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Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS/INSERM/ULP)
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ABSTRACT

SAGE (Serial Analysis of Gene Expression) experi-
ments generate short nucleotide sequences called
‘tags’ which are assumed to map unambiguously
to their original transcripts (1 tag to 1 transcript
mapping). Nevertheless, many tags are generated
that do not map to any transcript or map to multiple
transcripts. Current bioinformatics resources, such
as SAGEmap and TAGmapper, have focused on
reducing the number of unmapped tags. Here, we
describe SAGETTARIUS, a new high-throughput
program that performs successive precise Nla3
and Sau3A tag to transcript mapping, based on
specifically designed Virtual Tag (VT) libraries. First,
SAGETTARIUS decreases the number of tags
mapped to multiple transcripts. Among the various
mapping resources compared, SAGETTARIUS per-
formed the best in this respect by decreasing up
to 11% the number of multiply mapped tags.
Second, SAGETTARIUS allows the establishment
of a guideline for SAGE experiment sequencing
efforts through efficient mapping of the CRT
(Cytoplasmic Ribosomal protein Transcripts)-
specific tags. Using all publicly available human
and mouse Nla3 SAGE experiments, we show that
sequencing 100000 tags is sufficient to map almost
all CRT-specific tags and that four sequencing
stages can be identified when carrying out a
human or mouse SAGE project. SAGETTARIUS is
web interfaced and freely accessible to academic
users.

INTRODUCTION

Genome-wide gene expression profiling is now possible,
thanks to the development of complementary high-
throughput techniques such as Expressed Sequence Tag
(EST) (1), differential display (2), cDNA microarray (3),
genome tiling array (4), SAGE (5) and the associated
LongSAGE (6) adaptation. cDNA microarrays and
genome tiling arrays are based on cDNA target hybridiza-
tions with complementary nucleic acid probes immo-
bilized on a surface. The nucleotide sequence of the probes
determines which transcripts can be hybridized, and
thus which gene expressions can be measured. In contrast
to cDNA hybridization strategies, EST, differential
display, SAGE and LongSAGE all rely on the cloning
and sequencing of cDNA. EST are randomly selected
cDNA clones and they have applications in the character-
ization of gene products and new gene discovery (1),
they may although not be effective enough to detect
low-abundance transcripts (7). Differential display is a
comparative approach which focuses on identifying
differentially expressed genes between two cell samples.
Finally, SAGE and LongSAGE can provide a measure of
all individual gene expressions, including novel genes.
Both methods require strong sequencing efforts, but the
wealth of gene expression information obtained justifies
the investment (8). SAGE has been successfully used to
characterize the transcriptomes of yeast (9) and higher
eukaryote cell types, both in healthy (10,11) and patho-
logical situations, especially cancer (12,13). Moreover,
LongSAGE should significantly improve genome annota-
tion (14,15). Briefly, a SAGE experiment involves
the isolation and reverse transcription of all 30 poly-
adenylated mRNA expressed in a cell and the cloning,
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concatenation, sequencing and counting of short stretches
of 10 nt called Experimental Tags (ET). The ET are
derived from a particular position of the mRNA deter-
mined by a restriction enzyme site (anchoring enzyme) (5).
The LongSAGE adaptation of SAGE generates longer
ET sequences of 17 nt. The observed ET sequence copy
frequencies provide the relative expression levels of the
transcripts in the cells. A tag is defined by the 10 or 17 nt
sequence which is directly downstream of the most
30 anchoring enzyme restriction site on a 30 poly-
adenylated mRNA. Nla3, which recognizes the CATG
motif, is the most widely used anchoring enzyme, but
Sau3A, which cleaves DNA at GATC sites, has also been
used in SAGE protocols. Once sequenced and counted,
the thousands of ET generated by SAGE or LongSAGE
experiments must be mapped to their original transcripts
in order to identify the genes expressed in the cells.
ET to gene mapping is a bioinformatics task which

