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Transplantation of pancreatic islets is a therapeutic
option to preserve or restore b-cell function. Our study
was aimed at developing a clinically applicable protocol
for extrahepatic transplantation of pancreatic islets. The
potency of islets implanted onto the omentum, using an
in situ–generated adherent, resorbable plasma-thrombin
biologic scaffold, was evaluated in diabetic rat and non-
human primate (NHP) models. Intraomental islet en-
graftment in the biologic scaffold was confirmed by
achievement of improved metabolic function and pres-
ervation of islet cytoarchitecture, with reconstitution of
rich intrainsular vascular networks in both species.
Long-term nonfasting normoglycemia and adequate
glucose clearance (tolerance tests) were achieved in both
intrahepatic and intraomental sites in rats. Intraomental
graft recipients displayed lower levels of serum bio-
markers of islet distress (e.g., acute serum insulin)
and inflammation (e.g., leptin and a2-macroglobulin).
Importantly, low-purity (30:70% endocrine:exocrine)
syngeneic rat islet preparations displayed function
equivalent to that of pure (>95% endocrine) preparations
after intraomental biologic scaffold implantation. More-
over, the biologic scaffold sustained allogeneic islet
engraftment in immunosuppressed recipients. Collec-
tively, our feasibility/efficacy data, along with the simplic-
ity of the procedure and the safety of the biologic scaffold
components, represented sufficient preclinical testing to
proceed to a pilot phase I/II clinical trial.

Intrahepatic islet transplantation has been the gold stan-
dard for clinical islet transplantation trials aimed at treating
patients with type 1 diabetes (T1D) and hypoglycemia
unawareness or with surgically induced diabetes (pancrea-
tectomy) (1). It has resulted in normalization of hemo-
globin A1c, improved glycemic control, and elimination
of severe hypoglycemic events, even in the absence of
insulin independence (2). Progressive graft dysfunction
has been observed in clinical trials years after intrahe-
patic islet transplantation, often requiring reintroduc-
tion of exogenous insulin. Long-term intrahepatic islet
dysfunction has been also observed in preclinical models
(3). Activation of an immediate blood-mediated inflam-
matory reaction (IBMIR) and hypoxia in the transplant
microenvironment after intrahepatic islet embolization
contributes to functional impairment and the loss of a
significant portion of the transplanted islets (4–7). Fur-
thermore, the hepatic first pass of orally administered
drugs exposes intrahepatic islets to higher concentra-
tions of diabetogenic immunosuppressive agents. Other
potential challenging factors in this setting include accu-
mulation of peri-insular fat (microsteatosis) in the liver
parenchyma (8–13). Moreover, chronic exposure of intra-
hepatic islets to endotoxins and other proinflammatory
agents absorbed through the gastrointestinal tract, in ad-
dition to the IBMIR, may trigger adaptive immune re-
sponses that are known to be associated with a higher
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incidence of acute and chronic rejection episodes, as well
as possibly facilitate recurrence of autoimmunity in trans-
planted subjects with T1D (2).

The final objective of developing an extrahepatic site
for islet transplantation is not only the ability to provide
physiologic portal drainage of endocrine pancreas secre-
tions but also the possibility of engineering the transplant
microenvironment for the development of successful
biologic replacement strategies that could avoid the need
for chronic recipient immunosuppression (14,15). Ideal
characteristics of such a site include sufficient space to
accommodate relatively large tissue volumes (e.g., low-
purity or encapsulated insulin-producing cell products), al-
low for minimally invasive transplant procedures, and
enable noninvasive longitudinal monitoring and access
for graft biopsy and/or retrieval, as well as physiologic
venous drainage through the portal system (14,15). An
additional advantage is the reportedly immunomodula-
tory effect of antigens delivered though the portal venous
system (portal tolerance) that was associated with lower
rejection rates in pancreas transplants with portal versus
systemically drained organs (16).

The omentum is easy to mobilize and adequately large
to accommodate islet grafts (300–1,500 cm2 surface area
in humans) (17,18). It is composed of two mesothelial
sheets containing rich capillary networks draining into
the portal venous system (19–21). Furthermore, intrao-
mental islet implantation was shown to improve meta-
bolic control in diabetic animal models (22,23).

We engineered a biologic scaffold by using plasma and
recombinant human thrombin (rhT), a serine protease
(factor IIa in the coagulation cascade) that catalyzes the
conversion of plasma fibrinogen into fibrin that polymer-
izes forming a clot. The intraomental site was tested by
implanting islets, embedded in situ into the resorbable
biologic scaffold, on the omentum of diabetic rat and
nonhuman primate (NHP) models with streptozotocin-
induced diabetes. Our data support the feasibility of the
approach that is currently in phase I/II clinical trials.

