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A role for chromosomal instability in the development of
and selection for radioresistant cell variants 
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Summary Chromosome instability is a common occurrence in tumour cells. We examined the hypothesis that the elevated rate of mutation
formation in unstable cells can lead to the development of clones of cells that are resistant to the cancer therapy. To test this hypothesis, we
compared chromosome instability to radiation sensitivity in 30 independently isolated clones of GM10115 human–hamster hybrid cells. There
was a broader distribution of radiosensitivity and a higher mean SF2 in chromosomally unstable clones. Cytogenetic and DNA double-strand
break rejoining assays suggest that sensitivity was a function of DNA repair efficiency. In the unstable population, the more radioresistant
clones also had significantly lower plating efficiencies. These observations suggest that chromosome instability in GM10115 cells can lead to
the development of cell variants that are more resistant to radiation. In addition, these results suggest that the process of chromosome
breakage and recombination that accompanies chromosome instability might provide some selective pressure for more radioresistant
variants. © 2001 Cancer Research Campaign http://www.bjcancer.com
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It is well established that there are wide variations in the inhe
radiation sensitivity of tumour cells. These variations in rad
sensitivity play an important role in tumour response to radia
therapy; tumours that contain more radioresistant cells do
respond as well to therapy (West, 1994). There are many fa
that contribute to variations in sensitivity (West, 1994; Szum
1981). Some of the variations in radiation sensitivity reflect 
sensitivity of the tissue from which the tumour developed (Fe
and Malaise, 1985; Weichselbaum et al, 1989). Thus cells f
squamous cell carcinomas tend to be more resistant to radi
than cells from soft tissue sarcomas. Some of the variation in 
ation sensitivity is due to the inherent sensitivity of the individu
there are correlations between tumour cell radiosensitivity 
normal tissue radiosensitivity from the same individual (Dahlb
et al, 1993; West et al, 1998). There are also tumour-spe
factors that influence radiation sensitivity. For example, alterati
in certain oncogenes (Kasid et al, 1987; Sklar, 1988; McKe
et al, 1990), loss or attenuation in cell cycle checkpoint con
(McKenna et al, 1991; Bristow et al, 1996), and DNA ploi
changes (Schwartz et al, 1999) all common to many tumours
change radiation responses. 

As radiation sensitivity is a complex phenotype that is inf
enced by many different factors, another feature of tumour c
that may contribute to variations in radiation sensitivity is geno
instability. Genomic instability is defined as an increase in the 
of acquisition of alterations in the mammalian genome. Geno
instability is a common feature of tumours (Mitelman, 199
Solomon et al, 1991; Rabbits, 1994). It can also be induce
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significantly increased by radiation exposure (Morgan et al, 199
The increased rates of mutation in unstable cells may increas
probability of changing one of these factors and thereby chang
radiation sensitivity. Thus one would predict greater variations
radiation sensitivity in genomically unstable clones of cells 
compared to stable clones. To test this hypothesis we exam
radiation sensitivity in a series of clonally expanded Chine
hamster ovary (CHO) cells characterized as either chromosom
stable or unstable. We observed that instability was associ
with a broader distribution of radiation sensitivities as predict
but that most of the increased variability was due to the prese
of more radioresistant clones. 

MATERIALS AND METHODS 

All subclones originated from the parental GM10115 cell line
human CHO hybrid containing one copy of human chromosom
in a background of 22–24 hamster chromosomes. Cells were m
tained as log-phase cultures in Dulbecco’s modified Eag
medium supplemented with 10% fetal bovine serum, 2 mM
glutamine, 100 U ml–1 of penicillin, 100 mg ml–1 of streptomycin,
and 0.2 mM L-proline. Cells were cultured at 34˚C in humidifi
incubators containing 5% CO2 in air, where routine doubling times
of 24–27 h were obtained. 

Subclones were derived and expanded from single progen
cells from either unirradiated cells or from cells surviving 
previous exposure to 10 Gy of X-rays. The status of chromoso
stability for each clone was established as previously descr
(Limoli et al, 1997, 1998; Ponnaiya et al, 1998). Minimums 
200 metaphases were scored for each sample, and only 
rearrangements involving the human chromosome were sco
Chromosomal instability was defined operationally to include a
clone derived from a single cell that shows at least three dist
metaphase subpopulations involving rearrangements of the hu
489



490 CL Limoli et al 

or a
hese
eno-
ns.

 any

res

m
nd
ter-
eks

 All
ncy.
h in
Gy
 in

red
esis
ion
rays
ther
om
E

un
an
 a
d
 
la

 1
e

sin
.
m

ell
99
uff
ati
d 
ge
 t
e 
e

re
tw

, 
 a
ivi
ut

re
e

om

the
lones

tion
 had
ble
F

with
ula-

 10
ells
adi-
been
7;
ntly
 to
ore

s as

 The
tions
ity
tion
ve
four
nged
een

by
ile

ivity
he
 1 h.
een

0.7

0.6

0.5

0.4

0.3

0.2

S
F
2

40 50 60 70 80 90 100

Plating efficiency (%)

