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A novel coronavirus [severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), or 2019 novel coronavirus] has been identified as the

pathogen of coronavirus disease 2019. The main protease (Mpro, also called

3-chymotrypsin-like protease) of SARS-CoV-2 is a potential target for

treatment of COVID-19. A Mpro homodimer structure suitable for docking

simulations was prepared using a crystal structure (PDB ID: 6Y2G; resolu-

tion 2.20 �A). Structural refinement was performed in the presence of pep-

tidomimetic a-ketoamide inhibitors, which were previously disconnected

from each Cys145 of the Mpro homodimer, and energy calculations were

performed. Structure-based virtual screenings were performed using the

ChEMBL database. Through a total of 1 485 144 screenings, 64 potential

drugs (11 approved, 14 clinical, and 39 preclinical drugs) were predicted to

show high binding affinity with Mpro. Additional docking simulations for

predicted compounds with high binding affinity with Mpro suggested that

28 bioactive compounds may have potential as effective anti-SARS-CoV-2

drug candidates. The procedure used in this study is a possible strategy for

discovering anti-SARS-CoV-2 drugs from drug libraries that may signifi-

cantly shorten the clinical development period with regard to drug reposi-

tioning.

A novel coronavirus (severe acute respiratory

syndrome coronavirus 2 [SARS-CoV-2], or 2019 novel

coronavirus [2019-nCoV]) has been identified as the

pathogen of coronavirus disease 2019. The coronavirus

has spread worldwide and exhibits strong contagious

and infective characteristics. There are no effective

anti-SARS-CoV-2 drugs at the time of writing. The

discovery of potential anti-SARS-CoV-2 drugs from

known drug libraries is thought to be an effective drug

repositioning strategy for shortening the clinical devel-

opment period.

Severe acute respiratory syndrome coronavirus 2

belongs to the betacoronavirus group. One of the best-

characterized drug targets among viral constituents is the

main protease (Mpro, also called 3-chymotrypsin-like

protease) [1]. Crystal structures of the Mpro dimer, the

biological active form, have been resolved with or

without synthetic inhibitors, some of which covalently

bind to Cys145 at the catalytic dyad (i.e., Cys145 and

His41) or have been designed to covalently bind to

Cys145 (Fig. 1) [2,3]. However, side effects, toxicity,

and lower potency often cause covalent inhibitors to

drop out. Therefore, noncovalent inhibitors with high

binding affinity are more suited for treatment of such

viral infections.

In this study, I performed stepwise structure-based

virtual screenings using two different docking simula-

tions in order to discover potential drugs that target
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Mpro using the ChEMBL database [4], which mainly

lists drugs and known bioactive compounds. I present

these potential anti-SARS-CoV-2 drug candidates

here. The structural information of the potential drugs

will be useful for improving their pharmacokinetic

properties more effectively and for developing specific

anti-SARS-CoV-2 drugs.

Methods

Refinement of the Mpro crystal structure

I prepared the Mpro homodimer structure suitable for dock-

ing simulations using a crystal structure (PDB ID: 6Y2G

[2]; resolution 2.20 �A). Structural refinement was performed

using Homology Modeling Professional for HYPERCHEM

(HMHC) software [5,6], and energy calculations were per-

formed under the AMBER99 force field with the following

parameters: root-mean-square gradient, 1.0 kcal�mol�1��A�1;

algorithm, Polak–Ribi�ere; cutoffs, none; 1–4 van der Waals

scale factor, 0.5; 1–4 electrostatic scale factor, 0.833; dielec-

tric scale factor, 1.0; and distance-dependent dielectric con-

dition. Structural refinement was conducted in the presence

of peptidomimetic a-ketoamide inhibitors, which were pre-

viously disconnected from each Cys145 of the Mpro homod-

imer. After adding hydrogen atoms automatically, I

assigned Mulliken atomic charges of inhibitors; their a-car-
bonyl moiety (disconnected from Cys145) was treated as a