RESEARCH DESIGN AND METHODS

Animals
Studies involving animal subjects were performed under
protocols approved and monitored by the University of
Miami (UM) Institutional Animal Care and Use Commit-
tee. Animals were housed at the Division of Veterinary
Resources. Lewis (MHC, rat haplotype: RT1l) and Wistar
Furth (WF) (RT1u) rats (http://www.harlan.com) were
used as islet donors (.250 g males) and Lewis rats as
recipients (170–200 g females). For selected experiments,
rats with an indwelling jugular vein catheter (JVC) were
purchased. Rodents were housed in microisolated cages
with free access to autoclaved water and food. Both donor
and recipient cynomolgus monkeys (7.92 and 3.58 years
old, respectively) were obtained from the Mannheimer
Foundation (Homestead, FL) and were specific pathogen
free. Pair-housed monkeys were supplied with water ad

libitum and fed twice daily (24). UM holds Animal Welfare
Assurance A-3224-01, effective 12 April 2002, with the
Office of Laboratory Animal Welfare, National Insti-
tutes of Health, and is accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care.

Diabetes Induction and Metabolic Monitoring
Diabetes was induced by administration of streptozotocin at
60 mg/kg i.p. in rats (2 injections 2–3 days apart; Sigma-
Aldrich) (25) and 100 mg/kg i.v. in NHP (Tevapharm.com)
(7,22).

Rodents with nonfasting glycemic values $300 mg/dL
on whole blood samples obtained from tail pricking
(OneTouch Ultra glucometers [http://www.lifescan.com])
were used as recipients. Graft function was defined as non-
fasting glycemia ,200 mg/dL. At selected time points
after transplantation, a glucose tolerance test was per-
formed in rodents to evaluate graft potency (25). After
overnight fasting, an oral (oral glucose tolerance test
[OGTT]; 2.5 g/kg) or intravenous (intravenous glucose
tolerance test [IVGTT]; 0.5 g/kg) glucose bolus was admin-
istered, and glycemic values were monitored with portable
glucometers. The area under the curve (AUC) of glucose
was calculated as previously described (26). In the case
of allogeneic islet transplants, return to nonfasting hyper-
glycemic state was considered a sign of graft rejection.

In NHP, diabetes was defined as fasting C-peptide
levels ,0.2 ng/mL and a negative response (stimulated
C-peptide ,0.3 ng/mL) to a glucagon challenge performed
4 weeks after streptozotocin treatment (7,22). Heel-stick
glycemic values were monitored two to three times daily
(OneTouch Ultra). Subcutaneous insulin (Humulin R [https://
www.lilly.com] or Humulin R plus Lantus [http://www
.sanofi.us]) was administered based on an individualized
sliding scale as needed, aiming for fasting blood glucose
(FBG) and postprandial plasma blood glucose (PBG) levels
of 150–250 mg/dL poststreptozotocin and prior to trans-
plantation. Plasma C-peptide levels were assessed by elec-
trochemiluminescence immunoassay using a Cobas analyzer
(https://usdiagnostics.roche.com).

Plasma Collection
Blood obtained from venipuncture was collected into
microcentrifuge tubes containing 3.2% sodium citrate.
Plasma was obtained after centrifugation at 1,455g for
10 min at room temperature, and aliquots were stored
at 280°C and thawed before use.

Islet Isolation and Graft Preparation
Islets were obtained by enzymatic digestion, followed by
purification on density gradients using protocols stan-
dardized at the Diabetes Research Institute (DRI) for rats
(DRI Translational Core) (27), NHP (22), and humans
(DRI cGMP Human Cell Processing Facility) (1,28–30).

For evaluation of the effect of the degree of islet
preparation purity on intraomental engraftment and
function, Lewis rat islets were isolated and purified using
a standard technique (27), yielding .95% purity (pure
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fraction) as assessed by dithizone staining (Sigma-Aldrich)
(1,2). The pancreatic slurry containing exocrine tissue
clusters (lowest purity fraction) after islet purification
was maintained in culture and counted with the algorithm
used to determine islet equivalents (IEQ) (2). Before
transplantation, an aliquot of the final pure islet prod-
uct was mixed with the exocrine pancreatic tissue to
obtain a 30% pure islet cell product (3:7 v/v, islet vs.
exocrine tissue).

Islet Transplantation
Under general anesthesia, a substernal midline minilapa-
rotomy allowed exteriorizing the omentum that was
spread flat over a sterile field (Fig. 1). We previously
reported a similar intraomental flap transplant proce-
dure in NHP (22).

The rhT (Recothrom, National Drug Code no. 28400
[http://www.zymogenetics.com]) was reconstituted with the
0.9% NaCl included in the kit for rodents or with Dulbecco
PBS with Ca2+/Mg2+ (GIBCO [http://www.thermofisher.com])
in the NHP experiment. Final aliquots of rhT (1,000 IU/mL)
were stored at 220°C.

