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Original Article

Interpretable machine learning model based on the systemic 
inflammation response index and ultrasound features can  
predict central lymph node metastasis in cN0T1–T2 papillary 
thyroid carcinoma
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Background: It is arguable whether individuals with T1–T2 papillary thyroid cancer (PTC) who have a 
clinically negative (cN0) diagnosis should undergo prophylactic central lymph node dissection (pCLND) on 
a routine basis. Many inflammatory indices, including the neutrophil-to-lymphocyte ratio (NLR), platelet-
to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and systemic immune-inflammatory 
index (SII), have been reported in PTC. However, the associations between the systemic inflammation 
response index (SIRI) and the risk of central lymph node metastasis (CLNM) remain unclear.
Methods: Retrospective research involving 1,394 individuals with cN0T1–T2 PTC was carried out, 
and the included patients were randomly allocated into training (70%) and testing (30%) subgroups. The 
preoperative inflammatory indices and ultrasound (US) features were used to train the models. To assess the 
forecasting factors as well as drawing nomograms, the least absolute shrinkage and selection operator (LASSO) 
and multivariate logistic regression were utilized. Then eight interpretable models based on machine 
learning (ML) algorithms were constructed, including decision tree (DT), K-nearest neighbor (KNN), 
support vector machine (SVM), artificial neural network (ANN), random forest (RF), extreme gradient 
boosting (XGBoost), light gradient boosting machine (LightGBM), and categorical boosting (CatBoost). 
The performance of the models was evaluated by incorporating the area under the precision-recall curve 
(auPR) and the area under the receiver operating characteristic curve (auROC), as well as other conventional 
metrics. The interpretability of the optimum model was illustrated via the shapley additive explanations 
(SHAP) approach.
Results: Younger age, larger tumor size, capsular invasion, location (lower and isthmus), unclear 
margin, microcalcifications, color Doppler flow imaging (CDFI) blood flow, and higher SIRI (≥0.77) were 
independent positive predictors of CLNM, whereas female sex and Hashimoto thyroiditis were independent 
negative predictors, and nomograms were subsequently constructed. Taking into account both the auROC 
and auPR, the RF algorithm showed the best performance, and superiority to XGBoost, CatBoost and ANN. 
In addition, the role of key variables was visualized in the SHAP plot.
Conclusions: An interpretable ML model based on the SIRI and US features can be used to predict 
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Introduction

The primary histologic subtype of thyroid tumors is 
papillary thyroid cancer (PTC) (1,2). Individuals with 
lymph node metastasis (LNM) including central lymph 
node metastasis (CLNM) and lateral lymph node metastasis 
(LLNM) exhibit greater likelihood of disease persistence, 
recurrence, and re-operative surgery even though PTC 
commonly appears as an inert tumor (3-7). Meanwhile, an 
elevated incidence of postoperative complications is caused 
by prophylactic central lymph node dissection (pCLND) 
(8,9). pCLND should not be advised for individuals with 
the cN0T1–T2 subgroup following the principles of the 
2015 American Thyroid Association (ATA) guidelines, 
whereas guidelines in the majority of East Asian nations 
prefer pCLND given the premise of ensuring sufficient 

parathyroid gland and recurrent laryngeal nerve protection 
(10-12). Consequently, it is essential to establish a reliable 
preoperative forecasting algorithm model and to determine 
potential indicators of CLNM.

Studies have revealed that the inflammatory index, 
including the systemic immune-inflammatory index 
(SII), neutrophil-to-lymphocyte ratio (NLR), platelet-
to-lymphocyte ratio (PLR) and monocyte-to-lymphocyte 
ratio (MLR), can serve as crucial indicators regarding the 
malignant biological behavior that occurs in several cancers 
(13-17). Recently, a new blood inflammatory index, the 
systemic inflammation response index (SIRI), has been 
utilized for forecasting the prognosis of breast cancer, 
nasopharyngeal carcinoma, cervical cancer, pancreatic 
cancer, and colorectal cancer (18-22). However, the 
relationship between preoperative SIRI levels in peripheral 
blood and the risk of CLNM in PTC remains unclear.

