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ABSTRACT Recent advances in genome resequencing have led to increased interest in prediction of the
functional consequences of genetic variants. Variants at phylogenetically conserved sites are of particular
interest, because they are more likely than variants at phylogenetically variable sites to have deleterious
effects on fitness and contribute to phenotypic variation. Numerous comparative genomic approaches have
been developed to predict deleterious variants, but the approaches are nearly always assessed based on
their ability to identify known disease-causing mutations in humans. Determining the accuracy of
deleterious variant predictions in nonhuman species is important to understanding evolution, domestica-
tion, and potentially to improving crop quality and yield. To examine our ability to predict deleterious
variants in plants we generated a curated database of 2,910 Arabidopsis thaliana mutants with known
phenotypes. We evaluated seven approaches and found that while all performed well, their relative ranking
differed from prior benchmarks in humans. We conclude that deleterious mutations can be reliably pre-
dicted in A. thaliana and likely other plant species, but that the relative performance of various approaches
does not necessarily translate from one species to another.
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Dramatically increased numbers of reference genomes and whole
genomeresequencingdata setshave facilitated thediscoveryof sequence
variants and increased interest in the annotationof functional variants in
many organisms. Functional annotation can yield insight into the
genetic basis of phenotypic variation and is often a critical step in the
identification of genes and variants underlying human disease (Ahituv
et al. 2007; Cooper and Shendure 2011). In particular, interest in
identifying putatively deleterious variants has increased, because these
variants may contribute substantially to phenotypic variation (Manolio

et al. 2009; Thornton et al. 2013). Because deleterious variants aremore
likely to disrupt phylogenetically conserved sites, the availability of
comparative genomics data has made it possible to develop computa-
tional approaches to identifying deleterious variants genome-wide (Ng
and Henikoff 2006). Although a number of approaches have been de-
veloped to identify deleterious variants within noncoding sequences
(e.g., Pollard et al. 2010; Kircher et al. 2014), most have focused on
variants that alter the amino acid sequence of proteins (Ng andHenikoff
2006). This focus on amino acid substitutions in protein coding se-
quences is in part driven by the observation that amino acid-altering
single nucleotide polymorphisms (SNPs) are more often associated
with phenotypic variation than other classes of variants, but also be-
cause they are the most readily identifiable class of variants that are
likely to have a biological impact (1000 Genomes Project Consortium
et al. 2012; Fay 2013; Stenson et al. 2014).

While identification of disease-causing and potentially “actionable”
genetic variants is fundamental to personalized medicine, identifying
deleterious variants is also broadly relevant to understanding the ge-
netic basis of phenotypic variation. In humans, annotation of deleteri-
ous variants improves prediction accuracy of complex traits (Dudley
et al. 2012). For domesticated organisms, complementation of recessive
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deleterious variants between haplotypes is thought to be one of the
primary mechanisms underlying heterosis (Charlesworth and Willis
2009). This suggests that identification of deleterious alleles may be
applied to hybrid breeding strategies (Yang et al. 2017). Elevated pro-
portions of deleterious relative to neutral variants in domesticated spe-
cies suggest a cost of domestication (Moyers et al. 2018; Lu et al. 2006;
Cruz et al. 2008; Rodgers-Melnick et al. 2015; Liu et al. 2017). Studies of
the genomic distribution and genetic contribution of deleterious vari-
ants can contribute both to understanding the origin and domestication
of crop species and to advancing breeding and crop improvement
strategies (Morrell et al. 2012).

Accurate prediction of deleterious variants is a key component of
assessing their contribution to phenotypic variation. Numerous ap-
proaches for predicting deleterious variants have been developed. The
performance of an approach is typically assessedusing the proportion of
known, disease-causing human variants that are accurately classified as
deleterious. Benchmarking of various approaches using standardized
test sets has shown substantial variability among approaches, and
improved performance is often achieved through combining results
from multiple tools (Thusberg et al. 2011; González-Pérez and López-
Bigas 2011; Olatubosun et al. 2012; Grimm et al. 2015). However, the
causes of performance differences across approaches are not well un-
derstood. While all approaches rely on sequence conservation at the
phylogenetic level to identify deleterious variants, some approaches also
incorporate protein structure, physical or biochemical properties of
amino acid changes, or other attributes of protein sequence when they
are available. The earliest conservationmetrics used heuristic measures,
sometimes including filtering or weighting to account for phylogenetic
distance (Sunyaev et al. 1999; Miller and Kumar 2001; Ng andHenikoff
2003). More recent approaches have incorporated evolutionary models
that account for phylogenetic distance based on putatively neutrally
evolving nucleotide sites (Chun and Fay 2009; Davydov et al. 2010).
Reference bias and the alignments used to calculate conservation met-
rics are not often emphasized, but are important for making accurate
predictions and may account for some of the variability among predic-
tions (Chun and Fay 2009; Hicks et al. 2011; Adzhubei et al. 2013).
Additionally, different predictions have been found using human-based
or mouse-based queries of the same substitution (Miosge et al. 2015).
The accuracy of predictions is particularly dependent on the availability
of annotated genomes among related species and the potential to gen-
erate sequence alignments.