hydroxy carbocation using single-point calculations of the

semiempirical MNDO/d method. Mulliken atomic charges

obtained from the MNDO/d calculation showed empiri-

cally good correlation with AMBER charges [7]. In addi-

tion, AMBER99 atom types were assigned. N- and C-

terminals of the Mpro homodimer were treated as zwitteri-

ons, aspartic and glutamic acid residues were treated as

anions, while lysine, arginine, and histidine residues were

treated as cations under physiological conditions. Next, a

free glycine included in the crystal structure was removed,

and the initial coordinates of hydrogen atoms of crystal

waters (one water, WAT620, was removed, since the initial

coordinate of the hydrogen atoms could not be assigned)

were predicted using HMHC. Subsequently, partial opti-

mization by Belly calculations for all components, except

heavy atoms, was performed, and distance restraint condi-

tions (7.0 kcal�mol�1��A�2) were applied to all heavy atoms

of the above structure; next, geometry optimization calcula-

tions were performed. The resulting structure was subjected

to low-temperature molecular dynamics annealing (starting

temperature 0 K; heat time 30 ps; simulation temperature

300 K; run time 100 ps; final temperature 0 K; cooling

time 30 ps; step size 0.001 ps; and temperature step

0.01 K). Finally, all distance restraint conditions were

removed, and the structure was further optimized to obtain

the final structure. Precision of the final structure was con-

firmed using a Ramachandran plot program of HMHC.

Preparation of 3D structures from the ChEMBL

database

Planar structures of the ChEMBL database (ChEMBL26;

1 950 760 distinct compounds, including 13 308 drugs) [4]

were downloaded from the ChEMBL website in SDF file

format. MayaChemTools (2019) [8] was used to remove

counterions and inorganic compounds from the database.

Then, 3D structures were obtained using BALLOON version

1.6.9 [9] under an MMFF94 force field. The resulting 3D

structure database was treated using BABEL version 2.4.1

[10]; the compounds’ protonation state was prepared under

physiological conditions (pH = 7.4) and filtered by molecu-

lar weight (MW ≥ 100 and ≤ 500) to reduce the database

Fig. 1. Refined crystal structure (PDB ID: 6Y2G) of a SARS-CoV-2 Mpro homodimer with peptidomimetic a-ketoamide inhibitors. (A) Whole

structure and (B) enlarged structure of the active site. Chains A and B of the Mpro homodimer are shown as red and cyan ribbons,

respectively. Peptidomimetic a-ketoamide inhibitors are shown in CPK color using space-filling models. Water molecules are shown using

tubes. Residues located 3 �A from the inhibitors are shown in CPK color using tubes without nonpolar hydrogen atoms. Van der Waals

surfaces of the active sites are shown in gray.
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to a more drug-like library. A total of 1 485 144

compounds were used for subsequent virtual screenings.

Structure-based virtual screenings

Structure-based virtual screenings were performed using

RDOCK (2013) [11] and AUTODOCK VINA version 1.1.2 [12];

both interfaces are available in Docking Study with HYPER-

CHEM (DSHC) software [5,13], and the resulting docking

modes filtered by the RDOCK score threshold were more pre-

cisely simulated using AUTODOCK VINA.

Prior to docking simulations, the inhibitor of the A

chain of the Mpro homodimer was removed from the sys-

tem. Then, docking simulations for the 3D structure data-

base (1 485 144 compounds) were performed using the

relatively reliable, high-speed docking simulation program

RDOCK under the default condition. I expected that the con-

centrated potential drugs would consist of ~ 70 distinct

drugs, the others being bioactive compounds. On the basis

of this, I determined the RDOCK score threshold to be

≤ �50 kcal�mol�1. The cavity condition for RDOCK docking

simulations was prepared using peptidomimetic a-ke-
toamide inhibitor of the A chain under a default condition.

Docking simulations output the top three docking modes

per trial compound in SDF file format. As a result,

4 455 432 docking modes were obtained. These docking

modes were filtered by the RDOCK score threshold of

≤ �50 kcal�mol�1 to obtain 27 561 distinct compounds

(57 649 docking modes) in SDF file format. The ChEMBL

IDs of these distinct compounds were subjected to KNIME

version 4.1.2 [14] to collect compound information from

the ChEMBL web server; some information was manually

collected from the Kyoto Encyclopedia of Genes and Gen-

omes (KEGG) database [15].