The transplantation procedure with the in situ gener-
ation of the islet-containing biologic scaffold is summa-
rized in Fig. 1. For rodent experiments, islet aliquots were
centrifuged (1 min, 200g), supernatant was discarded, and
islets were resuspended in syngeneic (autologous) plasma.
After another centrifugation, most of the excess plasma
was removed and the slurry of islets/plasma collected with
a precision syringe (hamiltoncompany.com). Similarly, in
the case of the NHP, islets were collected into a microcen-
trifuge tube, quick spun and washed twice in donor plasma

(obtained on day 21, stored at 4°C), and transported
to the operating room. Plasma excess was removed be-
fore collection of islets/plasma with use of a micropi-
pette (P1000). In both species, the islets/plasma slurry
was gently distributed onto the surface of the omentum
(Fig. 1A, b2, and c3) and then rhT gently dripped onto the
graft (Fig. 1A, c4), resulting in immediate gelling and adher-
ence of the islets to the omental surface. The omentum was
gently folded on itself to increase contact with and contain-
ment of the graft (Fig. 1A, b3, b4, and c5). In the NHP,
nonresorbable sutures were placed on the omentum outside
the graft area as reference for the time of retrieval (Fig. 1,
c5). In rodent experiments, nothing, sutures, or a plasma:
rhT mix (10:1 v/v) was used on the folded omentum. After
repositioning the omentum into the peritoneal cavity, ab-
dominal wall muscle and skin were sutured.

To avoid the potential confounding effect of variability
in islet preparations (31), for rat experiments aimed at
comparison of transplant sites or purity, equal numbers
of syngeneic islets, from large batch isolations, were
implanted in parallel into diabetic recipients in a biologic
scaffold or into the liver (25). In selected rats, survival
surgery to remove graft-bearing omentum after long-term
follow-up was performed to confirm prompt return to
hyperglycemia, thereby ruling out residual function of
native endocrine pancreas.

Immunosuppression
Clinically relevant immunosuppressive agents were used
in both rat and NHP allogeneic transplant models (32–
35). Rats received induction treatment with antilympho-
cyte serum (0.5 mL i.p. on day 23 [http://www.accurate

Figure 1—Intraomental islet implantation within a biologic scaffold. A: Schematic diagram of the transplant procedure. B: Procedure in rat.
C: Procedure in NHP. After midline laparotomy (b1), the omentum is gently exteriorized and opened (b2 and c1). The islet graft, resus-
pended in autologous plasma (c2), is gently distributed onto the omentum (b3 and c3). Recombinant human thrombin is added onto the
islets on the omental surface to induce gel formation (c4), and then the omentum is folded to increase the contact of the graft to the
vascularized omentum (b4 and c5). Nonresorbable stitches were placed on the far outer margins of the graft in the NHP (c5) for easier
identification of the graft area at the time of graft removal.
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.com.gr]) and mycophenolic acid (20 mg/kg/day starting
on the day of transplant for 2 weeks then tapered by one-
quarter of the dose every 2 days until day 20; Myfortic
[https://www.novartis.com]) (36) combined with cytotoxic
T-lymphocyte–associated protein-4 (CD152)–immunoglobulin
fusion protein (CTLA4Ig) (10 mg/kg i.p. on days 0, 2, 4, 6, 8,
and 10 and weekly thereafter; abatacept [Orencia] [http://
www.bms.com]), adapted from Safley et al. (35). The NHP
received anti-thymocyte (rabbit) globulin (10 mg/kg i.v.
on days 21, 0, 2, and 4 from transplant; thymoglobulin;
Sanofi), CTLA4Ig (20 mg/kg i.v. on days 0, 4, 14, 28, 56,
and 75 and monthly thereafter at 10 mg/kg; belatacept
[Nulojix] [http://www.bms.com]), and sirolimus (daily from
day 2, aiming at trough levels of 8–12 ng/mL; rapamycin
[http://www.lclabs.com]).

Biomarkers
Blood samples were collected from indwelling JVC at baseline
and after selected time points posttransplant. Insulin,
C-peptide, leptin, interleukin (IL)-6, and chemokine (C-C motif)
ligand 2 (CCL2) (formerly MCP-1) were measured using
commercial multiplex kits (http://www.emdmillipore.com)
and analyzed on a Luminex system. Levels of the rat acute-
phase proteins a2-macroglobulin and haptoglobin were mea-
sured using specific ELISA kits (http://www.lifediagnostics
.com) on a kinetic microplate reader (SoftMaxPro ver-
sion 5; https://www.moleculardevices.com).

Histopathology
Tissue sections (4 mm thick) were stained with hematoxylin-
eosin for morphologic assessment of the grafts. Masson
trichrome staining (Chromaview, Richard-Allan Scientific
[https://vwr.com]) was performed on selected grafts to re-
veal collagen (blue stain) or muscle fibers and cytoplasm (red
stain) (25). Immunofluorescence was performed using spe-
cific antibodies to detect insulin (1:100; guinea pig anti-
insulin [http://www.dako.com]), glucagon (GCG) (1:100;
rabbit anti-glucagon [http://www.biogenex.com]), endo-
thelium (1:20; rabbit anti-CD31 [http://www.abcam.com]
or 1:50; von Willebrand factor [vWF], rabbit anti-vWf
[http://www.emdmillipore.com]), smooth muscle actin
(SMA) (1:50; rabbit anti-SMA [http://www.abcam.com]),
and T cells (1:100; CD3, rabbit polyclonal anti-human
[http://www.cellmarque.com]). Secondary antibodies used
were goat anti–guinea pig Alexa Fluor 568 (1:200) and
goat anti-rabbit Alexa Fluor 488 (1:200; Invitrogen
[http://www.thermofisher.com]). Digital images were ac-
quired using an SP5 inverted confocal microscope (http://
www.leica.com) at the DRI Imaging Core Facility.