Despite most approaches being developed for and applied to hu-
mans, there has been growing interest in identifying deleterious variants
in non-human species in order to understand genomic patterns of
variation and their contribution to complex traits, especially in plants.
Patterns of deleterious variation have been examined in Arabidopsis
thaliana (Cao et al. 2011), rice (Günther and Schmid 2010; Liu et al.
2017), maize (Mezmouk and Ross-Ibarra 2014; Rodgers-Melnick
et al. 2015), sunflower (Renaut and Rieseberg 2015), poplar (Zhang
et al. 2016), barley, and soybean (Kono et al. 2016). However, the accu-
racy of predictions in plants has only been examined for a small number
of known variants (Günther and Schmid 2010) and only in the past few
years have a diverse set of plant genomes and protein homologs become
available (Goodstein et al. 2012). Furthermore, plants are known to have
a larger number of multi-gene families and a higher frequency of
polyploidy than occurs in mammals (Lockton and Gaut 2005). These
genome-specific factors influence whether a sequence variant is truly
deleterious in a given species (Comai 2005; Charlesworth 2012).

Thegoalof this studywastoevaluate theabilityof variousapproaches
to predict deleterious variants in plants. Themodel systemA. thaliana is
a particularly attractive plant species for evaluating approaches that

predict deleterious variants because decades of basic research in devel-
opment, physiology, cell biology, and plant-pathogen interactions have
identified large numbers of amino acid-altering mutations with phe-
notypic consequences. We identified seven approaches that can predict
deleterious variants outside of humans (Table S1). Among these ap-
proaches, SIFT (Ng and Henikoff 2003), PolyPhen2 (Adzhubei et al.
2013) and PROVEAN (Choi et al. 2012) generate their own alignments
using hits from non-redundant protein databases, whereas MAPP
(Stone and Sidow 2005), GERP++ (Davydov et al. 2010), and two
versions of a likelihood ratio test (Chun and Fay 2009) make predic-
tions using pre-specified alignments as input (Table S1). Because
new genome sequences are continually becoming available, the
BAD_Mutations pipeline was developed to flexibly identify homologs
and generate alignments for any protein of interest (Kono et al. 2016).
BAD_Mutations uses TBLASTX (Altschul et al. 1990) to identify the
best match (homolog) from each specified genome and aligns them
with PASTA (Mirarab et al. 2015). For the four approaches that require
alignments, we used the BAD_Mutations pipeline applied to 42 plant
genomes. BAD_Mutations was also used to implement two approaches
based on a likelihood ratio test (Chun and Fay 2009; Kono et al. 2016).

Toevaluatepredictionsofdeleteriousvariants inplants,wegenerated
a curated database of 2,910A. thalianamutants with knownphenotypic
alterations. We evaluated the ability of seven approaches to identify
these deleterious variants and found that while performance was better
than similar assessments in humans, the relative ranking and the high-
est performing approach differed from previously reported compari-
sons using human data. Our results demonstrate that reliable
prediction of deleterious variants can be achieved in A. thaliana, and
likely other plant species, expanding the potential value of using dele-
terious variants to understand naturally occurring variation and to
improve crop breeding strategies.

MATERIALS AND METHODS

Generation of a curated set of Arabidopsis
thaliana mutations
We curated a set of amino acid-altering mutations with phenotypic
impacts. Both morphological and biochemical phenotypes were repre-
sented, and mutations were in both single-copy and duplicated genes.
These mutations were obtained from two sources. We generated a
manually curated set of 542 amino acid-alteringmutations in 155 genes
with phenotypic effects that are described in the literature. These
mutations were found by searching the Arabidopsis Information Re-
source (http://www.arabidopsis.org) for genes with either dominant or
recessive alleles that differ by nucleotide substitutions. We also identi-
fied mutations using a literature search in Google Scholar (http://
scholar.google.com). For each variant, we recorded the amino acid
substitution, position, and link to the published paper (Table S2). We
excluded nonsense mutations because they frequently completely elim-
inate gene function. We identified a second set of 2,617 amino acid-
altering mutations in 960 genes from the manually curated UniProt/
Swiss-Prot database (http://www.uniprot.org/) (Boutet et al. 2016). The
two sets were independently generated and had an overlap of 249 mu-
tants. Using mutants with named alleles as a proxy for those with mor-
phological vs. biochemical phenotypes, 65% of our manually curated set
and 33% of the Swiss-Prot set had macroscopic phenotypes. Duplicated
genes were defined by those proteins with a significant BLASTP hit
(E-value , 0.05) to another A. thaliana protein with. 60% identity. By
this criterion 466 of 995 proteins were classified as duplicated.

