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ARTICLE INFO ABSTRACT
Keywords: The lower part of offshore construction wharfs is mostly a steel structure system composed of steel
Offshore construction wharfs pipe piles, whose corrosion level directly affects the structural safety performance of steel wharfs
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in service. The currently common corrosion detection methods can only sample and inspect steel
pile after it has been dismantled, making it impractical for in-service monitoring during the
operational period of the steel pile. In this paper, a deep learning-based image classification
model is first established to recognize the type of corroded area on steel pipe piles. The model
achieves a recognition accuracy of 99.14 % in automatically identifying different types of
corroded areas, including full immersion zone, tidal range zone, and splash zone. Subsequently,
digital image processing technology is utilized to automatically calculate the corroded area of
steel pipe piles. The method proposed in this paper can obtain the key information, such as type of
corrosion area and area of the steel pipe pile corrosion area, without damaging their structural
performance during the service. With this data, the mechanical performance of steel pipe piles
can be analyzed, and the structural safety of the in-service steel pipe piles can be determined,
thereby ensuring the safety of the construction wharf.

1. Introduction

Wharfs for offshore construction play a crucial role as transportation facilities for vehicles, personnel, equipment and materials
during the bridge construction process, and is also the first construction platform to overcome the complex marine environment during
the construction of the cross-sea bridge [1], as shown in Fig. 1. As a temporary structure, the service life of offshore construction wharfs
is generally 5-10 years, which is lower than the main structure in terms of component and node safety reserves, and the structure is
more prone to safety hazards. The steel piles of the substructure of offshore construction wharfs are generally made of carbon steel,
which has a large corrosion rate in the marine environment, and due to cost considerations, more effective anti-corrosion measures are
rarely adopted [2]. At present, offshore construction wharfs only rely on anti-corrosion coatings and the inherent corrosion resistance
of steel to resist marine corrosion. With in-creasing service age, corrosion intensifies, which can easily lead to structural damage [3].
Scholars have found that spun high-strength concrete pipe piles are more durable than steel pipe piles [4,5]. However, in practical
applications, they are relatively less commonly used. Therefore, this paper focuses on researching the corrosion of steel pipe piles.
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Taking the offshore construction wharf used during the construction of the Pingtan Strait Public-Rail Cross-Sea Bridge of Fuping
Railway, the first public-rail cross-sea bridge in China, as an example, the marine environment of the region is extremely harsh, with
strong winds and high waves, with maximum level 14 wind on the Beaufort scale and maximum wave heights reaching 9 m [6].
Additionally, the region is located in one of the most corrosive seawater environments in the world, with a maximum corrosion rate of
up to 1 mm per year, the offshore construction wharf suffered serious corrosion damage as shown in Fig. 2.

For the offshore construction wharf, the main cause of structural damage due to corrosion in steel structures is the lack of timely
protection for local corrosion within the structure. As corrosion progresses and the cross-sectional area of the corroded parts gradually
decreases, stress concentration occurs at the corroded area, which accelerates the structural damage [7]. In addition, there are sig-
nificant differences in the degree of corrosion depending on the location. According to different corrosion mechanisms, the corrosion
areas of steel piles under the construction wharf in marine environments are usually divided into five parts: marine atmospheric zone,
splash zone, tidal range zone, full immersion zone and the sea mud area [8]. For example, in general, the corrosion rate of steel pipes in
the splash zone is 3-10 times higher than in other areas, which corresponds to an increase in structural defects in the middle of the steel
member, weakening the stable load-bearing capacity of the structure [9].

To prevent the impact of localized corrosion on structural safety, it is necessary to constantly prevent the occurrence of corrosion.
Professional experts or relevant authorities should scientifically evaluate the remaining load-bearing capacity and deformation per-
formance of steel components and structures after corrosion. In the early stages of mild corrosion, timely repair measures should be
taken. However, in practice, the shape, location, size, degree and quantity of damage to the corrosion layer of steel components are
random, and the local corrosion caused by the damage to the corrosion layer is also random [10]. Therefore, in some actual engi-
neering structures, only by manual visual inspection method is difficult to accurately measure the geometric information of local
corrosion damage. In order to achieve timely detection and treatment of local coating damage or local corrosion, it is necessary to take
a more effective means of corrosion detection.