From the 57 649 docking modes obtained by virtual

screenings, the 27 561 distinct hit compounds had two

docking modes on average. The hit compounds, including

the 64 drugs I found, could be more precisely investigated

using AUTODOCK VINA docking simulations with these dock-

ing modes as the initial structure. Subsequently, the result-

ing 57 649 docking modes were separated and converted

into individual PDBQT files using DSHC. Then, more pre-

cise docking simulations were performed using the AUTO-

DOCK VINA In Silico Screenings interface integrated into

DSHC. The Mpro homodimer system prepared above in

PDB file format was also converted to a PDBQT file using

DSHC. A configuration file with cavity information was

prepared using DSHC, and other docking conditions were

set to default values (the top nine docking modes per trial

compound were maximally outputted). Docking simula-

tions with AUTODOCK VINA produced 513 597 docking

modes, which were filtered by the AUTODOCK VINA score

(empirical binding free energy) threshold of

�10 kcal�mol�1. Since the AUTODOCK VINA score is an

empirical binding free energy, I expected that �9 kcal�mol�1

of a score would theoretically show an nM order of binding

affinity with Mpro. When the threshold for screening was

set to less than this value, I obtained 659 distinct com-

pounds (1216 docking modes) as hit compounds. To more

realistically concentrate the number of hit compounds, I

determined the threshold value to be ≤ �10 kcal�mol�1. As

a result, I obtained 29 distinct compounds (total 41 dock-

ing modes). The ChEMBL IDs of these distinct compounds

were subjected to KNIME to collect compound informa-

tion from the ChEMBL web server.

Results and Discussion

Structure-based virtual screenings of the

ChEMBL database

In the ChEMBL database, drugs, including approved,

clinical, and preclinical drugs, constitute ~ 0.7% of the

total number of compounds; the others are mainly

bioactive compounds, whose synthesis is, therefore,

promising. The advantage for using the ChEMBL

database is that it covers all types of drugs, from pre-

clinical to approved stages. I expected that the hit

compounds would largely differ from candidates

obtained from virtual screenings using focused and tar-

geted libraries [16,17]. With regard to drug reposition-

ing, the ChEMBL database is more suitable for

searching for effective known drugs or bioactive com-

pounds when urgent therapy is necessary and effective

drugs are not known. The RDOCK score threshold of

≤ �50 kcal�mol�1 showed relatively high binding affin-

ity with Mpro.

Table 1 shows the 64 potential drugs that showed

high binding affinity with Mpro, with some drug infor-

mation collected from the ChEMBL web server using

KNIME. I found 11 approved, 14 clinical, and 39 pre-

clinical drugs from the hit compounds (27 561 distinct

compounds with 57 649 docking modes); the other

27 497 were bioactive compounds. The 64 drugs were

largely classified into antibacterial, antidiabetic, anti-

infective, anti-inflammatory, antineoplastic, cardiovas-

cular, gastrointestinal, human immunodeficiency virus,

and neuropsychiatric drugs. Interestingly, the potential

drugs obtained contained sepimostat and curcumin,

which are recommended as potential anti-SARS-CoV-

2 drugs by researchers [18,19].

Additional docking simulations for hit

compounds

Table 2 shows the 29 hit compounds obtained using

AUTODOCK VINA virtual screenings with ≤ �10 kcal�mol�1

of binding free energy for Mpro. For the 64 drugs,
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Table 1. Potential anti-SARS-CoV-2 drugs obtained from RDOCK virtual screenings of the ChEMBL database.

CHEMBL ID Drug synonym Stage Action Target

RDOCK

Score

(kcal�mol�1)

Vina Score

(kcal�mol�1)