Single nucleotide polymorphisms (SNPs) without any known phe-
notype were obtained from a set of 80 sequenced A. thaliana strains
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(Ensembl, version 81, “Cao_SNPs”, (Cao et al. 2011)). At the time of
download, these were the only SNP set available for unrestricted use.
After filtering out sites with heterozygous or missing genotype calls,
there were 10,797 biallelic amino acid-altering SNPs in the 995 proteins.
We used a subset of 1,583 common SNPs (.10%) as those least likely
to have phenotypic effects. Our rationale is that on average, strongly
deleterious alleles are less likely to reach high frequency in a population,
owing to the effects of purifying selection (Fay et al. 2001). We also
assessed performance by measuring the enrichment of deleterious
variants predicted for rare compared to common polymorphisms
(Boyko et al. 2008). A second set of common amino acid-altering SNPs
were identified in an independent set of genes. Excluding the original
set of 995 genes, we randomly selected 1,000 proteins from 35,386
peptides in the A. thaliana database. We removed 21 that carried no
amino acid polymorphism in the 1,001 genomes project (http://
www.1001genomes.org). In the remaining 979 genes, we identified
40,736 biallelic amino acid altering SNPs in the 1,001 genomes project,
of which 3,717 were common (.10%).

Performance evaluations of seven approaches
We assessed amino acid substitutions using seven approaches:
LRT (Chun and Fay 2009), LRT-masked (33), PolyPhen2 (Adzhubei
et al. 2010), SIFT 4G (Vaser et al. 2016), Provean (Choi et al. 2012),
MAPP (Stone and Sidow 2005) and GERP++ (Davydov et al. 2010).
PolyPhen2 predictions were generated using the standalone software
(v2.2.2) with the PolyPhen2 bundled non-redundant database
(uniref100-release 2011_12) and the probabilistic variant classifier
using the default HumDiv model. Precomputed SIFT 4G predictions
were obtained for A. thaliana (TAIR10.23) (http://sift.bii.a-star.edu.
sg) and are based on the UniRef90 database (2011). SIFT 4G predic-
tions were not available for 855 substitutions, predominantly because
the amino acid change involved more than one nucleotide change
within a codon. Provean predictions (v1.1.5) were generated for all
mutations using NCBI’s non-redundant database (04/02/2016). MAPP
and GERP++ predictions were generated using BAD_Mutations align-
ments and trees (see below). GERP++ generates predictions for single
nucleotide positions rather than codons, based on a deficit of observed
substitutions compared to that expected given a neutral substitution
rate. To assess GERP++ performance we used the GERP++ score at the
first, second or third position of the codon if the amino acid substitu-
tion could occur by a single change at one of those positions and the
average of the GERP++ scores at the first and second positions for all
other types of changes. In addition, because GERP++ did not initially
perform well on the A. thaliana data using neutral substitution rates
estimated from each alignment (default) we used a uniform neutral rate
of 10 substitutions per site across all genes.

Implementation of BAD_Mutations pipeline
Predictions using a likelihood ratio test (LRT) were performed with the
BAD_Mutations pipeline (Kono et al. 2016). The pipeline is comprised
of Python and Bourne Again Shell (BASH) scripts and incorporates
several open-source tools, including the alignment tool PASTA
(Mirarab et al. 2015) and maximum likelihood methods implemented
in HyPhy (Pond et al. 2005). The processing step of BAD_Mutations
consists of five major subcommands: (1) setup; (2) fetch; (3) align; (4)
predict; and (5) compile (Figure S1). The setup subcommand generates
the configuration files. The fetch subcommand downloads gzipped CDS
FASTA files from both Phytozome (https://phytozome.jgi.doe.gov/pz/
portal.html) and Ensembl Plants (http://plants.ensembl.org/index.html),
and then creates BLAST databases for identifying homologs. The align
subcommand uses BLAST to identify homologs of any query protein and

generates a protein alignment and phylogenetic tree using PASTA
(Mirarab et al. 2015). The predict subcommand generates predictions
for a list of codons of interest by sending a custom batch command to
implement a likelihood ratio test using HyPhy. The likelihood ratio test
compares the log likelihood of evolution at a single codon under a neutral
model (dN = dS) to a model allowing for constraint (dN = vdS), where
dN and dS are the synonymous and nonsymous substitution rates and
v is a free parameter for selective constraint (Chun and Fay 2009). The
compile subcommand is to generate the report and p-values. The user
manual, including a brief tutorial, is available at https://github.com/
MorrellLAB/BAD_Mutations/blob/master/Manual/Manual_v1.0.md.