Scanning Electron Microscopy
Human plasma was obtained from volunteers who gave
consent (IRB20091138). Human islets and plasma/
thrombin clots with or without human islets were fixed in
2% glutaraldehyde in PBS (0.137 mol/L NaCl, 0.01 mol/L
Na2HPO4, and 0.0027 mol/L KCl, pH 7.4) for $3 h and
stored in fixative at 4°C. After three washes, samples were
postfixed with 1% osmium tetroxide in PBS, dehydrated in

ethanol, dried with hexamethyldisilazane, dispersed in plas-
tic weigh boats, and outgassed overnight. Preparations
were adhered by gentle tapping with an aluminum stub,
covered with a carbon adhesive tab, and then coated
with a 20-nm-thick layer of palladium in a plasma sput-
ter coater and imaged at the UM Center for Advanced
Microscopy using a field emission scanning electron
microscope (FEI XL-30).

Statistical Analysis
Data were analyzed using Excel (https://www.microsoft.com),
SigmaPlot (http://www.sigmaplot.com), and Prism6 (http://
www.graphpad.com). Shapiro-Wilk test was used to assess
parametric data distribution. An unpaired t test was per-
formed to compare experimental groups. Values shown are
mean 6 SEM, except where indicated. P values,0.05 were
considered statistically significant.

RESULTS

Ultramicroscopic Structure of the Biologic Scaffold
Scanning electron microscopy revealed the intricate net of
fibrin fibers obtained through the reaction triggered by
rhT in human plasma (Fig. 2A). Human islet cell surface
appeared smooth by ultramicroscopy (Fig. 2B). The clot
induced by combining human plasma with rhT and hu-
man islets in vitro resulted in the development of an
orthomorphic three-dimensional fibrin matrix trapping
islet structures within the newly formed biologic scaffold
(Fig. 2C). We reasoned that the induction of the plasma/
thrombin reaction to create a microscopic, adherent fibrin
scaffold around the implanted islets would be useful to
promote islet graft adhesion on the surface of the omen-
tum, preventing islet pelleting, and therefore aiding en-
graftment, neovascularization, and islet survival.

Intraomental Islets Transplanted Into Biologic
Scaffolds Restore Normoglycemia in Diabetic Rats
We used a syngeneic rat islet transplant model. We pre-
viously demonstrated that streptozotocin diabetic recip-
ients of 3,000 IEQ experienced reversal of diabetes after
either intra- or extrahepatic transplantation (25). After intra-
omental transplantation of 17,3386 881 IEQ/kg, all animals
(n = 7; 173.4 6 91 g body wt) achieved normoglycemia
within 2 days and maintained euglycemia during the
follow-up period (Fig. 3A), even .200 days. Two animals
underwent removal of the graft-bearing omentum on
day 76 posttransplantation: one died after surgery and
the other promptly become hyperglycemic (Fig. 3A). The
rest of the recipients was followed for .200 days post-
transplantation. IVGTT performed in selected animals
2 months after islet transplantation showed that trans-
planted islets cleared glucose within 75 min after receiving
a glucose bolus in a fashion comparable with that of naïve
animals (n = 3/group; AUC 17,8516 810 mg3min3 dL21

in naïve rats vs. 16,276 6 857 mg 3 min 3 dL21 in
intraomental islet biologic scaffold recipients) (Fig. 3B).
Furthermore, OGTT performed on transplanted ani-
mals at 11 and 26 weeks postimplantation confirmed
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comparable glucose clearance at both time points (n = 5;
AUC 19,542 6 1,735 mg 3 min 3 dL21 at 11 weeks
and 20,735 6 785 mg 3 min 3 dL21 at 26 weeks) (Fig.
3C). Histopathology of explanted grafts showed well-
preserved islet cytoarchitecture (Fig. 3D–G), strong insulin
immunostaining, and abundant intragraft vasculariza-
tion (e.g., SMA); all features were compatible with ade-
quate engraftment and corroborated the in vivo functional
data.