Machine learning (ML) is a robust collection of 
algorithms equipped to comprehend, modify, evaluate, 
and forecast records. It has been extensively utilized 
to investigate a wide range of illnesses (23). Common 
ML algorithms include the decision tree (DT), random 
forest (RF), artificial neural network (ANN), support 
vector machine (SVM), and K-nearest neighbors (KNN) 
algorithms (24). categorical boosting (CatBoost), light 
gradient boosting machine (LightGBM), and extreme 
gradient boosting (XGBoost) are the most recognized 
frameworks in the academic discipline of boosting. They 
stand out among the alternative boosting algorithms owing 
to the integration of weak classifiers that minimize the 
loss function. However, most ML algorithms trigger black 
box issues (25). To tackle the inexplicability dilemma, the 
shapley additive explanations (SHAP) approach is presented 
as an alternative solution (26).

Hence, by using the preoperative inflammatory index 
and ultrasound (US) features, we embarked on establishing 
and validating eight interpretable ML models to assess 
CLNM likelihood in individuals with cN0T1–T2 PTC. 

Highlight box

Key findings
•	 The systemic inflammation response index (SIRI) has now been 

identified as a risk predictor for central lymph node metastasis 
(CLNM).

•	 We constructed and verified eight machine learning models based 
on SIRI and ultrasound features to evaluate CLNM risk in patients 
with cN0T1–T2 papillary thyroid cancer (PTC); the random forest 
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We presented this article in accordance with the TRIPOD 
reporting checklist (available at https://gs.amegroups.com/
article/view/10.21037/gs-23-349/rc).

Methods

Study population

A retrospective analysis was carried out on individuals with 
cN0T1–T2 PTC between January 2020 and December 
2021. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by the Ethics Committee of Third Xiangya 
Hospital, Central South University (No. quick23472), and 
individual consent for this retrospective analysis was waived.

Data collection

The inclusion criteria were as follows: (I) T1–T2 (≤40 mm);  
(II) cN0 (preoperatively non-suspicious positive lymph 
node); (III) PTC (firstly diagnosed). The exclusion criteria 
were as follows: (I) cervical irradiation during childhood; 
(II) previously diagnosed with head and neck cancer or 
any other kind of tumors (n=36, including secondary 
metastases to the lungs, primary tumors in other sites, 
etc.); (III) individuals with preoperative infection or other 
inflammation (except Hashimoto thyroiditis) (n=16, 
including rheumatoid arthritis, Sjogren syndrome, etc.); (IV) 
individuals who suffered from multiple organ dysfunction 
such as heart failure, liver failure, or uremia (n=9); (V) 
primary or secondary illnesses causing abnormalities of 
the blood system (n=6, including aplastic anemia, etc.); 
(VI) incompleteness of medical records (n=58). Ultimately, 
a total of 125 individuals were excluded; thus, 1,394 
individuals were included to establish and assess the model, 
and they were randomly allocated into training (70%) and 
testing (30%) subsets.

Surgical strategy

Individuals diagnosed with PTC routinely undergo 
pCLND in our department. Thyroid lobectomy or total 
thyroidectomy corresponds to ipsilateral or bilateral 
pCLND, respectively.

Inflammatory indices and US features

The 20 features were as follows: gender, age, tumor 

size, capsular invasion, laterality, multifocality, location, 
echogenicity, solid composition (almost 100% solid 
component),  unclear margin,  shape, aspect ratio, 
microcalcifications, color Doppler flow imaging (CDFI) 
blood flow, Hashimoto thyroiditis and inflammatory 
indices, including MLR, PLR, NLR, SII, and SIRI. The 
inflammatory index ranks were split into high and low 
subgroups, which were determined by the receiver operating 
characteristic (ROC) curve’s optimal cutoff value for presence 
of lymph-node metastasis. By applying the aforementioned 
strategies, each of the optimum cut-off value was determined: 
NLR (low <1.83, high ≥1.83), PLR (low <146.58, high 
≥146.58), MLR (low <0.27, high ≥0.27), SII (low <395.22, 
high ≥395.22), and SIRI (low <0.77, high ≥0.77).