The BAD_Mutations pipeline makes use of sequenced and anno-
tated genomes. We used BLAST searches of the A. thaliana gene se-
quences against 42 Angiosperm genomes, retaining the top hit from
each species with a BLAST E-value threshold of 0.05. The homolog
searches were restricted to Angiosperm genomes to avoid extensive
saturation of synonymous sites. Protein alignments were generated
with PASTA (Mirarab et al. 2015), and a likelihood ratio test (LRT)
for constraint on each codon of interest was calculated using HyPhy
(Pond et al. 2005). Sequences with ‘N’s or other ambiguous nucleotides
were discarded prior to the likelihood ratio test. The LRT differs com-
pared to its original formulation (Chun and Fay 2009) in that: i) dS
was estimated using all codons for each gene separately, ii) query se-
quences were optionally masked (the entire sequence changed to N =
missing) in the likelihood calculation to avoid any reference bias and
iii) branches with dS greater than 3 were set to 3 to avoid spuriously
high estimates of dS. Additionally, the original LRT used heuristics to
eliminate sites with dN . dS, the derived allele present in another
species, or sites with fewer than 10 species in the alignment. Rather
than eliminating sites, we used logistic regression to provide a single
probability of being deleterious based on the LRT test and these addi-
tional pieces of information.

Logistic regressionwasappliedusingboththemaskedandunmasked
LRT p-values, where the masked p-values were generated from align-
ments without the A. thaliana reference allele. For the unmasked lo-
gistic regression, we used the terms log10(LRT p-value), dN/dS, Rn, and
An, where Rn and An are the number of A. thaliana reference and
alternative (i.e., mutant) amino acids observed in the alignment, re-
spectively. For the masked model, we replaced An and Rn with the
absolute value ofRn –An and themaximumofRn andAn, respectively.
For both models p-values , 1e-16 were set to 1e-16 and constraint
values. 10 were set to 10. Ten-fold cross-validation was used to assess
the fit of the logistic regression. The average area under the ROC (re-
ceiver operating characteristic) curve based on cross-validation was
0.9575 (unmasked) and 0.9471 (masked). Because these values were
nearly identical to the performance of themodel fit to the entire dataset,
0.9581 (unmasked) and 0.9471 (masked), we used the logistic regres-
sion coefficients from the full dataset:

logðp=ð12 pÞÞ ¼ 2 2:4072 0:2139 � LRTðunmaskedÞÞ2 0:2056

� constraint þ 0:07368 � Rn2 0:1236 � An

logðp=ð12 pÞÞ ¼ 2 2:4532 0:1904 � LRTðmaskedÞ2 0:1459

� constraint þ 0:2199 �maxðRn;AnÞ2 0:2951

� absðRn2AnÞ

Sensitivity, specificity, and area under the curve (AUC)were calculated
for each approach using the pROC package in R (Robin et al. 2011).
We define sensitivity as the proportion of phenotype-altering variants
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that are predicted to be deleterious, and specificity as the proportion
of variants without known phenotypic effects that are predicted to be
neutral. Confidence intervals for each were calculated by 2,000 repli-
cates of stratified bootstrapping, where each replicate contains the
same number of positives and negatives as in the original sample.

Combined predictions were generated based on the combined
scores of six approaches: LRT, LRT-masked, PolyPhen2, Provean,
GERP++, and MAPP. SIFT 4G was not included in the combined
predictions because it had missing predictions for a large number (855)
variants. Sites with missing predictions from one or more of the
remaining approaches (n = 215) were removed. Combined predictions
were generated using: 1) logistic regression with each approach’s score
as a predictive variable, 2) support vector machine, 3) random forest,
4) linear discriminant analysis and 5) generalized linear model with
lasso penalized maximum likelihood implemented by the glmnet pack-
age in R (Friedman et al. 2010). The formula used for the ensemble
methods was T�LRT+LRTm+PPH+PROVEAN+SIFT+GERP+MAPP,
where T is a vector of 0/1 for true negative and true positive, and the
explanatory terms are the raw scores from each of the singular predic-
tion approaches. The performance of each model was assessed by AUC
values obtained from 10-fold cross-validation. The R script is
available at https://github.com/MorrellLAB/BAD_Mutations/blob/master/
Manuscript_Scripts/script/ensemble.R