Comparable Function of Intrahepatic and Intraomental
Islets Transplanted Into Biologic Scaffolds
We compared the performance of syngeneic islets im-
planted within the intraomental biologic scaffold to that
of intrahepatic grafts. Aliquots of 1,300 IEQ (;8,200
IEQ/kg body wt [a “clinically relevant” mass]) from the
same batch of islets were transplanted in parallel either
within an intraomental biologic scaffold (n = 7; 160.3 6
6.4 g body wt [8,122 6 334 IEQ/kg]) (Fig. 4A) or in the

Figure 2—Scanning electronic micrograph of the biologic scaffold in vitro. A: Plasma/thrombin mix. Fibrin polymerizes forming an intricate
three-dimensional network (bar = 5 mm). B: Untreated human islet cell surface in culture medium (bar = 50 mm). C: Human islets embedded
within the biologic scaffold. The polymerized fibrin forms an orthomorphic matrix around the islet surface (bar = 50 mm).
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intrahepatic site (n = 5; 155.4 6 7.3 g body wt [8,380 6
396 IEQ/kg]) (Fig. 4B). All recipients in both groups
achieved euglycemia within 1 week and maintained good
metabolic control during the 82-day (;12 weeks) follow-up
period. Omental graft removal resulted in a prompt return
to hyperglycemia (n = 4) (Fig. 4A). At 5 (Fig. 4C) and 11
weeks posttransplant (Fig. 4D), OGTT showed comparable
metabolic function in both transplant sites (AUC at 5 weeks,
18,393 6 571 and 18,036 6 598.5 mg 3 min 3 dL21, and
AUC at 11 weeks, 21,9876 2,580 and 21,1496 1,456 mg3
min 3 dL21, for intraomental biologic scaffold recipients or
intrahepatic islet recipients, respectively) (Fig. 4C and D).

Lower Levels of Stress-Related Biomarkers in Recipients
of Intraomental Islets Within a Biologic Scaffold
Selected biomarkers associated with islet distress and
inflammation elicited by the transplantation procedure

were evaluated. Blood samples were collected from JVC at
different time points after transplantation. A spike in
insulin and C-peptide levels, likely a result of insulin
dumping from distressed islet cells (5,37,38), was observed
1 h posttransplant in both experimental groups. The in-
sulin peak was significantly higher in the intrahepatic com-
pared with the intraomental group (2.841 6 0.338 vs.
1.405 6 0.352 mg/mL, respectively; P = 0.018) (Fig. 5A),
with comparable levels in both groups at subsequent time
points (data not shown). No statistically significant differ-
ences were observed in C-peptide levels (2.565 6 0.25 vs.
2.941 6 0.303 mg/mL, respectively) (Fig. 5B).

Inflammatory biomarkers MCP-1/CCL2 (Fig. 5C) and
IL-6 (Fig. 5D) showed comparable increases between exper-
imental groups at 24 h, with undetectable values by 72 h
posttransplant in both groups (not shown). Leptin lev-
els were significantly higher at 24 h in the recipients of

Figure 3—Intraomental islets transplanted into biologic scaffolds restore normoglycemia in diabetic rats. A: Nonfasting blood glucose
levels in diabetic rats (n = 7; 173.4 6 91 g body wt) transplanted with 3,000 IEQ (17,338 6 881 IEQ/kg) onto the omentum showing prompt
reversal of diabetes and hyperglycemia after removal of the omental graft (arrowhead) on POD 74 (n = 1) or 240 (n = 4). B: Glycemic profile
during IVGTT performed in selected animals (n = 3) 2 months after transplant compared with that of naïve animals (n = 3). Values shown are
mean 6 SD. Inset shows area under the curve (AUC) (mg 3 min 3 dL21) for each group. C: Glycemic profile during OGTT performed in
transplanted animals (n = 5) at 11 (●) and 26 (○) weeks after transplantation. Inset shows AUC (mg 3 min 3 dL21) during the glucose
challenge. D–G: Representative histopathologic pattern of intraomental islet grafts. Sections were obtained from an intraomental islet graft
explanted on POD 76. D: Hematoxylin-eosin staining. E: Masson trichrome staining. F and G: Immunofluorescence microscopy of a section
stained with anti-insulin (INS) (red fluorescence), anti-GCG antibody (green fluorescence) (F ), anti-SMA (green fluorescence) (G), and
nuclear dye DAPI (blue fluorescence). The box indicates the area of the graft shown at higher magnification on the left panel. wk, week.
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the intrahepatic compared with intraomental group
(633 6 31 vs. 483 6 35 pg/mL, respectively; P = 0.013)
(Fig. 5E). Acute-phase protein haptoglobin levels were
comparable in both groups (Fig. 5F), while a2-macro-
globulin levels were significantly higher in intrahepatic
islet recipients versus the intraomental group at 24 h
(280 6 58 vs. 155 6 26 pg/mL; one-tail t test: P ,
0.03) (Fig. 5G).