Construction of the nomogram

We ran 10-fold cross-validation codes to calculate the 
optimum punishment parameter and conduct dimensionality 
reduction procedures on the statistical framework. Then, we 
screened the least absolute shrinkage and selection operator 
(LASSO) regression to obtain nonzero coefficient features. 
Subsequently, a nomogram plot was drawn based on the 
results of the multivariate regression analysis. Currently 
recognized tools for nomogram evaluation include the ROC 
curve, calibration curve, and decision curve analysis (DCA), 
all of which were employed.

Development, evaluation, and visual interpretation  
of ML models

There were eight supervised ML algorithms, including 
DT, KNN, SVM, ANN, RF, CatBoost, LightGBM, and 
XGBoost. Fivefold cross-validation was utilized to diminish 
overfitting, and then we performed repeated testing and 
tuning to obtain the optimal model parameters. The 
sensitivity, specificity, area under the ROC curve (auROC), 
accuracy, precision, recall, area under the precision-
recall curve (auPR), F1-score, and Matthews correlation 
coefficient (MCC) of the ML algorithms were calculated. 
We used the confusion matrix as a visual illustration 
and employed DCA for assessing the clinical usefulness. 
Through game-theoretic tactics, SHAP presents a superior 
visual tool for evaluating the significance of the attributes.

Statistical analysis

We ran the software R (version 4.3.0), Anaconda 3, and 
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Python (version 3.10.9) environments as statistical tools. 
The following packages were running in the generation of 
the code for algorithms: “pROC”, “caret”, “glmnet”, “rms”, 
“ggDCA”, “ggplot2”, “tidymodels”, “fastshap”, “bonsai”, 
“treesnip”, and “reticulate”.

Results

Patient characteristics

Table 1 displays the baseline traits of CLNM(+) and 
CLNM(−). There were no significant differences between 
the training and testing subsets (P>0.05) (Table 2).

LASSO regression feature selection in the training set

LASSO regression yielded 15 nonzero coefficient features, 
including gender, age, tumor size, capsular invasion, 
laterality, multifocality, location, solid component, unclear 
margin, microcalcifications, CDFI blood flow, Hashimoto’s 
thyroiditis, NLR, MLR, and SIRI (Figure 1). 

Construction and validation of the nomogram

Utilizing the 15 nonzero coefficient features, the 
multivariate analysis revealed that younger age, larger 
tumor size, capsular invasion, location (lower and isthmus), 
unclear margin, microcalcifications, CDFI blood flow, and 
higher SIRI (≥0.77) were independent positive predictors 
of CLNM, while female and Hashimoto thyroiditis 
were independent negative predictors (Table 3). Next, a 
nomogram plot was drawn on the basis of the training 
cohort’s multivariate analysis (Figure 2). The ROC curve 
demonstrated a desirable discrimination capacity, with 
AUCs of 0.834 and 0.803 in the training and testing 
cohorts, respectively (Figure 3A,3B). The calibration curve 
exhibited notable consistency, regarding mean absolute 
errors in the two cohorts of 0.017 and 0.015, respectively 
(Figure 3C,3D). The DCA showed broad clinical utility 
when the threshold probability of an individual was between 
approximately 20% and 90% (Figure 3E,3F).

Development and evaluation of ML models

Utilizing the 15 potential features selected by LASSO 
regression, 8 ML algorithm prediction models for CLNM 
were developed. The RF model performed optimally, 
with auROC values of 0.8177 and auPR values of 0.8029, 

followed by XGBoost (0.8130 and 0.7987), CatBoost (0.8130 
and 0.7985) and ANN (0.8105 and 0.7990). Detailed 
information concerning sensitivity, specificity, accuracy, 
precision, recall, f1 score and mcc is summarized in Table 4  
and Figure S1. The DCA plot proved that RF had better 
clinical suitability (Figure S1C). 