Availability of data and materials
LRT predictions were implemented in the Python package BAD_
Mutations which is freely available from http://github.com/MorrellLAB/
BAD_Mutations.git. All the scripts used for data analysis in this manu-
script are available at https://github.com/MorrellLAB/BAD_Mutations/
tree/master/Manuscript_Scripts. Alignments of CDS from 42 plant species
and Table S2 are available at Data Repository of the University of
Minnesota: https://doi.org/10.13020/D6N69S. Supplemental material
available at Figshare: https://doi.org/10.25387/g3.6998387.

RESULTS

Curation of a test set of Arabidopsis thaliana mutants
To evaluate approaches that predict deleterious variants, we generated a
database of A. thaliana amino acid substitutions from mutants with de-
scribed phenotypic alterations and common amino acid polymorphisms
unlikely to affect fitness. Out of 2,910 mutants in 995 genes, 81% were
frommanually curated entries in UniProtKB/Swiss-Prot (n = 2,368), 10%
were from our own literature curation (n = 293) and 8.6% were indepen-
dently identified in both sets (n = 249) (Table S2). Within the same
995 genes, 1,583 common amino acid polymorphisms were identified
in 80 accessions (Cao et al. 2011). For our analyses, we assume mutations
that cause a deviation from the wildtype phenotype are likely deleterious.

Performance of approaches designed to identify
deleterious variants
Using the database of A. thaliana mutations, we assessed seven ap-
proaches for their ability to distinguish deleterious and neutral changes.
The approaches were selected because they can generate predictions in
non-human organisms. Comparison of sensitivity to specificity showed
that each approach could reliably distinguish deleterious and neutral
substitutions (Figure 1). A likelihood ratio test (LRT) implemented
using the BAD_Mutations pipeline showed significantly higher perfor-
mance than all other approaches as measured by the area under the
curve (AUC) of sensitivity vs. specificity (Figure 1, Table S3). A refer-
ence masked version of LRT (LRTm), designed to eliminate reference
bias (Simons et al. 2014), was the approach with the second highest

performance. PROVEAN and PolyPhen2 showed similar performance
as measured by AUC, significantly higher than SIFT, GERP++ and
MAPP. The relative ranking by AUC was identical when 1,050 muta-
tions with missing predictions for at least one approach were removed
(Table S3). We also found very similar measures of performance when
we used common SNPs in a set of independent, randomly selected
genes rather than common SNPs within the 995 genes with known
phenotype altering mutations (Table S3).

A second means of assessing performance is through comparing
predictions of rare vs. common variants. Common variants are likely
neutral or nearly neutral, whereas deleterious alleles are expected to be
kept at low frequency (Ewens 2004). Using SNPs identified in a set of
80 A. thaliana strains, we found each approach identified more dele-
terious SNPs at low compared to common frequencies (Figure 2).
At minor allele frequencies between 2/80 (2.5%) and 8/80 (10%), the
LRTm and SIFT predicted a lower proportion of deleterious SNPs
compared to the other approaches, indicating that they are less sensitive
to detecting alleles under weak selection. At the lowest frequency 1/80
(1.25%), which is expected to include many rare and potentially strongly
deleterious variants, LRT called the largest proportion of SNPs deleterious.

Performance across phenotypic and duplicate
gene categories
To further characterize differences inperformancewe compared class of
variants, including those identified by genome-wide mutant screens or
bydirectly targeting individualproteins.Mutants identifiedfromscreens
have grossmorphological or easily observable phenotypic effects and are
oftenassignedallelenames,whereasdirectedmutants arenotoftengiven
allele names and tend to have biochemical phenotypes. To compare
these twogroups,we split thedata into thosewithallele names (1,910), as
a proxy for those with gross phenotypes, and those without allele names

Figure 1 Comparison of approaches that distinguish deleterious and
neutral amino acid substitutions. The fraction of true positives
(sensitivity) vs. the fraction of true negatives (specificity) is shown for
seven approaches (LRTm is a masked version of LRT, PPH2 is Poly-
Phen2). The curves are based on 2,910 deleterious variants and 1,583
neutral variants. Vertical and horizontal dashed lines show the cutoff at
95% specificity and 95% sensitivity, respectively.
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(1,000), as a proxy for biochemical phenotypes. As measured by AUC,
some of the approaches performed better than others and performance
was more similar for the gross phenotypic class compared to the bio-
chemical class (Figure 3a). Both SIFT and PolyPhen2 demonstrated the
largest difference in performance for predicting mutations with gross
phenotypic alterations vs. biochemical phenotypes. For this type of mu-
tation, the performance of PolyPhen2 was comparable to the LRT.