Figure 1 Plating efficiency (%) and radiosensitivity (SF2) measured in
stable (l), unstable (l), and previously unirradiated (▲▲) GM10115 control
subclones. Mean and SEM of 3 independent determinations 
chromosome, in which all such rearrangements account f
minimum of 5% of the total metaphases scored. Analysis of t
subclones has indicated their capacity to maintain the ph
type of chromosomal instability over multiple (> 80) generatio
Chromosome instability was confirmed in each clone before
other analyses. 

For survival measurements, exponentially growing cultu
were exposed to X-rays at 2.5 Gy min–1 using a Phillips RT250
X-ray machine (250-kV peak, 15 mA; half-value layer 1.0 m
copper). Immediately following irradiation cells were diluted a
plated into 100 mm dishes containing 15 ml of medium to de
mine the surviving fraction by clonogenic assay. After 1–2 we
of growth, plates containing visible colonies of ≥50 cells were
stained with 0.1% crystal violet in 25% ethanol and counted.
survival measurements were corrected for plating efficie
Plating efficiency was determined by plating 100 cells per dis
triplicate, while the surviving fraction measured after 2.0 
of X-rays (SF2) was determined by plating 200 cells per dish
quintuplicate. 

DNA double-strand break rejoining proficiency was measu
in the GM10115 cells using pulsed field gel electrophor
(PFGE) to estimate break frequencies following irradiat
(Schwartz et al, 1995). Cells were exposed to 50 Gy X-
(6 Me V) in ice-cold phosphate-buffered saline (PBS) and ei
immediately sampled or held 1 h in complete medium at ro
temperature to measure break rejoining. DNA was run on CH
DR III apparatus (BioRad). The PFGE parameters were 18 h r
2 V cm–1 with an initial and final switch time of 1800 s and 
included angle of 108˚. Following electrophoresis the gel was
dried overnight and exposed to a storage phosphor screen (Ko
The percentage of DNA entering the gel was determined
densitometry. These measurements were used to calculate re
break frequency and the percentage of breaks rejoined in
Results are expressed as the percentage of breaks rejoin
1 h ± SEM for at least 3 experiments. 

G2 chromosome radiosensitivity was measured by expo
exponentially growing cultures to 1.5 Gy of 137Cs gamma rays
The cultures were then incubated at 37˚C for a further 30 
before 0.2 µM colcemid was added to the cultures and c
harvested 1 h later by standard methods (Schwartz et al, 1
Slides are air-dried and stained with a 2% Giemsa in Gurr b
solution. 25 cells per experiment were analysed for chrom
type aberrations. Chromatid-type aberrations are classifie
chromatid (and isochromatid) deletions or chromatid exchan
Deletions were distinguished from gaps by displacement of
chromatids. At least 3 independent determinations were mad
each cell clone. Correlation and statistical significance betw
groups of stable and unstable subclones were assessed by 
sion analysis, analysis of variance (ANOVA), and one and 
tailed student t-tests. 

RESULTS 

Clonogenic assay in 10 previously unirradiated control clones
irradiated but chromosomally stable clones, and 10 irradiated
chromosomally unstable clones determined radiation sensit
The results are shown in Figure 1. There was a narrow distrib
of radiosensitivity for the stable clones. SF2 ranged from
0.25–0.46. The mean SF2 was 0.36 ± 0.02. These values a
comparable to the range of sensitivities (0.21–0.44) and m
(0.34 ± 0.02) SF2 seen in 10 random control clones isolated fr
British Journal of Cancer (2001) 84(4), 489–492
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an unirradiated population of GM10115 cells. In contrast to 
stable clones, the range of radiosensitivities for the unstable c
was broader (0.23–0.67) and the mean SF2 at 0.46 ± 0.04 was
significantly greater than that for the stable clones (P = 0.034, one-
tailed t-test). There appeared to be two clusters of radia
sensitivities in the unstable clones. 3 of the unstable clones
radiation sensitivities that were similar to those of the sta
clones. 7 of the unstable clones had significantly higher S2s
(P < 0.007). Thus chromosome instability was associated 
greater variation in radiation sensitivity and a shift in the pop
tion to greater radioresistance. 

The mean plating efficiency (84 ± 8.7%) measured for the
random control clones isolated from unirradiated GM10115 c
was similar to the 88 ± 6% plating efficiency measured in the irr
ated but chromosomally stable clones (Figure 1). As has 
previously noted (Chang and Little, 1991; Limoli et al, 199
Mothersill and Seymour, 1997, unstable clones have significa
(P<0.001) lower plating efficiencies (59 ± 12%) as compared
stable clones (88 ± 6%). In the unstable population, the m
radioresistant clones also had the lowest plating efficiencie
compared to more sensitive clones (P < 0.0004). 