The RF model performance

Figure 4A shows the modeling process of the RF model, 
and choosing the appropriate parameters (mtry:2 and 
ntree:250) made the RF model perform best. Starting from 
the 100th DT, the error of the RF algorithm gradually 
flattened, indicating that the generalization ability of the RF 
algorithm gradually increased. We also used RF to explore 
the importance of variables. As illustrated in Figure 4B, the 
top 5 variables, CDFI blood flow, location, age, tumor size, 
and microcalcifications, are analogous when evaluated via 
two measures: a decrease in classification accuracy (mean 
lowered accuracy) and a decrease in node impurity (mean 
decreased Gini). The SIRI, which performed relatively 
better among the three inflammatory indices, ranked tenth 
and ninth in the mean decrease accuracy and Gini plot, 
respectively.

The confusion matrix of RF is displayed in Figure S2A,S2B. 
The respective auROCs were 85.48% and 81.77%, and 
DeLong’s test between the training and testing cohorts 
revealed that there were no statistically significant 
differences (P>0.05) (Figure S2C). The learning curves 
indicate that the training and testing sets have a strong 
fitting ability and high stability (Figure S2D). In general, 
the RF model effectively prevents overfitting. Additionally, 
Figure S2E,S2F visually shows the predicted probability 
distribution of the RF model. 

Explanation of the ML model with the SHAP method

We performed interpretability manipulations using the 
SHAP tool in the RF and XGBoost models. Ranking of 
variable contributions was assessed by the mean absolute 
SHAP values (Figure 5A,5B). The top ten features in 
the RF model were age, CDFI blood flow, tumor size, 
location, microcalcifications, Hashimoto thyroiditis, 
unclear margin, SIRI, gender, and solid composition. In 
addition, we constructed scatter plots of SHAP summary 
plots, which visualized the relationship between eigenvalues 
and predicted probabilities by color (Figure S3A,S3B). 
The larger the absolute value on the x-axis, the more the 
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Table 1 Baseline characteristics of the whole cohort grouped by lymph node status 

Variables Total (n=1,394) CLNM(−) (n=718) CLNM(+) (n=676) P χ2

Gender <0.001 37.345 

Male 330 (23.7) 121 (16.9) 209 (30.9)

Female

Age (years) <0.001 107.798 

>55 192 (13.8) 139 (19.4) 53 (7.8)

40–55 596 (42.8) 359 (50.0) 237 (35.1)

<40 606 (43.5) 220 (30.6) 386 (57.1)

Tumor size (mm) <0.001 90.250 

<10 1,027 (73.7) 606 (84.4) 421 (62.3)

10–20 299 (21.4) 97 (13.5) 202 (29.9)

21–40 68 (4.9) 15 (2.1) 53 (7.8)

Capsular invasion <0.001 40.393 

No 1,269 (91.0) 688 (95.8) 581 (85.9)

Yes – – –

Laterality <0.001 18.010 

Unilateral 1,095 (78.6) 597 (83.1) 498 (73.7)

Bilateral – – –

Multifocality <0.001 15.323 

Solitary tumor 894 (64.1) 496 (69.1) 398 (58.9)

Multifocal tumor – – –

Location <0.001 71.795 

Upper 257 (18.4) 170 (23.7) 87 (12.9)

Middle 631 (45.3) 360 (50.1) 271 (40.1)

Lower 373 (26.8) 141 (19.6) 232 (34.3)

Isthmus 133 (9.5) 47 (6.5) 86 (12.7)

Echogenicity 0.006 12.584 

Hyper or isoechoic 22 (1.6) 11 (1.5) 11 (1.6)

Mixed-echoic 64 (4.6) 28 (3.9) 36 (5.3)

Hypo-echoic 1,277 (91.6) 672 (93.6) 605 (89.5)