Geneduplicationmay reduceprior selective constraints on aprotein,
enabling variants to occur at previously conserved sites (Kondrashov
et al. 2002). Thus, duplicated genes may pose challenges to predicting

deleterious alleles, and none of the approaches explicitly distinguish
orthologs and paralogs. We identified 466 of the 995 genes as dupli-
cated in A. thaliana based on BLASTP hits with 60% or more identity.
We compared the performance of these genes to the remaining single
copy genes. Each approach showed equal or better performance for
duplicated vs. single copy genes. SIFT had the largest increase in per-
formance (Figure 3b).

Approach dissimilarity and composite predictions
As reported previously (Doniger et al. 2008; Chun and Fay 2009;
González-Pérez and López-Bigas 2011; Olatubosun et al. 2012), we
found substantial disagreement in predictions among the approaches.
At a 95% specificity threshold, 93.6% of mutants were predicted
deleterious by one or more approach but only 51.3% were predicted
deleterious by at least six of the seven approaches (Table S2). Sim-
ilarly, only 0.25% of common SNPs were predicted deleterious by all
approaches but 16.6% were predicted deleterious by at least one
approach (LRT and LRTm were considered separately). Comparing
the disagreement between approaches, we found LRT and LRTm to
produce very similar predictions, but to be distinct from most of the
other approaches (Figure 4). We used five models that combined the
predictions of all approaches except for SIFT, which had a higher
proportion of missing calls. Only two of these ensemble models, a
linear discriminant analysis and a generalized linear model with
penalized maximum likelihood, performed significantly higher than
LRT based on an AUC (Table S4).

DISCUSSION
In this study, we benchmarked the potential for several widely-used
approaches to distinguish putatively deleterious and neutral amino acid
substitutions in A. thaliana. Prior evaluations of performance focused
on large sets of mutants for single proteins or known human disease

Figure 2 The proportion of SNPs called deleterious across frequency
classes. The fraction of SNPs called deleterious by each approach
(legend) at its 95% specificity threshold across five frequency classes,
labeled by the number of minor alleles present (n = 80). The minor
allele is defined as the allele that is less frequent in the sample. Sample
sizes for the five classes are 5,303 (1), 1,646 (2), 1,250 (3-4), 1,015 (5-8)
and 1,583 (.8).

Figure 3 Performance of approaches across different classes of sites. Performance is measured by the area under the curve (AUC) of the
approach’s sensitivity vs. specificity. A – comparison of mutants with biochemical (n = 1,000) vs. gross phenotypes (n = 1,910). B – comparison of
performance for substitutions in duplicated (n = 2,098) vs. single copy genes (n = 2,395). Confidence intervals were determined by 2,000
bootstrapping iterations.
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variants (Ng andHenikoff 2003; Adzhubei et al. 2013). Overall, we find
high performance across approaches in their ability to distinguish neu-
tral and deleterious variants, validating their use in plants. The highest
performance is achieved by a likelihood ratio test (LRT) implemented
using the BAD_Mutations pipeline, in this case using alignments from
42 plant genomes. However, the relative performance depended on the
test set and, as discussed below, differs from previous benchmarking
studies in humans. Thus, we recommend caution in interpreting slight
differences in performance and advocate the use of multiple methods to
achieve the highest confidence.

Below, we discuss our results along with characteristics of the
approaches and test data that may contribute to differences in predic-
tions and performance when applied to non-human species. One
important consideration is the distinction between deleterious variants
and those that impact protein function and have phenotypic conse-
quences.While these two groups are overlapping, they are not identical.
Because conservation between species is directly related to fitness, we
have used the term “deleterious” when referring to the prediction ap-
proaches. However, the test sets used to evaluate approaches are com-
posed of variants known to affect protein function or phenotype. Thus,
regardless of the nomenclature, any evaluation of approach perfor-
mance necessarily assumes a large overlap between conserved amino
acid positions and those that affect protein function as measured by
phenotype. Equally relevant, we use common variants as “neutral”
controls even though some common variants are likely to affect protein
function due to local adaptation (Hancock et al. 2011) or hitchhiking
(Chun and Fay 2011). Despite potential contamination, common var-
iants provide the only large set of negative controls that can be used for
training and estimating rates of false positives (Ng and Henikoff 2006).
Both common and rare variantsmay also have compensatory effects on
deleterious variants (Poon et al. 2005). These potential interactions
between variants further complicates the identification of truly delete-
rious variants in any species.

