
to our surprise, there were no significant differences in the 
mRNA expression levels, except for GFAP.

We next used flow cytometry to further compare purity, 
and RGCs isolated using the TIP and TIPM methods were 
immunostained with an anti-Brn3a antibody and analyzed 

Figure 6. Representative traces of 
membrane potential in current-
clamp mode. Spontaneous action 
potentials recorded from primary 
cultured RGCs purified by TIP and 
TIPM method at the second to the 
fourth day. No current injection was 
applied. Membrane potential was 
current-clamped at around -55 mV 
(A). In some cells action potentials 
were not produced spontaneously, 
indicating these were not RGCs (B).

Figure 7. RGC purity. Confocal double immunofluorescence of retinal ganglion cell (RGCs) from the two-step immunopanning (TIP) 
and two-step immunopanning-magnetic (TIPM) methods shows the costaining of Thy-1 (A and E) and MAP2 (B and F). 4’,6-diamidino-
2-phenylindole (DAPI) nuclear staining is shown in C and G, and in the merged images in (D) and (H). Cells negative for Thy-1 and MAP2 
are regarded as non-RGCs and are marked with Arabic numbers (D and H). Visual counting of immunostained cells seeded at the same 
density demonstrates that seven cells in a 200X visual field were not labeled by Thy-1 or MAP2 in the TIP groups while only three cells 
were negative in the TIPM group. Scale bars = 100 μm. 
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with FACS. The results (Figure 10) showed that 80.97±5.45% 
of the cells from the TIP method and 95.41±3.23% of the cells 
from the TIPM method were Brn3a-positive, indicating that 
the TIPM method obtained higher-purity RGCs (Figure 3C).

DISCUSSION

Cultured RGCs will be an important and almost indispens-
able tool for the study of retinal visual physiology and patho-
physiology. Until recently, numerous approaches, including 
TIP methods [25], magnetic separation methods [19,23], 
retrograde labeling with fluorescent dyes combined with a 
pull-off technique [24,38], and flow cytometric methods [20] 

Figure 8. Rare labeling of astro-
cytes and amacrine cells. Syntaxin 
1-labeled amacrine cells (A, green) 
and glial fibrillary acidic protein 
(GFAP)–labeled astrocytes (B, 
red) cells were rarely detected 
in the fields of cells. Nuclei were 
visualized using 4’,6-diamidino-
2-phenylindole (DAPI; blue). Scale 
bars = 100 μm.

Figure 9. Quantitative expres-
sion of cell markers in isolated 
RGCs. A: Quantitative real-time 
PCR for glial fibrillary acidic 
protein (GFAP), syntaxin 1, and 
Thy-1 of retinal ganglion cells 
(RGCs) isolated with the two-step 
immunopanning (TIP), two-step 
immunopanning-magnetic (TIPM), 
and flow cytometry (FC) methods. 
The Thy-1 levels in FC were the 
highest (p<0.05), and the syntaxin 
1 levels were the lowest (p<0.05), 
while GFAP were zero. This indi-
cates that the purity of the RGCs 
from FC is the highest, followed by 
TIPM, and the RGC purity of TIP 
is the lowest of the three methods. 
B: Relative mRNA levels of Thy-1, 
TUJ-1, Brn3b, syntaxin 1(syn), and 
GFAP from RGCs isolated with 
the FC method (high purity and 
low purity). There were no signifi-
cant differences in the mRNA 

expression levels, except for GFAP. Data expressed as relative expression to the housekeeping gene β-actin. All relative RNA ratios expressed 
as the mean ± standard error of the mean (SEM; n = 9).
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have been established to isolate and purify RGCs in attempts 
to study retinal pathophysiology. Labeling RGCs with retro-
gradely transported fluorescent marker that had been injected 
into a fiber tract or target nucleus isolated RGCs from post-
natal retinas with nearly 100% purity; however, the yield was 
sacrificed for purity, and the experiment is time-consuming 
and requires expensive instrumentation [38]. The TIP, TIPM, 
and FC methods are currently the most commonly used 
methods, but they vary greatly in experimental principles, 
procedures, and RGC purity, yield, and viability. The basis 
and key to a successful study is selecting the most effective 
and appropriate method for purifying RGCs. However, there 
has been no specific comparison with which to benchmark 
these methods and determine which are the most appropriate.