Intraomental Biologic Scaffold Provides Adequate
Engraftment of Low-Purity Islet Preparations
Clinical human islet preparations usually contain different
degrees of impurities (e.g., exocrine tissue) that increase
the final volume of transplanted tissue. We evaluated
whether our intraomental biologic scaffold would be ade-
quate for the implantation of clinically relevant, low-
purity islet preparations. Implantation of 2,000 IEQ
from either .95% pure (n = 3; 167.3 6 1.5 g body wt
[11,8536 109 IEQ/kg]) or 30% pure (n = 3; 170.36 10.5 g
body wt [11,771 6 725 IEQ/kg]) syngeneic islet prepara-
tions led to rapid diabetes reversal (within 5 days) in all
recipient rats (Fig. 6A). All animals maintained stable
normoglycemia throughout the follow-up period and dis-
played comparable glucose clearance during OGTT (AUC:
17,776 6 1,687 and 19,734 6 1,997 mg 3 min 3 dL21

for recipients of 90 and 30% pure preparations, respectively)

(Fig. 6B). Surgical removal of the graft-bearing omentum
was performed .100 days after transplantation. One
of the recipients of 30% pure islets died after surgery,
while all other animals in both groups showed prompt
return to hyperglycemia, confirming the graft-dependent
normoglycemia.

Intraomental Biologic Scaffold Provides Adequate
Engraftment of Allogeneic Islets in Immunosuppressed
Recipients
Suitability of the intraomental biologic scaffold to support
islet engraftment under clinically relevant systemic im-
munosuppressive treatment (32–35) was evaluated in a
fully MHC-mismatched allogeneic rat transplant combina-
tion. All four diabetic Lewis rat (RT1l) recipients of 3,000
IEQ WF islets (RT1u) achieved normoglycemia within
5 days and sustained graft function for up to 5 weeks post-
transplantation under the transient systemic immunosup-
pression protocol used, when graft rejection coincided with
return to a hyperglycemic state (Fig. 7).

Intraomental Islet Transplant in a Biologic Scaffold
Engrafts in a Preclinical Model
We also tested the effect of the biologic scaffold in a
clinically relevant preclinical model of allogeneic islet
transplantation in a diabetic cynomolgus monkey. Before
transplantation, the animal required ;4–5 IU/kg/day

Figure 4—Comparable function of intrahepatic and intraomental islets transplanted into biologic scaffolds. Nonfasting blood glucose levels
in diabetic rats receiving a clinically relevant syngeneic islet mass of 1,300 IEQ (;8,200 IEQ/kg body wt) within an intraomental biologic
scaffold (A) (●, n = 7) or into the liver (via the portal vein) (B) (○, n = 5) with islets from the same batch isolation. The groups had an identical
time course for reversal of diabetes, and removal of the intraomental biologic scaffold on day 80 posttransplant resulted in return to
hyperglycemia (arrowhead in A). Glycemic profile during OGTT performed in all transplanted animals 5 (C) or 11 weeks (D) after trans-
plantation. Inset shows AUC (mg 3 min 3 dL21) during the glucose challenge for each group. wks, weeks.
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exogenous insulin with plasma C-peptide ,0.05 ng/mL
(Fig. 8). An islet mass of ;48,700 IEQ (;150 mL total
islet graft volume) equivalent to 9,347 IEQ/kg was
implanted. The transplant procedure and postoperative
clinical outcome were uneventful, with standard recov-
ery from surgery. After the first few weeks posttransplant,
improvement of FBG and PBG was observed, requiring
progressive reduction of exogenous insulin (Fig. 8A). Pos-
itive fasting C-peptide levels (Fig. 8B) were observed im-
mediately posttransplant and throughout follow-up. The
animal subsequently expired on postoperative day (POD)
49 owing to technical complications unrelated to the en-
graftment site. Histopathologic assessment of the explanted
graft demonstrated well-preserved islet morphology (Fig.
8C) with immunoreactivity for the endocrine markers in-
sulin and glucagon (Fig. 8D), some degree of peri-insular
lymphocyte infiltrate (CD3) (Fig. 8E), and abundant intra-
and extrainsular vascular structures (SMA [Fig. 8F] and
vWF [Fig. 8G]).

DISCUSSION

Our study was aimed at developing a clinically applicable
protocol for extrahepatic transplantation of pancreatic
islets. Over the past 20 years, the omentum has been

studied as a possible islet implantation site in different
animal models, after the initial description by Yasunami
et al. (39) using rat isografts and later reports in large
animals (40–42). Owing to portal venous drainage, the
omentum may attain more physiologic metabolic re-
sponses compared with intrahepatic and other islet
transplantation sites that were associated with hyper-
insulinemia, insulin resistance, and impairment of insulin
action in animal models (20,21,23). Human islet cell im-
plants survived better in the omentum than intrahepati-
cally in immunodeficient rats, and their engraftment
correlated positively with number and purity of implanted
cells (43). Perinatal porcine islet cells displayed compara-
ble growth of the b-cell volume over time in the omentum
and kidney subcapsular space, the former leading to
higher insulin reserves and an increased pool of prolifer-
ating cells (44). These data reinforce the feasibility of
the omentum as a potentially favorable site for the im-
plantation of insulin-producing cell products in clinical
protocols.