Phylogenetic power, alignments, and
reference databases
Phylogenetic power is critical to all comparative genomic approaches
that predict deleterious variants.Whenhomologs are too closely related,
not enough time has passed for neutral sites to accumulate amino acid
substitutions. When homologs are too distantly related, functional sites

may not be conserved due to compensatory changes or divergence in
homolog function (Marini et al. 2010; Breen et al. 2012; Jordan et al.
2015). The LRT differs from the other approaches examined in that it
uses synonymous sites as an internal control to account for the expected
amount of protein divergence under a neutral model. As such, even
homologs that are nearly identical in their amino acid sequences are
informative, given that they have accumulated changes at synonymous
sites. However, distantly related homologs are uninformative if diver-
gence at synonymous sites is saturated, thus the LRT should only be
applied to organisms where a sufficient number of related genomes are
available. In this study, the majority of total dS values for the gene
alignments was between 10 and 50, which provides sufficient diver-
gence to test the likelihoods of constraint and relaxation (Chun and Fay
2009). GERP++ is similar to the LRT in that it uses a neutral sub-
stitution rate to make its predictions but differs in that the neutral rate
must be specified rather than being estimated from synonymous sites
within the alignment. GERP++ also does not make use of the genetic
code to distinguish synonymous and nonsynonymous changes. In this
regard, GERP++ was not appropriately applied since we used a fixed
neutral rate for all genes rather than an alignment specific neutral rate.

Outof theapproaches compared,phylogeneticpower cannot explain
the differences between the LRT, MAPP, and GERP++ because they
used the same alignments. However, we did notice substantial differ-
ences in performance based on the number of ungapped sequences
present in the BAD_Mutations alignment at the position being queried
(Figure S2). Both LRT and LRTm performed better than the other
approaches when there were 10 or fewer sequences at the position of
interest. We did not see this pattern when we used the number of
sequences present at any position in the alignment, which was typically
close to 42. We also did not see this pattern when we examined
performance based on the number of sequences used by Provean or
PolyPhen2, typically over 100 per gene.

All approaches studied here use alignments to make their predic-
tions, making the protein database and choice of homologs to be
included in the alignment a critical step. For MAPP, GERP++, and
LRT we used alignments generated using the BAD_Mutations pipeline
whichqueriesproteins fromaset of annotated referencegenomes, in this
case from 42 Angiosperm species. SIFT and PolyPhen2 use the UniRef
database (2011), whereas PROVEAN uses the most recent non-
redundant protein database from NCBI. Both PROVEAN and Poly-
Phen2 are known to be sensitive to the choice of the reference database
and criteria for inclusion of homologs (Choi et al. 2012; Adzhubei et al.
2013). Despite the choice of homologs being an important step in
predicting deleterious substitutions, the use of a plant-specific or entire
non-redundant database does not appear to contribute to performance
differences: the target database used for prediction does not determine
the ranking of approaches in terms of their AUC (Figure 1).

Despite faster runtimeof theensemble approacheswithrespect to the
LRT-based approach, there are circumstances where the LRT-based
approachwould have higher accuracy. The LRT-based approaches have
higher performance in cases where there is shallow alignment depth
across the phylogeny, for example, in newly formed genes or rare
isoforms of a transcript. The LRT-based approach is able to estimate
substitution rates and predict the impact of a variant while the heuristic
approaches or the ensemble approaches would likely not make a pre-
diction, and return a missing value.

Training and test sets
Performance of an individual approach depends on both the training
and test sets used to measure it. Because performance is typically
measured using common SNPs and known disease variants in humans,

Figure 4 Dissimilarities among approaches. Dissimilarities were com-
puted by the pairwise number of disagreements between each
approach applied to mutants and common SNPs (n = 4,493). Dissim-
ilarities are represented by a tree based on hierarchical clustering and
values below nodes are bootstrap support based on 2,000 iterations.
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there has been some concern over the lack of independence between
training and test sets (Dong et al. 2015; Grimm et al. 2015). However,
another consideration that has not yet been examined is whether per-
formance in one species translates to other distantly related species,
which may not have the same availability of homologs from sequenced
genomes spanning a range of phylogenetic relatedness. The perfor-
mance of individual approaches could depend on the study system in
that some approaches may expect homologs at certain phylogenetic
distances, low rates of compensatory change, or low rates of gene
duplication.