Currently, research on corrosion of offshore steel structures generally involves obtaining relevant data through in-situ sampling
methods on steel structures. As in-situ sampling of offshore steel construction wharfs essentially involves damaging the structure, it
will affect the structural performance of the steel wharf during its subsequent service period. Direct sampling during the service period
is also very difficult, while sampling after the removal of the steel piles not only loses the natural reference of the sea level but also fails
to meet the requirements for corrosion detection during the use of the steel piles. Therefore, it is necessary to adopt a non-destructive
method to measure the degree of corrosion in each corroded area of the steel pipe pile during its service life, without damaging its
structural properties.

In addition to the destructive in-situ sampling method for corrosion detection of steel piles under offshore steel construction wharfs,
there are other means of testing the structural properties of steel piles without damaging them.For example, acoustic wave detection
method, the method uses ultrasonic equipment to emit ultrasonic waves with a frequency of 20 kHz or above to the steel pipe piles
being detected, the use of sound waves in the object propagation characteristics, through the reflection of sound waves, scattering,
transmission and other analysis, to detect internal defects, foreign bodies and corrosion of the object [11]; The method uses elec-
trochemical principles to test the degree of corrosion of metal materials. It utilizes chemical reactions occurring on the surface of metal
materials to measure changes in potential or current density of the metal, in order to determine whether corrosion has occurred and the
extent of the corrosion [12]; Magnetic memory method is a non-destructive testing method that uses the magnetic memory charac-
teristics of ferromagnetic materials to detect internal defects in the material. This method generates a magnetic field inside the tested
steel pipe pile through equipment to magnetize it. If the steel pipe pile is corroded, the magnetic field at the corrosion site will be
disturbed, thereby affecting the magnetic field distribution inside the steel pipe pile, resulting in a change in the magnetic memory
effect. Using this principle, the degree of corrosion of the steel pipe pile can be determined by a magnetic sensor. [13]; X-ray inspection
method, this method is based on X-ray penetration of steel piles and detection of the degree of absorption or scattering to determine the
degree of corrosion of steel piles, because the corroded areas and non-corroded areas will have different degrees of influence on the
penetration of X-rays, so through the signal received by the detector to measure the intensity of X-rays, you can determine the degree of
corrosion in different areas of steel piles [14]. Although all of the above methods can achieve non-destructive testing of the corrosion
degree of steel pipe piles, but the operation steps are cumbersome or expensive equipment, it is difficult to use on a large scale. After
conducting online price research, we found that the Portable X-ray inspection machine and Fast electrochemical corrosion mea-
surement instrument are approximately ten times more expensive than the method proposed in this paper. The Ultrasonic flaw detector

Fig. 1. Example of offshore construction wharf.
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Fig. 2. Corrosion status of the steel construction wharf after 4 years of operation.

is also about twice the price of the method presented in this paper.

With the development of computer technology and deep learning theory [15], computer vision has shown more powerful ability
than human in image classification work. Thus, it can automatically extract image features and achieve high-precision image clas-
sification and detection tasks. Computer vision technology has been mainly studied and applied in the field of structural health in-
spection in civil engineering, with deeper research in structural crack detection [16-20], pavement damage detection [21,22], and
structural damage detection [23], while shallow and little research has been conducted for the identification and feature extraction of
corrosion in steel structures.

In order to judge the corrosion area of steel pipe pile, this paper proposes a method for judging the corrosion area of steel pipe pile
in marine environment based on statistical method, deep learning and digital image processing technology. That is, a digital camera is
used to photograph the steel surface, manually distinguish the corrosion area types, and construct a macro corrosion area dataset, and
use convolutional neural network and transfer learning methods to construct a high-accuracy automatic classification model for macro
corrosion area types. In addition, digital image processing was used to obtain the outline of its macroscopic corrosion area and
calculate the corrosion area.

The method can use UAVs to capture and sample in-service steel pipe piles, then judge the type of corrosion area and extract the
corrosion area, thereby compensating for the deficiency of in-situ sampling. This method obtains data such as corrosion area and type
of corrosion area without damaging the in-service steel pipe piles, providing data support for subsequent mechanical modeling and
calculation of steel pipe pile bearing capacity.