DNA repair characteristics were determined by two assays.
first was a cytogenetic assay where chromosome aberra
induced in G2 were analysed in 7 clones of varying radiosensitiv
(Figure 2A). The relationship between chromosome aberra
induction and SF2 was biphasic. The two most radiosensiti
clones had the highest aberration frequencies. The other 
clones had similar aberration frequencies even though they ra
in sensitivities from 0.3 to 0.6. There was no difference betw
stable and unstable clones in their response to this assay. 

We next measured DNA double-strand break rejoining 
PFGE in 8 clones with variable radiosensitivity (Figure 2B). Wh
the relationship between break rejoining and radiation sensit
was not significant (P = 0.064), there was clearly a trend in t
data with the more resistant clones rejoining more breaks in
As with the cytogenetic assay, there was no difference betw
© 2001 Cancer Research Campaign
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Figure 2 Relationship between SF2 and (A) G2 chromosome break induction
or (B) percentage of breaks rejoined in 1 h measured in stable (l) and
unstable (l) clones. Mean and SEM of at least 3 experiments are presented
stable and unstable clones in their relationship between br
rejoined and radiosensitivity. 

DISCUSSION 

The induction of genomic instability is considered an importa
prerequisite for oncogenesis (Nowell, 1976; Loeb, 199
Genomic instability is also a common feature of tumou
(Mitelman, 1991; Solomon et al, 1991; Rabbits, 1994), and it 
be induced or significantly increased by exposure to cytoto
agents such as ionizing radiation (Morgan et al, 1996). It has b
suggested that genome instability may play an important rol
tumour response to therapy and in particular in the developme
resistance to therapy (Schimke et al, 1984; Morgan and Murn
1995). Given the complexity of factors that affect tumour sen
tivity to cytotoxic cancer therapy, the elevated mutation rates a
ciated with genomic instability could lead to the development
tumour cell variants that are more resistant to the therapy. U
the selective pressure of treatment, these more resistant c
might expand and ultimately contribute to therapy failure. O
results support this hypothesis. We observed greater variation
radiation sensitivity in the unstable versus stable clones (Figur
However, our results also suggest that the process that induc
perpetuates chromosomal instability provide some selection
more radioresistant variants. 

There was clearly a shift in the distribution of radiosensitivit
to more resistant cells. The mean SF2 for the unstable clones wa
significantly larger than that for the unstable clones. Furtherm
this difference was not due to an inherent variability in t
GM10115 population or the prior radiation exposure, as con
subclones from both previously unirradiated and irradiated c
were nearly identical to each other in both plating efficiency a
SF2. The resistance phenotype that developed in the unst
clones was also not a consequence of alterations in cell gro
rate, distribution of cells in the cell cycle, or variations in ploid
The values for all 3 endpoints were similar in stable and unst
clones, and were not related to radiation sensitivity (unpublis
observations). 

The chromosome instability seen in these GM10115 cells m
fests itself as increases in dicentric chromosomes and trans
tions (Marder and Morgan, 1993; Kaplan et al, 1997; Limoli et
1997). These alterations imply high spontaneous rates of chro
some breakage and recombination. This high level of break
probably underlies the lower plating efficiencies in the unsta
clones (Figure 1). We suggest that the high levels of chromos
breakage and recombination cycles in unstable clones may a
© 2001 Cancer Research Campaign
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select for clones that are more efficient at break recombination
thus are more radioresistant. In support of this hypothesis are
observations that the more resistant clones tend to be more
cient at rejoining breaks as measured by cytogenetic and P
assays (Figure 2). The relationship between radiation sensit
and repair as measured by either the G2 chromosome ass
PFGE, suggests that there may be different mechanisms u
lying the resistance as there was no simple linear relation
between break rejoining and SF2 for either assay. 

Our observation that chromosome instability is associated w
greater variation in radiation sensitivity and a greater likelihood
the development of radioresistant cell variants suggests that chr
some instability may have an important influence on the succe
failure of radiotherapy. Tumours with higher levels of instabil
may be more difficult to control with standard courses of ther
because they are more prone to develop resistant subpopulatio
cells. The ability of radiation at doses used in standard fractio
tion protocols (Limoli et al, 1999) to induce instability sugge
that even in the absence of a prior instability, resistance 
develop subsequent to the induction of instability. Standard f
tionation procedures may exacerbate the potential problem
providing additional selection for radioresistant variants. T
consequences of radiation treatment may therefore be more e
sive than previously realized, and future directions in radiother
may require new approaches to minimize the potential detrime
effects of radiation-induced genomic instability. 
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