Previous studies of the accuracy of prediction approaches made use
of five human test datasets (Dong et al. 2015; Grimm et al. 2015).We find
better performance across approaches in ourA. thalianadataset than that
reported for humans (Table 1). It is unclear why the approaches uni-
formly perform better in A. thaliana. One possibility is that the neutral
and deleterious variants in A. thaliana are more distinct from one an-
other than in humans. The very large proportion of phenotype changing
variants in ourA. thaliana test set that are identified as deleterious means
that this test data set is less useful for approach comparison due to the
small number of cases that are difficult to predict correctly.

Population and gene-specific performance
Because nearly all measures of performance use either common poly-
morphism or recently fixed amino acid substitutions as a proxy for
neutral SNPs,populationandgene-specific factors that influenceneutral
polymorphism are expected to influence measures of performance.
Humanshavea small effectivepopulationsizerelative toothermammals
(Leffler et al. 2012) and consequently a high ratio of nonsynonymous to
synonymous diversity (Fay et al. 2001; Kosiol et al. 2008). Thus, dis-
tinguishing neutral and deleterious variants may be more difficult in
humans than other species, and approaches trained using human poly-
morphismmay bemore conservative with respect to weakly deleterious
variants. In comparison, predicting deleterious variants in A. thaliana
may be facilitated by the fact thatA. thaliana has slightly larger effective
population size (Cao et al. 2011).

It should be noted that both demographic history and the process of
local adaptationcouldplay important roles in thedistributionofdeleterious
variants. In populations that are colonizing or expanding into novel
environments, the selective coefficients against individual variants may
change (Slotte et al. 2013), and locally adaptive variants may become
appreciably enriched. Both humans and A. thaliana are known to have
undergone demographic expansion in their recent evolutionary histories
(Hoffmann 2002; Finlayson 2005). While the relative extent of local ad-
aptation in these two species is difficult to quantify, both exhibit an excess
of low-frequency amino acid polymorphism characteristic of deleterious
variants (Lohmueller et al. 2008; Cao et al. 2011; Henn et al. 2016).

Another potentially important factor in predicting deleterious var-
iants is gene duplication. A. thaliana carries remnants of a whole

genome duplication along with numerous tandem duplications (The
Arabidopsis Genome Initiative 2000) more than are present in the
human genome (Lynch and Conery 2000). Gene duplication can lead
to relaxed selection during subfunctionalization or pseudogenization
(Ohno 1970), enabling amino acid variants to accumulate in recently
duplicated genes. However, we found very similar performance be-
tween duplicate and single copy genes, consistent with a similar finding
in humans using PolyPhen2 (Adzhubei et al. 2013). Because we only
included genes with known mutant phenotypes, the sample of recently
duplicated genes is limited.

Conclusions and future directions
Most approaches developed to predict deleterious mutations were
trained using human data and in many cases, can only be used for
human proteins (Li et al. 2009; Schwarz et al. 2010; Kircher et al. 2014).
This study demonstrates that several generalized approaches perform
exceptionally well in A. thaliana, implying that they should also work
well for other plant species. Because of the similarly high performance,
other considerations such as ease of implementation and compute time
may be considered when choosing an approach to identify deleterious
mutations in plants. Notably, LRT requires longer run times than any
of the other approaches, typically 5.2 hr of computing time per gene
compared to 14.5 and 9.4 min per gene for PolyPhen2 and Provean,
respectively. One way the BAD_Mutations pipeline could be sped up
while retaining the flexibility of querying customizable plant genomes is
by using heuristic measures of site-specific conservation rather than the
LRT. Provocatively, we found similar performance (AUC = 0.9551) for a
logistic model that only used the number of reference and alternative
alleles in the alignment (Rn and An). However, such heuristic measures
may not be robust to a change in the reference species and its distance to
other genomes in the database. A second approach would be to use
predictions from the combined output ofmultiple prediction approaches,
as this has been shown to be highly effective in humans (e.g., González-
Pérez and López-Bigas 2011). Although we did not find an ensemble
predictor that greatly improved performance, removing LRT predictions
did not reduce the performance of the ensemble predictions.
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n Table 1 Performance measured by AUC of approaches based on different test sets

Study Reference species Test set SIFT PPH2 LRT1 GERP++

Dong et al. (2015) Human SetI 0.76 0.81� 0.72 0.78
Human SetII 0.78� 0.76 0.67 0.67

Grimm et al. (2015) Human VariBenchSelected 0.70� 0.68 0.62 0.59
Human predictSNPSelected 0.79 0.79� 0.71 0.67
Human SwissVarSelected 0.68 0.71� 0.68 0.65

This study A. thaliana SwissProt 0.91 0.94 0.96� 0.92
A. thaliana Manual curation 0.94 0.96 0.97� 0.94

� Highest performing approach for a given test set.
1
LRT in this study used a different alignment pipeline than the LRT applied to the human test sets.
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