CHEMBL2105088 LOBENDAZOLE Anthelmintic �52.1429 �6.5

CHEMBL2105653 SETILEUTON Antiasthmatic 5-Lipoxygenase inhibitor �60.4636 �8.3

CHEMBL1191 SULFAMETHIZOLE Approved Antibacterial Dihydropteroate synthase

inhibitor

�79.7939 �6.6

CHEMBL437 SULFATHIAZOLE Approved Antibacterial Dihydropteroate synthase

inhibitor

�72.0537 �6.5

CHEMBL1384 KANAMYCIN Approved Antibacterial 30S ribosomal subunit

inhibitor

�71.2391 �7.5

CHEMBL1747 TOBRAMYCIN Approved Antibacterial 50S ribosomal subunit

inhibitor

�56.0916 �6.6

CHEMBL1524273 PHTHALYLSULFATHIAZOLE Approved Antibacterial Cytochrome P450 3A4,

dihydropteroate synthase

inhibitor

�51.7695 �7.3

CHEMBL2105399 SULFAMOXOLE Antibacterial Dihydropteroate synthase

inhibitor

�87.8995 �7.2

CHEMBL1355299 SULFAETHIDOLE Antibacterial Putative fructose-1,6-

bisphosphate aldolase

�84.7512 �7.0

CHEMBL2105398 SULFAMETROLE Antibacterial �69.6628 �6.6

CHEMBL2105403 PENTISOMICIN Antibacterial �59.2134 �7.3

CHEMBL2110604 BETAMICIN Antibacterial �54.6510 �7.7

CHEMBL2107073 SANFETRINEM CILEXETIL Antibacterial �52.6940 �7.8

CHEMBL94087 GLYBUTHIAZOL Antidiabetic �83.8342 �6.8

CHEMBL490070 BENAXIBINE Antidiabetic Monoamine oxidase A �52.5382 �6.9

CHEMBL2107408 GLYBUZOLE Antidiabetic,

Anti-

Hyperglycemic,

�73.5918 �6.6

CHEMBL2104694 ACEFLURANOL Antiestrogen �57.3375 �7.4

CHEMBL1950289 TANZISERTIB Phase2 Antifibrotic c-Jun N-terminal kinase

inhibitor

�60.6067 �8.5

CHEMBL2107669 VIPROSTOL Antihypertensive Prostaglandin analogue �52.3341 �6.5

CHEMBL2106914 PHTHALYLSULFAMETHIZOLE Anti-infective �84.7500 �7.9

CHEMBL2106807 MALEYLSULFATHIAZOLE Anti-infective �66.6682 �7.0

CHEMBL157337 RAMIFENAZONE Anti-

Inflammatory

Adrenergic receptor beta �79.4409 �6.3

CHEMBL2104561 ELTENAC Anti-

Inflammatory

COX2 �72.5029 �6.1

CHEMBL114586 SEPIMOSTAT Anti-

Inflammatory

Serine protease inhibitor �58.1205 �7.9

CHEMBL2110642 DIBUPYRONE Anti-

Inflammatory

�57.8675 �6.1

CHEMBL2104226 ETERSALATE Anti-

Inflammatory

�53.3912 �7.0

CHEMBL2058833 GANAPLACIDE Phase2 Antimalarial �70.6688 �7.7

CHEMBL2396661 ALPELISIB Approved Antineoplastic Serine-protein kinase ATM �67.1970 �8.3

CHEMBL25336 BISANTRENE Phase3 Antineoplastic �54.2373 �8.5

CHEMBL2103842 VARLITINIB Phase2 Antineoplastic EGFR-HER2 inhibitor �69.1763 �8.1

CHEMBL2180604 TAK-593 Phase1 Antineoplastic Vascular endothelial

growth factor receptor 3

�65.4614 �8.1

CHEMBL3182444 MK-5108 Phase1 Antineoplastic Aurora-A kinase inhibitor �52.9359 �6.7

CHEMBL1079 TIZANIDINE Approved Cardiovascular Adrenergic receptor alpha

agonist

�78.7516 �6.3

CHEMBL259223 MENATETRENONE Phase3 Cardiovascular Vitamin K-dependent

gamma-carboxylase

�75.9905 �6.3
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Table 1. (Continued).