2. Materials and methods

The method proposed in this paper mainly consists of two parts. The first part involves the recognition of the type of corrosion areas
on the lower steel pipe piles of offshore steel construction wharfs, achieved through computer vision technology and image classifi-
cation techniques based on deep learning. Firstly, the existing Q235B corrosion image data from the China National Materials
Corrosion and Protection Scientific Data Center and the newly collected and labeled steel pipe pile corrosion image data from the
construction site of the Pingtan Strait Public-Rail Bridge were integrated into the dataset for this paper. Based on this dataset, which
included images of steel pipe piles on the wharf, the amount of data was increased using data augmentation techniques. The dataset
was then divided into training, validation, and test sets, completing the data preparation process. Afterwards, the method of
comparative study is used to select whether to use the transfer learning method for the training of the image classification neural
model. In addition, the performance of several neural networks in this classification task was also compared, i.e., the best performing
network model was selected from GoogleNet, ResNet101 and DenseNet, and finally it was used for the recognition of corrosion area
types on the lower steel pipe piles of steel wharfs in a marine environment. After the recognition of corrosion area type is completed,
the second part of the method will implement the extraction and calculation of corrosion area of steel pipe pile using computer vision
techniques. Firstly, the image is converted to grayscale, and then the morphological filtering method with open and closed operations
is used to reduce the background noise and complete hole processing respectively. After that, based on the pixel value of the processed
image, the global threshold segmentation method is used to divide each pixel point in the steel pipe pile image into corrosion area and
non-corrosion area. Then, contour detection is performed on the threshold segmented image, and false pixel points are filtered out,
finally the corrosion area of steel pipe pile can be calculated. The research methodology in this paper is shown in Fig. 3.

2.1. Type of corrosion area recognition based on image classification technology
2.1.1. Data source
The sources of the image dataset constructed in this paper include two parts: the China National Materials Corrosion and Protection

Science Data Center and the construction site collection of the Pingtan Strait Public-Rail Bridge.

(1) Q235B corrosion image data from the China National Materials Corrosion and Protection Science Data Center
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Fig. 3. Research methodology of this paper.

China National Materials Corrosion and Protection Science Data Center provides images of corrosion of standard specimens of
various common metallic materials in atmospheric, soil and water environments (as shown in Fig. 4), and because the steel pipe piles
studied in this paper are corroded in the marine environment and the material of the steel pipe piles is Q235B. In order to maintain the
similarity of the data, the image samples provided by China National Materials Corrosion and Protection Science Data Center are
selected from Q235B which is consistent with the corrosive environment and material of the target of this paper’s research. A total of 9
test image data from 3 seawater stations in Xia Men, San Ya and Zhou Shan were used to ensure the applicability of the resulting model.

Corroded areas of steel pipe piles at construction sites can be distinguished by the natural reference of sea level, and data sets can be
constructed by taking and cropping photographs. In this paper, a total of 103 high-resolution images of corrosion of some steel pipe
piles were collected at the construction site of the Pingtan Strait Road-Rail Bridge using a Sony A6400 micro-single camera with a
24-105 mm zoom lens before the steel pipe pile removal work (as shown in Fig. 5). The sea level is used as a reference to distinguish the
position of splash zone, tidal range zone and full immersion zone in the image, which is cropped out as the image data sample of steel
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Fig. 4. The China National Materials Corrosion and Protection Science Data Center Q235B marine corrosion image: (a) full immersion zone (Xia
Men); (b) full immersion zone (San Ya); (¢) full immersion zone (Zhou Shan); (d) tidal range zone (Xia Men); (e) tidal range zone (San Ya); (f) tidal
range zone (Zhou Shan); (g) splash zone (Xia Men); (h) splash zone (San Ya); (i) splash zone (Zhou Shan).