From the clinical translational perspective, the omen-
tum can be accessed using minimally invasive surgical
techniques (e.g., minilaparotomy or laparoscopy), and it
may allow implementation of bioengineering approaches

Figure 5—Biomarkers detected in the serum of rat recipients of intraomental biologic scaffold and intrahepatic syngeneic islets. Aliquots of
1,300 IEQ from the same syngeneic donor rat islet batch were transplanted in parallel either within the intraomental biologic scaffold
(omentum [○]) or the intrahepatic site (liver [●]). Blood samples were collected from indwelling JVC for detection of biomarker levels in
circulation. Data presented are mean6 SEM (n = 4–7 per time point). A and B: Metabolic markers assessed at 1 h posttransplant. A: Insulin
in mg/mL (*P = 0.018). B: C-peptide in mg/mL. Inflammation markers assessed 24 h posttransplant: MCP-1/CCL2 in pg/mL (C), IL-6 in pg/mL
(D), leptin in pg/mL (*P = 0.013) (E), haptoglobin in mg/mL (F ), and a2-macroglobulin in mg/mL (**P < 0.03) (G).
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to enhance islet engraftment, survival, and development
of strategies for the reduction and eventual elimination of
chronic systemic immunosuppression of the recipients
(14,22,45). We evaluated the potency of islets implanted
onto the omentum using an autologous resorbable biologic
scaffold to promote islet adherence onto its surface using
only clinical grade reagents (e.g., rhT). The clinical safety
profile of rhT has been established to promote hemostasis
during surgical procedures (46). We reasoned that applying
islets suspended in autologous plasma on the surface of the
omentum would accommodate relatively large islet volumes
while minimizing pelleting. A similar approach based on

three-dimensional islet-plasma constructs prepared ex vivo
and then rolled up within the greater omentum was de-
scribed in pancreatectomized dogs (47).

Our in vitro results showed that addition of rhT to
human islets resuspended in human plasma generates a
complex, orthomorphic fibrin matrix embedding the
islets. Our in vivo studies demonstrate that islets trans-
planted in the in situ–generated biologic scaffold onto
the omentum of diabetic animals engraft and function
long-term. Normalization of nonfasting glycemic values
and responses during metabolic challenges were repro-
ducibly achieved in recipients of syngeneic islets in an
intraomental biologic scaffold. Histopathology showed
preserved islet cytoarchitecture in the presence of rich
intrainsular vascular structures and lack of fibrosis in
both rodent and NHP models. Moreover, when adequate
islet numbers were implanted in the rat model (i.e.,
.1,300 IEQ; ;8,200/kg body wt), there was comparable
potency between intraomental and intrahepatic trans-
plants. However, a higher proportion of intrahepatic
islet recipients achieved metabolic control when a mar-
ginal (though not clinically relevant) syngeneic rat islet
mass of 450 IEQ, representing ;2,700/kg body wt, was
implanted (data not shown). It is noteworthy that 5,000
IEQ/kg body wt is currently the minimum require-
ment for clinical intrahepatic islet transplantation, and
insulin independence is generally attained when .12,000
IEQ/kg are implanted (1).

Serum levels of insulin and C-peptide, surrogate bio-
markers of acute b-cell distress and death associated
with the implantation procedure (5,37,38), were in-
creased 1 h postimplant, with higher levels in recipients
of intrahepatic versus intraomental islets. Perhaps the
lower intraomental levels are due, at least in part, to the
lack of shear forces and IBMIR in this site (4,6). While
the kinetics for appearance of the inflammatory markers
IL-6, MCP-1/CCL2, and haptoglobin were comparable,
a2-macroglobulin levels were higher 24 h after intrahe-
patic versus intraomental transplantation. Notably, the
pleomorphic plasma protein a2-macroglobulin interfaces

Figure 7—The intraomental biologic scaffold supports the engraft-
ment of allogeneic islets under systemic immunosuppression in
diabetic rats. A fully MHC-mismatched allogeneic rat transplant com-
bination in which diabetic female Lewis rat (RT1l) (n = 4) received
3,000 IEQ WF rat islets (RT1u ) in the intraomental biologic scaffold
under a protocol of clinically relevant immunosuppressive agents
consisting of lymphodepletion induction with anti-lymphocyte serum
(0.5 mL i.p. on day 23) and maintenance with mycophenolic acid
(MPA) (20 mg/kg/day for days 0–14, then tapered by one-quarter
of the dose every 2 days until day 20) and CTLA4Ig (10 mg/kg i.p.
on days 0, 2, 4, 6, 8, and 10 and weekly thereafter; abatacept)
(arrows). Nonfasting glycemic values for each animal during the
follow-up are presented. Graft rejection was defined as return
to hyperglycemic state. Each symbol represents an individual
animal.