CHEMBL ID Drug synonym Stage Action Target

RDOCK

Score

(kcal�mol�1)

Vina Score

(kcal�mol�1)

CHEMBL321582 BUCINDOLOL Phase2 Cardiovascular Adrenergic receptor beta

antagonist

�50.6285 �7.0

CHEMBL12552 BIMAKALIM Cardiovascular Potassium channel opener �67.8339 �7.1

CHEMBL2106134 DALBRAMINOL Cardiovascular Beta blocker �67.3284 �6.3

CHEMBL358373 INDANIDINE Cardiovascular Adrenergic receptor alpha

agonist

�66.5682 �6.2

CHEMBL297362 XYLAZINE Cardiovascular Adrenergic receptor alpha

agonist

�53.0909 �5.7

CHEMBL689 MANNITOL Approved Gastrointestinal �51.6980 �5.3

CHEMBL70209 ZALTIDINE Gastrointestinal Histamine receptor H2

antagonist

�57.8372 �6.3

CHEMBL1742413 PIBUTIDINE Gastrointestinal Histamine 2 receptor

antagonist

�53.1955 �7.7

CHEMBL116438 CURCUMIN Phase3 HIV HIV-1 integrase �55.7724 �7.3

CHEMBL2360841 RO-24-7429 Phase2 HIV Tyrosyl-DNA

phosphodiesterase 1

�58.6922 �6.7

CHEMBL2105488 THYMOTRINAN Immunostimulant �50.6933 �7.1

CHEMBL593262 PARA-

NITROSULFATHIAZOLE

Leishmania

Infantum

�80.0130 �7.0

CHEMBL2107425 GLUCUROLACTONE Liver function

improving

�50.5937 �5.8

CHEMBL1108 DROPERIDOL Approved Neuropsychiatric Dopamine D2-receptor

antagonist

�59.2556 �7.5

CHEMBL1522 ESZOPICLONE Approved Neuropsychiatric GABA-A receptor agonist �54.5048 �10.0

CHEMBL1618018 HOMATROPINE Approved Neuropsychiatric Muscarinic cholinergic

receptor antagonist

�50.4433 �6.7

CHEMBL1394756 ESOXYBUTYNIN Neuropsychiatric NF-Kappa-B, muscarinic

cholinergic receptor

antagonist

�51.7716 �5.9

CHEMBL2110912 DIHEXYVERINE Neuropsychiatric Muscarinic cholinergic

receptor antagonist

�51.2083 �6.8

CHEMBL55214 NERIDRONIC ACID Phase3 Osteogenesis

Imperfecta

�52.9425 �5.6

CHEMBL2106834 METOXEPIN Psychotropic �53.3412 �7.4

CHEMBL1231124 AZD-1480 Phase2 Tyrosine-protein kinase

JAK2 inhibitor

�56.3449 �8.0

CHEMBL10188 TALNETANT Phase2 Neurokinin 3 receptor

antagonist

�52.4637 �7.7

CHEMBL563646 EVATANEPAG Phase2 Prostanoid EP2 receptor �50.5628 �8.0

CHEMBL2105528 BISFENAZONE Carboxylesterase �66.3130 �7.9

CHEMBL2105110 LAMTIDINE Histamine 2 receptor

antagonist

�65.9473 �6.9

CHEMBL67654 CAREBASTINE Histamine H1 receptor

antagonist

�55.9690 �7.7

CHEMBL155674 ASOBAMAST TNF receptor 2 �52.7795 �7.1

CHEMBL1603949 BITHIONOLOXIDE Menin/histone-lysine N-

methyltransferase MLL

�52.4736 �6.9

CHEMBL2105536 SULFACECOLE �52.0995 �7.0

CHEMBL2104446 VANYLDISULFAMIDE �50.1930 �8.3
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Table 2. Hit compounds obtained by combining AUTODOCK VINA and RDOCK virtual screenings of the ChEMBL database.

CHEMBL ID Structure Target

Vina score

(kcal�mol�1)

CHEMBL1559003 Survival motor neuron protein �10.6

CHEMBL2237553 Aspergillus niger �10.5

CHEMBL1511674 Histone-lysine N-methyltransferase MLL �10.5

CHEMBL3260476 Heat shock protein HSP 90-alpha �10.4

CHEMBL1170272 Serotonin 6(5-HT6) receptor �10.4

CHEMBL1335000 �10.4

CHEMBL2235580 Mus musculus �10.3

CHEMBL3264032 Staphylococcus aureus �10.3

CHEMBL1447105 40-phosphopantetheinyl transferase FFP �10.2

CHEMBL589899 Bradykinin B1 receptor �10.2

CHEMBL1539803 Lysine-specific demethylase 4D-like �10.2

CHEMBL2216842 PI3-kinase p110-delta subunit �10.2

1000 FEBS Open Bio 10 (2020) 995–1004 ª 2020 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Virtual screenings predict potential anti-SARS-CoV-2 drugs M. Tsuji



Table 2. (Continued).