(2) Acquisition of steel pipe pile corrosion image data at the construction site of Pingtan Strait Road-Rail Bridge.
pipe pile corrosion zone classification in this paper. Corrosion zone image sampling method is shown in Fig. 6.
2.1.2. Construction of the dataset

(1) Data Augmentation

In the field of deep learning, the larger the number of samples in the dataset, the better the trained model and the better the
generalization ability of the model. Due to the limited source of Q235B steel corrosion image data and the small amount of data in this
study, data augmentation [24] is used to enhance the sample quality without substantially increasing the data, so that the limited data
can produce values equivalent to more data, and thus improve the generalization ability and robustness of the model. In this paper, we
use geometric transformations including flip, rotate, shift, crop, deform and scale, as well as color transformations such as noise
addition and image blurring to expand the dataset in order to enhance the generalization ability and robustness of the model. Fig. 7
shows the image data augmentation method and the resulting augmented images, used to establish a dataset for classifying the type of
corrosion areas in steel pipe piles.

After the initial data undergoes data augmentation, a total of 561 full immersion zone images, 693 splash zone images, and 561

Fig. 5. Example of image data acquisition at construction site: (a) Site image sample 1; (b) Site image sample 2.



S. Han et al. Heliyon 10 (2024) e24142

(a) (b)

Fig. 6. Sampling method of corrosion zone images: (a) Full immersion; (b) Tidal range zone; (c) Splash Zone.
(b)
(d)
(®)

Fig. 7. Image data augmentation methods and augmentation results: (a) Original image; (b) Change the aspect ratio; (c¢) Horizontal Flip; (d)
Gaussian blur; (e) Grayscale; (f) Random Noise.

(2) Dataset division

Table 1
Corrosion area classification dataset Partitioning.
Division of the dataset Corrosion zone Number of images (unit: sheets)
training dataset tidal range zone 392
splash zone 485
full immersion zone 392
validation dataset tidal range zone 112
splash zone 138
full immersion zone 112
test dataset tidal range zone 57
splash zone 70
full immersion zone 57
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tidal range zone images were obtained. It is divided randomly into training set, validation set, test set in a 7:2:1 radio based on their
quantity, and used to train the parameters of the neural network model, as shown in Table 1.

2.1.3. Test plan

In order to achieve precise classification of the type of corrosion areas, this paper uses the above dataset to compare the perfor-
mance differences between the same model with different initialization parameters and pre-trained weights, and the performance
differences between various convolutional neural network models when using pre-trained weights. The final model that satisfies the
research accuracy requirements is selected. The specific experimental protocol design is shown in Table 2, and the specific protocol is
as follows.

(1) Test Group I

In this set of tests, the GoogleNet network model is selected to investigate the effect of using pre-training weights (i.e., transfer
learning method) on the performance of the model on corrupted region classification data, i.e., to compare the effect of using the
official pre-training weights in model training with and without the official pre-training weights on the model training results.

(2) Test Group II

Three groups of models, GoogleNet, ResNet101, and DenseNet, were selected for this set of tests, all using pre-trained models
obtained through ImageNet training, to compare the performance of different common convolutional neural network models on the
corrupted area classification dataset, and finally select the model that meets this study and engineering applications.

Some scholars have pointed out that applying excessive data augmentation can distort the contents of images and, as a result,
produce poor training examples [25]. Therefore, here we compare the training effects of the one-stage scheme and the two-stage
scheme [26]. The one-stage scheme involves using original data and data augmented during the entire training process. The
two-stage scheme, on the other hand, consists of initially training with heavy data augmentation, followed by fine-tuning using little or
no data augmentation (e.g., flipping).

2.1.4. Analysis of test results

The hardware and software environment for this experiment is shown in Table 3, and the model training parameters were set as:
The model was trained for 500 epochs, with a learning rate of 0.001, using the CrossEntropyLoss function and the Adam optimizer. The
model weights for each 50 epochs are tested on the test set not involved in training to check the accuracy, and the model weights are
saved for each iteration.

This set of experiments uses GoogleNet as an example to compare the performance of the model in conducting corrosive areas types
classification work with and without the transfer learning method in both cases. Fig. 8 shows the classification accuracy of the training
model on the validation and test sets. It is clear that the model converges faster and with significantly higher recognition accuracy
when using the transfer learning method than when not using the transfer learning method.