Very hypo-echoic 31 (2.2) 7 (1.0) 24 (3.6)

Solid composition <0.001 20.749 

No 939 (67.4) 524 (73.0) 415 (61.4)

Yes – – –

Unclear margin <0.001 37.997 

No 399 (28.6) 258 (35.9) 141 (20.9)

Yes – – –

Table 1 (continued)
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Table 1 (continued)

Variables Total (n=1,394) CLNM(−) (n=718) CLNM(+) (n=676) P χ2

Shape <0.001 19.172 

Regular 932 (66.9) 519 (72.3) 413 (61.1)

Irregular or lobulated

Aspect ratio 0.003 8.692 

A/T <1 757 (54.3) 362 (50.4) 395 (58.4)

A/T ≥1 – – –

Microcalcifications <0.001 95.395 

No 458 (32.9) 322 (44.8) 136 (20.1)

Yes – – –

CDFI blood flow <0.001 120.559 

No 1,072 (76.9) 639 (89.0) 433 (64.1)

Yes – – –

Hashimoto thyroiditis <0.001 28.898 

No 924 (66.3) 428 (59.6) 496 (73.4)

Yes – – –

NLR <0.001 14.022 

Low (<1.83) 617 (44.3) 353 (49.2) 264 (39.1)

High (≥1.83) – – –

PLR 0.116 2.472 

Low (<146.58) 875 (62.8) 436 (60.7) 439 (64.9)

High (≥146.58) – – –

MLR 0.007 7.396 

Low (<0.27) 1,123 (80.6) 599 (83.4) 524 (77.5)

High (≥0.27) – – –

SII <0.001 13.736 

Low (<395.22) 528 (37.9) 306 (42.6) 222 (32.8)

High (≥395.22) – – –

SIRI <0.001 17.874 

Low (<0.77) 791 (56.7) 447 (62.3) 344 (50.9)

High (≥0.77) – – –

Data are presented as N (%). CLNM, central lymph node metastasis; A/T, aspect ratio (height divided by width on transverse views); CDFI, 
color Doppler flow imaging; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; 
SII, systemic immune-inflammatory index; SIRI, systemic inflammation response index.
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Table 2 Baseline characteristics between the training and testing sets

Variables Total (n=1,394) Training set (n=976) Testing set (n=418) P χ2

CLNM 0.834 0.044

Negative group 718 (51.5) 505 (51.7) 213 (51.0)

Positive group – – –

Gender 0.147 2.104

Male 330 (23.7) 220 (22.5) 110 (26.3)

Female – – –

Age (years) 0.408 1.794

>55 192 (13.8) 138 (14.1) 54 (12.9)

40–55 596 (42.8) 425 (43.5) 171 (40.9)

<40 606 (43.5) 413 (42.3) 193 (46.2)

Tumor size (mm) 0.963 0.075

<10 1,027 (73.7) 718 (73.6) 309 (73.9)

10–20 299 (21.4) 211 (21.6) 88 (21.1)

21–40 68 (4.9) 47 (4.8) 21 (5.0)

Capsular invasion 0.542 0.372

No 1,269 (91.0) 885 (90.7) 384 (91.9)

Yes – – –

Laterality 0.554 0.35

Unilateral 1,095 (78.6) 762 (78.1) 333 (79.7)

Bilateral – – –

Multifocality 0.433 0.614

Solitary tumor 894 (64.1) 619 (63.4) 275 (65.8)

Multifocal tumor – – –

Location 0.177 4.936

Upper 257 (18.4) 183 (18.8) 74 (17.7)

Middle 631 (45.3) 448 (45.9) 183 (43.8)

Lower 373 (26.8) 263 (26.9) 110 (26.3)

Isthmus 133 (9.5) 82 (8.4) 51 (12.2)

Echogenicity 0.763 1.159

Hyper or isoechoic 22 (1.6) 15 (1.5) 7 (1.7)

Mixed-echoic 64 (4.6) 42 (4.3) 22 (5.3)