CHEMBL ID Structure Target

Vina score

(kcal�mol�1)

CHEMBL427787 Serine threonine-protein kinase aurora-A �10.2

CHEMBL1339675 �10.2

CHEMBL3126648 DNA(Cytosine-5)-methyltransferase 1 �10.1

CHEMBL1302388 Prelamin-A/C �10.1

CHEMBL3234783 Staphylococcus aureus �10.1

CHEMBL1807774 Tyrosine-protein kinase receptor RET �10.1

CHEMBL2087984 �10.1

CHEMBL2387487 ACHN �10.0

CHEMBL2113271 Adenosine A1 receptor �10.0

CHEMBL476947 Cannabinoid CB2 receptor �10.0

CHEMBL399042 Cyclin-dependent kinase 1 �10.0

CHEMBL2000247 Integrase �10.0
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AUTODOCK VINA scores of the most stable docking

modes are also shown in Table 1.

Almost all the 29 hit compounds were bioactive

compounds registered to the ChEMBL database,

except for eszopiclone (CHEMBL1522; approved drug

for neuropsychiatric disease). I believe that these hit

compounds were not developed for common targets,

although the structural feature could be categorized

into some mother skeletons, such as diazole, azine,

and sulfone derivatives (Table 2).

Figure 2 shows the most stable docking modes of

sepimostat (Fig. 2B; AUTODOCK VINA score

Table 2. (Continued).

CHEMBL ID Structure Target

Vina score

(kcal�mol�1)

CHEMBL3236740 Mus musculus �10.0

CHEMBL1447944 Nonstructural protein 1 �10.0

CHEMBL1760165 Serine threonine-protein kinase mTOR �10.0

CHEMBL2087965 �10.0

CHEMBL1522 GABA-A receptor agonist �10.0

A B

C D
Fig. 2. The most stable docking mode

obtained from AUTODOCK VINA docking

simulations. (A) Binding mode of

peptidomimetic a-ketoamide inhibitor in

the crystal structure. (B) Sepimostat, (C)

curcumin, and (D) eszopiclone. Chains A

and B of the Mpro homodimer are shown

as red and cyan ribbons, respectively. The

compound, Cys145, and His41 are shown

as tubes. Van der Waals surface of the

active site is shown in gray color. Water

molecules and hydrogen atoms are

neglected.
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�7.9 kcal�mol�1), curcumin (Fig. 2C; AUTODOCK VINA

score �7.3 kcal�mol�1), and eszopiclone (Fig. 2D;

AUTODOCK VINA score �10.0 kcal�mol�1) obtained from

AUTODOCK VINA docking simulations, in addition to the

binding mode of peptidomimetic a-ketoamide inhibitor

in the crystal structure (Fig. 2A). Researchers consider

sepimostat, curcumin, and the a-ketoamide inhibitor

to be potential anti-SARS-CoV-2 drugs. In this study,

eszopiclone was also the only approved drug with the

highest score on AUTODOCK VINA docking simulations

(Tables 1 and 2). The carbonyl moiety of these com-

pounds was close to the catalytic site of the Cys145

and His41 catalytic dyad, and docking modes were

similar to each other. These results suggest that these

compounds may function through the same underlying

mechanism.

Conclusions

This study was performed to rapidly identify potential

anti-SARS-CoV-2 drug candidates from a known drug

library on the basis of drug repositioning. The drug

candidates presented in this study could be further

examined for their anti-SARS-CoV-2 activities,

together with those of earlier studies using more lim-

ited drug libraries [20–22]. Bioactive compounds with

high binding affinity for SARS-CoV-2 Mpro could be

used as a basis for improving pharmacokinetic proper-

ties and for developing specific anti-SARS-CoV-2

drugs. Combinations of structure-based docking simu-

lations are valuable for high-throughput virtual screen-

ings to identify urgently needed therapies for viral

infections. Determination of the effect of potential

anti-SARS-CoV-2 drugs obtained in this study is in

progress, and the results will be published in the near

future.
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