This set of experiments compares the performance of three convolutional neural network models, including GoogleNet, ResNet101,
and DenseNet, in automatic classification work of corroded areas types when all using transfer learning methods. Fig. 9 shows the
accuracy of the three models for classification work on the validation and test sets, indicating the accuracy of the three models on the
test set every 100 epochs. It is clear that the DenseNet model performs relatively best on the validation and test sets, and the accuracy of
the DenseNet model on the test set is 98.83 % at an epoch of 500.In this set of experiments, taking DenseNet as an example, with the
precondition of utilizing pre-training weights, we adopted the two-stage scheme for training. The initial 420 epochs involved training
with all data, including both original data and data augmented during the process. Subsequently, the following 80 epochs exclusively
utilized the original data for training. The training and testing results are shown in Fig. 10. In comparison to Test Group II, which used
the one-stage scheme, there is a certain improvement in accuracy, reaching 99.14 %. The results demonstrate that employing the two-
stage scheme can mitigate the adverse effects caused by data augmentation to some extent.

2.2. Corrosion area extraction based on digital image processing
The percentage of corroded area on steel pipe pile is an important indicator to measure the degree of corrosion on steel pipe pile,

Table 2

Program design for corrosion zone classification tests.
(3)Test Group III

Group Number Model Selection Using pre-trained weights
Group I Al GoogleNet X

A2 GoogleNet v
Group II Bl GoogleNet v

B2 ResNet101 v

B3 DenseNet v
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Table 3

Corrosion zone classification test software and hardware environment.

(1)Test Group I

Heliyon 10 (2024) e24142

Hardware Environment CPU Intel i7-11800H
GPU Nvidia RTX3070 Laptop 8G
Memory 16G

Software Environment Operating System Windows 11
Programming Languages Python 3.8

Main Library
Compiler

Pytorch 1.10.0, OpenCV4.5.5, Numpy1.22.3

Pycharm Community
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(3) Test Group III

and is also an important indicator to evaluate the safety performance of steel pipe pile. In this paper, a corrosion area extraction
method based on digital image processing using the grayscale thresholding method was developed. Using this method, the corrosion on
the surface of steel pipe piles can be accurately measured and extracted quickly. The main processing includes, Image grayscale
conversion, background noise and hole processing, global threshold segmentation, contour extraction, area calculation and filtering 6
steps, the technical process is shown in Fig. 11. The local presence of residual liquid in the sampled region, as illustrated in Fig. 6, led to
the application of background noise and hole processing to eliminate noise and reduce the impact of liquid reflections. Finally, the use
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of global threshold segmentation to categorize pixels into two classes further diminished the influence of liquid reflections. This article
verifies the effectiveness of the method by implementing it in the software and hardware environment shown in Table 3.

2.2.1. Image grayscale conversation

In the macroscopic corrosion image of steel, areas with different degrees of corrosion exhibit varying levels of brightness and
darkness. Specifically, the more severe the corrosion, the darker the overall color of the pixels in that area. And in the feature extraction
work for corroded images, only two types of pixel points are of interest: corroded regions and non-corroded regions. Therefore, a color
RGB three-channel image is converted to a grayscale image of a single color channel. The grayscale value range from O to 255, with
brighter pixel points, have higher grayscale values. The pixels with a gray value of 255 are white, and the pixels with a gray value of
0 are black. Corrosion corresponds to areas with deeper colors and smaller gray values, while non-corroded areas correspond to areas
with lighter colors and larger gray values.

The image of the corroded area of the steel pipe pile (Fig. 12) is grayed out after the image grayscale conversion (Fig. 13). After
applying grayscale processing to the image of the corroded area of the steel pipe pile (Fig. 12), a grayscale image was obtained
(Fig. 13). By comparing Figs. 11 and 13, it can be seen that the light-colored points in the grayscale image correspond to the non-
corroded areas in the original steel pipe pile image, while the dark-colored points correspond to the corroded areas.

Fig. 12. Input images.
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Fig. 13. Grayscale conversion.

2.2.2. Background noise and hole processing

Image noise [27] is a random variation in brightness or color information generated during image capture, bringing errors and
additional information to the image. Therefore, it is necessary to filter the image to ensure the accuracy of the subsequent image
processing work. The quality of the image filtering effect will directly affect the effectiveness and reliability of the subsequent image
processing and analysis.

During the noise reduction process, the morphology open operation filtering method is used to remove isolated noise points in the
image while essentially maintaining the shape and contour of objects in the image. Then, the morphology close operation filtering
method is used to fill small cracks, gaps, and holes within the foreground objects in the image. The processed image is shown in Fig. 14.