Hypo-echoic 1,277 (91.6) 899 (92.1) 378 (90.4)

Very hypo-echoic 31 (2.2) 20 (2.0) 11 (2.6)

Solid composition >0.99 0

No 939 (67.4) 657 (67.3) 282 (67.5)

Yes – – –

Table 2 (continued)
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Table 2 (continued)

Variables Total (n=1,394) Training set (n=976) Testing set (n=418) P χ2

Unclear margin 0.592 0.287

No 399 (28.6) 284 (29.1) 115 (27.5)

Yes – – –

Shape 0.135 2.233

Regular 932 (66.9) 640 (65.6) 292 (69.9)

Irregular or lobulated – – –

Aspect ratio 0.77 0.085

A/T <1 757 (54.3) 533 (54.6) 224 (53.6)

A/T ≥1 – – –

Microcalcifications 0.52 0.413

No 458 (32.9) 315 (32.3) 143 (34.2)

Yes – – –

CDFI blood flow 0.401 0.705

No 1,072 (76.9) 744 (76.2) 328 (78.5)

Yes – – –

Hashimoto thyroiditis 0.846 0.038

No 924 (66.3) 649 (66.5) 275 (65.8)

Yes – – –

NLR 0.518 0.417

Low (<1.83) 617 (44.3) 426 (43.6) 191 (45.7)

High (≥1.83) – – –

PLR 0.459 0.549

Low (<146.58) 875 (62.8) 606 (62.1) 269 (64.4)

High (≥146.58) – – –

MLR 0.112 2.527

Low (<0.27) 1,123 (80.6) 775 (79.4) 348 (83.3)

High (≥0.27) – – –

SII 0.387 0.748

Low (<395.22) 528 (37.9) 362 (37.1) 166 (39.7)

High (≥395.22) – – –

SIRI 0.182 1.782

Low (<0.77) 791 (56.7) 542 (55.5) 249 (59.6)

High (≥0.77) – – –

Data are presented as N (%). CLNM, central lymph node metastasis; A/T, aspect ratio (height divided by width on transverse views); CDFI, 
color Doppler flow imaging; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; MLR, monocyte-to-lymphocyte ratio; 
SII, systemic immune-inflammatory index; SIRI, systemic inflammation response index.
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Figure 1 Feature selection using LASSO regression. (A) LASSO coefficient profile plots of the 15 variables. (B) Selection of features using 
cross-validation; dotted vertical lines were drawn at the optimal values using the minimum criteria and the one-fold standard error of the 
minimum criteria. LASSO, least absolute shrinkage and selection operator.

Table 3 Multivariate analysis

Variables OR 95% CI P

Gender

Male Reference

Female 0.511 0.347–0.752 0.001

Age (years)

>55 Reference

40–55 1.772 1.073–2.926 0.025

<40 4.794 2.877–7.988 <0.001

Tumor size (mm)

<10 Reference

10–20 3.194 2.126–4.799 <0.001

21–40 6.675 2.754–16.178 <0.001

Capsular invasion

No Reference

Yes 2.862 1.598–5.126 <0.001

Laterality

Unilateral Reference

Bilateral 1.276 0.748–2.177 0.371

Multifocality

Solitary tumor Reference

Multifocal tumor 1.296 0.825–2.037 0.261

Location

Upper Reference

Middle 1.077 0.7–1.658 0.735

Lower 2.288 1.429–3.663 0.001

Isthmus 3.373 1.738–6.545 <0.001

Table 3 (continued)

Table 3 (continued)