The TIP method has been widely used to purify RGCs. 
It has been reported that the purity of RGCs isolated with 
TIP ranges from 50% to 99.5% [8,21,30], but we achieved 
approximately 81% in our study, even though we had 
repeated the whole experiments dozens of times. To find the 
main reasons for this discrepancy, we coated the panning 
dishes only with 50 mM Tris-HCl as negative control but found 
that many cells were still attached to the plate, suggesting that 
most of the contaminating cells had absorbed on the plate, 
even though we used a low absorption plate (Nunc, Thermo, 
Denmark). Therefore, we insist that purity higher than 90% 
is difficult to achieve, and it is difficult to maintain a constant 
yield. Furthermore, the binding affinity between the RGCs 

and the anti- Thy-1 antibody is not strong, and plate swinging, 
cell  clusters, and undigested retinal tissue may, in part, 
cause the variable yield. However, although the purity of the 
RGCs from the TIP method was not as high as that from 
the TIPM method, their viability and longevity were much 
higher, which are essential and particularly important in some 
studies. This method is particularly ideal for experiments 
in which the presence of a small number of contaminating 
cells could be ignored without any obvious impact on the 
experimental results but that require a large quantity of highly 
viable RGCs for a long period.

The TIPM method introduced by Samin Hong [19] is 
faster and less complicated than the TIP method, as summa-
rized in Table 2. The TIPM method not only has the advan-
tage of a more stable yield but also has a much higher purity 
compared with the TIP method, even though the TIP-RGCs 
have a short cell survival time and lower viability. However, 
if the experimental cycle is short and/or highly pure RGCs 
with specific activity are required, TIPM-RGCs are the best 
source. Nevertheless, TIPM requires highly skilled hands, 
and the cost was slightly higher than that of the TIP method.

Flow cytometry has been used for cell sorting for many 
years. Samin Hong et al. compared the purity of the RGCs 
from the TIP and TIPM methods in 2012 [20], but they did 
not analyze FC, which is an ideal and efficient approach for 
cell sorting. Using FC, several million cells can be screened 
within a short time, and subpopulations and single cells can 

Figure 10. Flow cytometry analysis of the purity of RGCs sorted with the TIP and TIPM methods. The retinal ganglion cells (RGCs) were 
identified by staining with fluorescein isothiocyanate (FITC)–conjugated mAb against Thy-1 (Ex: 490 nm; Em: 520 nm).
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be isolated from within mixed-cell populations, even when 
the cells are present at frequencies as low as 10−6 within 
the population [39]. In our experiment, 5.4±2.7 × 103 RGCs 
were obtained per retina, and this reduced yield is due to the 
increased vulnerability of the cells to the intricate process and 
the long-term mechanical separation, which may also reduce 
the activities of RGCs. Although this number is not sufficient 
for protein analyses or additional biochemical approaches 
that require a great quantity of cells, their purity can almost 
reach 100%, and we can easily control the relative purity 
of RGCs. Therefore, FC is a suitable choice for studies that 
require extremely pure RGCs. If a large number of RGCs with 
100% purity are required, the method could be scaled up by 
increasing the number of retinas and extending the sorting 
time. However, the reduced viability of cells collected by this 
method will limit their use to experiments of short duration 
only.

Collectively, this is the first report to compare the three 
most common methods for purifying RGCs from newborn 
rat retinas by analyzing the purity, yield, and viability. Our 
study found that the RGCs isolated with the TIP method 
possess the highest viability and yield but low purity; the 
TIPM method was the most reliable, as the RGCs produced 
using this method exhibited considerable purity, yield, and 
viability. The purity of the RGCs from the FC method can 
reach approximately 100%, but their yield was low with the 
same number of retinas. Although factors such as increasing 
the amount of starting tissue and reducing the isolation and 
sorting times may improve yield and viability by the FC 
method, an area that may have greater impact on cell viability 
of RGCs isolated by all methods is modification of the culture 
conditions of these cells to permit greater survival.

In summary, our study demonstrates that TIP, 
TIPM, and FC can isolate RGCs from newborn rats, and 
each  approach  has  its own  pros  and cons. The  research 
provided a solid practical basis or at least a reference for 
selecting the method for purifying RGCs for subsequent 
experiments.
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