2.2.3. Global threshold segmentation

This study only focuses on two types of points of interest in the image, namely corroded and non-corroded. In a grayscale image, the
grayscale value of each pixel is any integer between 0 and 255.In the global threshold segmentation operation, the gray value of pixels
with gray value greater than the threshold will be set to 255 (white), and the gray value of pixels that are less than or equal to the
threshold will be set to O (black). The grayscale image is transformed into a more understandable binary image after the threshold
segmentation operation. Therefore, the pixel points on the steel plate image are divided using the threshold segmentation method, so
that the grayscale value of the pixel point representing the corrosion is 0 and the grayscale value of the non-corrupted pixel point is
255.

When segmenting images of corroded regions using the threshold segmentation method, determining the threshold value is the
most critical aspect. This paper provides a simple algorithm to determine the threshold value. An image containing an estimable
percentage of corrupted areas is selected and the grayscale values of all pixels are sorted. If the image size is h*w, and the area of the
corrupted area is a%, that is, there are num pixels belong to the corrupted area, num is calculated as in Equation (1), then the grayscale
value k corresponding to the num pixel points of the sorted list is the threshold value.

num=[h * w x a%|, (€}

Where y = [x] denotes the integer function, i.e., y = [x] = a, a<x < b (a, b are integers and b-a = 1).

According to this method, a picture in the dataset with a corrosion area that occupies about 80 % of the entire surface of a steel pipe
pile was selected in this paper, as shown in Fig. 15. Fig. 14 has a height of 163 and a width of 131, containing a total of 163*161 =
26,243 pixels. Transforming Fig. 15 into a grayscale image and sorting the 26,243 grayscale values, the number of pixels in each gray
level was statistically obtained, and its grayscale distribution was obtained as shown in Fig. 16. According to equation (1), the value of
num is 21,028, and the value of threshold k is finally calculated to be 82.

The global image thresholding segmentation method is adopted, and the value of threshold k is 82. After performing the seg-
mentation operation on Fig. 14, a binarized image containing only black pixels with a gray value of 0 and white pixels with a gray value
of 255 is obtained, as shown in Fig. 17. To facilitate the subsequent contour extraction operation, the binary image needs to be
processed by inverse operation, as shown in Fig. 18. In the processed image, white pixels represent corroded areas and black pixels
represent non-corroded areas.

2.2.4. Contour extraction

Contours can be simply understood as curves connecting all consecutive points. After obtaining the binary image through the
threshold segmentation method, it is necessary to extract the contours in the image. After the binary image obtained by the threshold
segmentation method, the contours in the image need to be extracted. The principle of contour extraction uses the method of hollowing
out internal points, assuming that the gray value of the background pixel is 0 and the gray value of the target pixel is 255. If the gray
value of a pixel and its 8 neighboring pixels are all 255, the point is considered as an internal point rather than a point on the contour.

Fig. 19 shows the results of Fig. 19 after the preliminary contour extraction. Due to the presence of small contours in the image
obtained by mis-checking, the contours obtained by mis-checking mostly originate from the noise in the image and are irrelevant
contour information. Therefore, a filtering operation is performed on the results in Fig. 19 to sieve out the irrelevant small contours and
finally obtain the main contours of the corroded area. The final corrosion zone contour extraction results are shown in Fig. 20.

10
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Fig. 14. Background noise and hole processing results.
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Fig. 15. Pictures of steel pipe piles.
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Fig. 16. Grayscale distribution.

Fig. 17. Threshold segmentation.
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Fig. 19. Preliminary extraction.

Fig. 20. Contour of the corrosion zone.

2.2.5. Area calculation

The size of the steel plate is w0*hO0, place the steel plate horizontally and take a photo and crop the photo to a size that only retains
the appearance of the steel plate without scaling to get an image size of w1l*h1. If the total number of pixel points within the corrosion
contour is N, the area S of the corrosion zone is calculated as shown in Equation (2).

s=tlo, @

Wlhl

The size of the steel plate detected in this section is w0*h0 = 3.0 cm*3.0 cm, the size of the image taken is wl*h1l = 162*272, and
the final automatic calculation gets the corrosion areas of the steel plate as S = 6.887 cm?.