Variables OR 95% CI P

Solid composition

No Reference

Yes 1.369 0.974–1.923 0.07

Unclear margin

No Reference

Yes 2.43 1.697–3.479 <0.001

Microcalcifications

No Reference

Yes 1.851 1.311–2.613 <0.001

CDFI blood flow

No Reference

Yes 3.47 2.349–5.125 <0.001

Hashimoto 
thyroiditis

No Reference

Yes 0.409 0.29–0.577 <0.001

NLR

Low (<1.83) Reference

High (≥1.83) 1.337 0.917–1.95 0.131

MLR

Low (<0.27) Reference

High (≥0.27) 1.393 0.894–2.169 0.142

SIRI

Low (<0.77) Reference

High (≥0.77) 1.578 1.046–2.379 0.03

OR, odd ratio; CI, confidence interval; CDFI, color Doppler flow 
imaging; NLR, neutrophil-to-lymphocyte ratio; MLR, monocyte-
to-lymphocyte ratio; SIRI, systemic inflammation response index.
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attribute affects the output, with colors representing high 
(red) and low (blue) raw eigenvalues. We can see that 
a higher SIRI has a positive impact, while Hashimoto 
thyroiditis has a negative impact. To visualize the 
contributions of individual variable levels, we implemented 
it with the help of the facet wrap method based on the 
SHAP value (Figure S4). 

Figure 6 presents a couple of classic scenarios that 
showcase the model’s capacity for interpretation. The 
CLNM-absent individual obtained a poorer SHAP value 
(0.15) (Figure 6A), while CLNM-present individual 
obtained a stronger SHAP value (0.94) (Figure 6B).

Discussion

Principal findings

We had three major findings in this research. First, in 
addition to traditional US features, the inflammatory index, 

especially the SIRI, was found to be a risk predictor for 
CLNM. Second, we established and verified eight ML 
models to assess CLNM likelihood in individuals with 
cN0T1–T2 PTC. The RF model performed the best 
(with maximum auROC and auPR), followed by XGBoost, 
CatBoost, and ANN. Third, the interpretability of the 
models was illustrated via the SHAP approach.

Consistent with numerous previous clinical studies, 
younger age, presence of CDFI blood flow, larger tumor, 
tumor located in the lower or isthmus, microcalcifications, 
absence of Hashimoto, unclear margin, male gender and 
capsular invasion were all found to be risk factors for 
CLNM (27-29). Several researchers have discovered that 
blood inflammatory indices such as MLR, PLR, NLR, and 
SII are predictive factors for CLNM and LLNM, and are 
even associated with poor prognosis and relapse (30-33). 
However, use of a new blood inflammatory index, SIRI, 
and research regarding its importance in PTC are still 

Points

Gender

Age (years)

Capsular invasion

Tumor size (mm)

Location

Unclear margin

Microcalcifications

CDFI blood flow

Hashimoto thyroiditis

SIRI

Total points

Risk

0

0

100

100 150 200 250 300 350 400 450 500

10 20 30 40 50 60 70 80 90

50

Female

>55 <40

Male

40−50

10−20

Yes

Yes

Yes

Yes

Yes

High (≥0.77)

Low (<0.77)

0.01 0.02 0.05 0.1 0.2 0.3 0.5 0.7 0.8 0.9 0.97 0.99

21−40<10

No

No

No

No
No

Middle Isthmus

Upper Lower

Figure 2 Nomogram for predicting CLNM in individuals with cN0T1–T2 PTC. CDFI, color Doppler flow imaging; SIRI, systemic 
inflammation response index; CLNM, central lymph node metastasis; PTC, papillary thyroid cancer.
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Figure 3 The differential capability of the nomogram. (A) The ROC curve in the training set. (B) The ROC curve in the testing set. (C) 
The calibration curve in the training set. (D) The calibration curve in the testing set. (E) The DCA in the training set. (F) The DCA in the 
testing set. AUC, area under curve; ROC, receiver operating characteristic area; DCA, decision curve analysis.