Figure 6—Intraomental transplantation of islets with high and low purity into diabetic rats. A: Nonfasting blood glucose levels in diabetic
rats transplanted with clinically relevant mass of 2,000 IEQ syngeneic islets with >95% purity (n = 3) (167.3 6 1.5 g body wt [11,853 6
109 IEQ/kg]) or with 30% purity (n = 3) (170.3 6 10.5 g body wt [11,771 6 725 IEQ/kg]) onto the omentum. Removal of the omental graft
>100 days after transplantation (arrowhead) resulted in return to hyperglycemia. B: Glycemic profile during oral glucose tolerance test
performed in animals transplanted with high-purity and low-purity islet preparations 70 days after transplantation.
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with the coagulation system and is an acute-phase pro-
tein (48). This result may be due to hepatic tissue re-
sponses after islet embolization in the portal system
(i.e., Kupffer cell activation and in the context of
thrombi). Levels of leptin, a mediator of innate immu-
nity through multiple proinflammatory effects (49),
increased in both groups but were higher in the intra-
hepatic compared with the intraomental islet recipients,
reaching statistical significance at the 24-h time point.
Collectively, these data suggest a lower degree of inflam-
mation generated after intraomental islet implantation
in the biologic scaffold compared with the liver.

Antithrombin agents have been proposed to reduce
IBMIR and promote intrahepatic islet engraftment (50).
Our data indicate that thrombin per se is not detrimental
to islet engraftment when used in an extravascular (extra-
hepatic) site to induce a resorbable matrix in vivo. This is
likely due to the absence of the plethora of proinflamma-
tory events associated with intravascular thrombosis in the
hepatic sinusoids, including transplant microenvironment
activation (platelets, leukocytes, and endothelial cells), that
lead to islet hypoxia and loss of functional islet mass.

Human islet preparations generally include low-purity
fractions of the final cellular product to achieve adequate
endocrine cell mass for transplantation. However, the
final volume of clinical human islet preparations implanted
is generally kept ,10 mL to reduce the risk of portal vein
hypertension after embolization in the liver sinusoids. The
net effect of the inclusion of exocrine fractions in the islet
transplant preparation remains to be determined (51).
Exocrine tissue may be detrimental to islet graft outcome
because of competition for nutrients and oxygen in the
transplant site, contribution to microenvironment activa-
tion, and increased antigenic mass transplanted. Con-
versely, exocrine tissue may comprise critical cellular
precursors that promote engraftment, tissue remodeling,
and endocrine cell plasticity, leading to long-term function
after transplantation (52,53). In light of the promising
long-term results of autologous intrahepatic human islet
grafts (not or minimally purified) (54), development of
extrahepatic implantation sites that accommodate impure
islet preparations represents a desirable goal for clinical
islet transplantation (14,15,55). In this study, transplanta-
tion of islet preparations with low purity (30% endocrine)

Figure 8—Intraomental allogeneic islet transplantation in a diabetic nonhuman primate. A diabetic cynomolgus monkey received 9,347
IEQ/kg allogeneic islets in the omentum under the cover of clinically relevant immunosuppression therapy. A: Exogenous insulin require-
ment (EIR) (IU/kg/day), FBG (mg/dL), and PBG. B: Fasting C-peptide (ng/mL) levels measured in the animal over the follow-up period. C–G:
Histopathologic pattern of intraomental islet graft on day 49 posttransplant. C: Hematoxylin-eosin staining. D: Immunofluorescence
microscopy for the evaluation of immunoreactivity for insulin (INS) (red), GCG (green), and nuclear dye (DAPI) (blue). E: Immunofluorescence
for insulin (red) and CD3+ T cells (CD3) (cyan). F and G: Intrainsular neovasculogenesis. F: Immunofluorescence for insulin (red), vascular
structure (SMA) (green), and DAPI (blue). G: Immunofluorescence microscopy for insulin (red), endothelial cells (vWF) (green), and DAPI
(blue).
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resulted in stable metabolic control that was comparable
with that of pure preparations (.95% endocrine) trans-
planted into the biologic intraomental scaffold.

Our preclinical studies of islet transplantation support
the feasibility of intraomental transplantation of islets
using the described in situ–generated biologic scaffold.
Using both rat and NHP models, we demonstrated that
allogeneic islets implanted in the intraomental biologic
scaffold under clinically relevant immunosuppression
(32) can engraft and improve glucose control and that
this procedure may be feasible and effective in human
subjects. The implantation procedure that we have opti-
mized allows for distribution of the grafted tissue on the
large omental surface and the creation of a thin adherent
biologic scaffold in situ with minimal manipulation,
avoiding islet pelleting (even in the case of low-purity
cell products). Folding of an omental flap on the scaffold
creates a double outer omental layer containing the graft,
increasing surface contact (for nutrient diffusion and
subsequent neovascularization), and protecting the islets
from shear forces (peristalsis and diaphragm excursions)
in the peritoneal cavity. The use of only two components
(namely, the patient’s own plasma and rhT) to generate a
resorbable biologic scaffold and the simplicity of the im-
plantation technique make our approach easy to imple-
ment and clinically translatable. Furthermore, it may
represent an initial step toward engineering the trans-
plant site to enhance b-cell replacement therapies for
insulin-requiring diabetes (14,22,45). A phase I/II pilot
clinical trial is currently ongoing at our center to evaluate
the safety and efficacy of transplanting single-donor allo-
geneic islets in biologic intraomental scaffolds under con-
ventional immunosuppression in people with brittle T1D.
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