3. Discussion

The study on an automatic classification model for corrosion areas in steel pipe piles, which is based on image classification
techniques, conducted two sets of experiments. The results of Test groupl show that using transfer learning methods in the process of
model training can significantly improve the accuracy of image classification work. The results of the Test Group II show that DenseNet
has the highest accuracy among the three mod-els, and DenseNet is also the fastest converging in training, and the cost of training
DenseNet model is lower. In summary, the DenseNet model using transfer learning method achieves high accuracy and low training
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cost in automatic classification of images showing corrosion on the surface of steel pipe piles. This model is well-suited for practical
applications in steel pipe pile sampling.

In the research of corrosion feature extraction method based on digital image processing technology, this paper validates the
method with a specific steel pipe pile image. The experimental results demonstrate that the method effectively and quickly extracts the
contour of the corrosion area and the number of pixels within the contour, which corresponds to the area of the corrosion area of the
steel pipe pile. The extraction results in Fig. 17 demonstrate the effectiveness of the method.

In practical construction, the method proposed in this paper can be used to obtain the type of corrosion area and corresponding data
of steel pipe piles located beneath a steel construction wharf in marine environments. The specific approach is as follows: Use an
unmanned aircraft or underwater drone with tracing capability, and pre-define the travel route based on the layout of the steel pipe
piles under the steel construction wharf. Then, capture images and mark the position of each part of the steel pipe piles during the
travel process. After the data collection is completed, the collected images are individually recognized for areas of corrosion on the
steel pipe piles and the area of corrosion is calculated. Finally, use these data as a basis to judge the structural safety performance of
steel pipe piles.

4. Conclusion

This paper proposes a method for recognizing the type of corrosion areas and calculating the corrosion areas of steel pipe piles in
marine environment based on computer vision technology and deep learning theory. This method enables nondestructive detection of
the corrosion degree of steel pipe piles, and makes up for the limitations of the traditional in-situ sampling method which destroys the
original structural properties of steel pipe piles when determining the corrosion degree. In addition, this method also addresses the
problems of complicated and expensive equipment in various nondestructive testing methods, such as acoustic detection, electro-
chemical detection, magnetic memory, and X-ray detection. This method makes up for the limitations of these existing methods.
Because the method proposed in this paper is cost-effective and offers a rapid detection advantage, it can be used for quick assessments.
However, it cannot detect the internal corrosion of steel pipe piles. Therefore, in practical applications, this paper’s method can be
initially employed for a swift evaluation to identify potentially severely corroded areas. Subsequently, a combination of methods such
as acoustic wave detection, magnetic memory, or X-ray inspection can be applied to conduct a more comprehensive internal inspection
of the steel pipe piles. This approach allows for a quick and efficient corrosion detection process.

This paper conducted a multi-scale corrosion characterization study on the construction wharf of the first cross-strait public-rail
bridge in the sea area of East China Sea. Firstly, an automatic classification model of steel plate corrosion area type is established based
on image classification technology, and the method can realize efficient and accurate automatic classification of corrosion areas of
steel structures in service at sea. Then, a corrosion area extraction method for images of steel pipes piles is established based on digital
image processing methods, which can effectively and quickly extract the corroded area of the steel pipe pile with the area size being
quantified. The method can easily and effectively identify and calculate the corrosion area of the steel piles under the steel construction
wharf, and does not damage the original structural properties of the steel piles in service. Finally, the structural safety of steel pipe piles
can be evaluated based on the corrosion area type and size data obtained using this method. This provides effective support for the
safety assessment of steel pipe piles in service.

However, the method proposed in this paper also has certain limitations, for example, it is difficult to ensure the safety of un-
manned aircraft or underwater drones when the sea where the steel construction wharf is located has high winds and waves, so the use
of this method to detect the corrosion degree of steel pipe piles needs to be carried out under good sea conditions. However, the method
proposed in this paper also has certain limitations. For example, it may be difficult to ensure the safety of unmanned aerial vehicles or
underwater drones when the sea where the steel construction wharf is located has high winds and waves. Therefore, it is recommended
that this method be used to detect the corrosion degree of steel pipe piles under good sea conditions. In future research, it is possible to
develop more stable unmanned equipment and improve the recognition accuracy of algorithm models in order to increase the
applicability of this method.
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