Table 4 Model capabilities of the eight ML algorithms in the testing set

Model ROC_AUC PR_AUC Sensitivity Specificity Accuracy Precision Recall F1_score MCC

DT 0.7478 0.7168 0.6293 0.7465 0.6890 0.7049 0.6293 0.6649 0.3786 

CatBoost 0.8130 0.7985 0.6537 0.8263 0.7416 0.7836 0.6537 0.7128 0.4880 

KNN 0.7501 0.7311 0.7463* 0.6150 0.6794 0.6511 0.7463* 0.6955 0.3641 

LightGBM 0.8057 0.7937 0.7415 0.7371 0.7392 0.7308 0.7415 0.7361 0.4785 

RF 0.8177* 0.8029* 0.6732 0.7934 0.7344 0.7582 0.6732 0.7132 0.4705 

XGBoost 0.8130 0.7987 0.6439 0.8310* 0.7392 0.7857* 0.6439 0.7078 0.4842 

SVM 0.8088 0.7940 0.6927 0.7840 0.7392 0.7553 0.6927 0.7226 0.4791 

ANN 0.8105 0.7990 0.7268 0.7887 0.7584* 0.7680 0.7268 0.7469* 0.5168*

*, the maximum value of the column. ML, machine learning; ROC, receiver operating characteristic; AUC, area under curve; PR, precision-
recall; MCC, Matthews correlation coefficient; DT, decision tree; CatBoost, categorical boosting; KNN, K-nearest neighbors; LightGBM, 
light gradient boosting machine; RF, random forest; XGBoost, extreme gradient boosting; SVM, support vector machine; ANN, artificial 
neural network.

lacking. This could be the first investigation regarding the 
relationship between SIRI and CLNM to the best of our 
knowledge.

In previous studies, scholars have used several ML 
algorithms to predict CLNM and LLNM (34,35). Different 
algorithms have their pros and cons (36). The RF model 
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Figure 4 The fitting tuning and variable importance of the RF model. (A) Diagram of model error rate and tree. (B) Variable importance 
is given by the mean decrease accuracy (left) and mean decrease Gini (right). OOB, out-of-bag; CDFI, color Doppler flow imaging; SIRI, 
systemic inflammation response index; MLR, monocyte-to-lymphocyte ratio; NLR, neutrophil-to-lymphocyte ratio; RF, random forest.
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Figure 5 Feature importance ranking as indicated by SHAP assessing eigenvalue contribution. (A) RF model; (B) XGBoost model. CDFI, 
color Doppler flow imaging; SIRI, systemic inflammation response index; NLR, neutrophil-to-lymphocyte ratio; MLR, monocyte-to-
lymphocyte ratio; SHAP, shapley additive explanations; RF, random forest; XGBoost, extreme gradient boosting.
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performed the best in this research. Several new ensemble 
learning algorithms have also shown good predictive 
performance, including XGBoost and CatBoost. Ensemble 
learning is mainly divided into bagging algorithms and 
boosting algorithms. Via bagging theory, the RF algorithm 
incorporates many DTs. The gradient boosting decision 
tree (GBDT) represents a broad family of algorithms 

through the boosting theory of ensemble learning. 
LightGBM, XGBoost and CatBoost are the latest and most 
recognized algorithm members with enhanced capabilities 
in the GBDT theory family (37-39).

It is worth noting that a major flaw in most ML models 
is the black box problem. What we did to conquer this 
flaw was introduce the SHAP tool. In this study, we not 
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Figure 6 SHAP individual force plot for the local interpretation in the RF model. The base value is the predicted value without providing 
input to the model, while f(x) is the probability forecast value of each observation; red indicates an increased risk of CLNM, and blue 
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only applied the global interpretations of SHAP to visually 
demonstrate the whole attributes but also delivered specific 
interpretations utilizing SHAP individual force plots 
encompassing both positive and negative effects.

Limitations

First, there is a need for more prospective extensive 
investigations, considering that these findings relied on 
retrospective observations. Second, the models were 
randomly allocated into training and testing cohorts to 
diminish overfitting due to a lack of external validation. 
Next, we will build the database with the collaboration of 
multiple medical centers to further examine the model’s 
capabilities. 

Conclusions

Interpretable ML models based on the SIRI and US 
features can be used to predict CLNM in individuals with 
cN0T1–T2 PTC. 
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