requires the pre-construction of a specialized database of
Virtual Tags (VT). VT are tags which are extracted from
transcript sequences recorded in nucleic acid databases,
and the VT sequences are associated with the transcripts
or genes from which they derive. During the mapping
process, ET are compared to VT. When an ET matches a
VT, the ET is mapped to the transcript or gene with which
the VT is associated, and as a result the identity of the
gene which is expressed in the cell is determined. SAGE
postulates that ET sequences are random and long enough
to be mapped without ambiguity to their original gene.
Theoretically, 10 nt can generate 410 (1 048 576) different
sequences. For human and mouse genomes, this repertoire
of short sequences is largely above the estimated number
of 30 000–40 000 different protein coding genes (16,17).
Moreover, even the repertoire of human and mouse
transcripts which has been estimated at 92 000 distinct
mRNA (18) is less than the 410 possibilities of SAGE tag
sequences. Consequently, the mapping process is expected
to map without ambiguity any ET to a single gene.
However, in practice, the mapping process has come up
against two major obstacles, namely unmapped and
multiply mapped ET. Indeed, many ET do not map to
any gene (19–21). Unmapped ET may account for
the expression of novel transcripts or they could be the
result of an accumulation of sequencing errors (22). Most
bioinformatics developments have focused on decreasing
the rate of unmapped ET and recently, the TAGmapper
tool (21) has been shown to significantly reduce the rate
of unmapped ET by means of a 7.1 million specialized
VT database. A non-negligible rate of ET has also been
reported to map to multiple genes (23,24). Indeed, it has
been estimated that a third of human ET are shared by
different genes (22), due to the fact that 10 nt long ET
sequences might be too short to be specific to a single
gene. Therefore, the LongSAGE technique which gener-
ates 17 nt long ET may prove to be more useful for
resolving multiply mapped ET ambiguities (22).
The reasons why ET may map to multiple genes are

debatable. First, ET are sequenced only once and are thus
susceptible to sequencing errors. VT are also susceptible
to sequencing errors because they derive from transcript
records which are of variable primary sequence quality.

Due to these sequence errors, false positive matches
between ET and VT may occur. Second, transcripts may
contain Interspersed Repetitive Elements (IRE) (25,26)
which introduce common subsequences. SAGE tags
extracted from IRE sequences are likely to lead to
multiply mapped ET. Third, multiple gene mapping
may also be a consequence of the VT database construc-
tion procedure itself. For example, SAGEmap and
SAGE Genie mapping resources (27) both propose a VT
database which contains internal tags, i.e. VT extracted
from 50 anchoring enzyme sites on an mRNA sequence
and TAGmapper also integrates VT extracted from
transcripts lacking a 30 poly-adenylated boundary.
These approaches may lead to multiple gene mapping
by generating additional matches with VT sequences.
Finally, the low complexity of some tag sequences may
also lead to multiple gene mapping. For example, the
AAAAAAAAAA VT is shared by many different
transcript sequences whose most 30 anchoring enzyme
site occurs just before the 30 poly-adenylated boundary.
As a consequence, an AAAAAAAAAA ET will map
every transcript associated with an AAAAAAAAAA VT.

The use of Sau3A as an alternative anchoring enzyme
to carry out a SAGE experiment may help to resolve tag
to transcript mapping ambiguities encountered when
using Nla3. As an example, the human Ribosomal
Protein 4 (RPL4) transcript (NM_000968) is associated
with an Nla3 AAAAAAAAAA tag, whereas its Sau3A
tag is CATCGCAGAG. Although Sau3A SAGE experi-
ments are less frequent, the maintenance of an Sau3A
mapping resource should be a useful tool for some tag
to multiple transcript associations.

Human and mouse SAGE experiments, which represent
86% of all publicly available SAGE libraries, have
generated several millions of ET sequences (22), and as
a consequence automatic procedures are now required
to map ET to their original genes. Here, we present a new
mapping strategy and a new VT database both integrated
in a web-interfaced tool, SAGETTARIUS, specifically
designed to address the problem of ET to multiple gene
mapping. In fact, SAGETTARIUS performs ET to
transcript rather than gene mapping. SAGETTARIUS
distinguishes three groups of VT to transcript associa-
tions, according to mRNA primary sequence quality:
individually cloned and verified cDNA (28); High-
Throughput cDNA (HTC) (29) which are full-length
mRNA, but may be of draft quality (30,31), and
Expressed Sequence Tags (EST) which are fragmentary
sequences containing a 1% base error rate and thus a
VT extracted from an EST has a 10% chance of being
false (23). SAGETTARIUS implements a progressive
and reductive mapping procedure, during which ET
are compared to the three groups of VT to transcript
associations.

Furthermore, biologists who plan a SAGE project
must decide how many ET to sequence. The number
will be a compromise between the gene expression infor-
mation benefit required and the associated sequencing
effort. Indeed, the number of ET required to define a
cell transcriptome depends on the confidence level desired
for detecting low-abundance mRNA molecules (9).
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Furthermore, it has been estimated that a cell generally
contains about 300 000–570 000mRNA molecules (32)
which means that at least 300 000 ET should be sequenced
in order to cover the smallest transcriptome. Publicly
deposited SAGE collections of ET range from a few
thousand to more than 300 000 sequenced ET. Currently,
most SAGE experiments collect from 50 000 to 100 000 ET
sequences (22), but no guidelines exist for the efficient
planning of ET sequencing stages. The mapping of ET
derived from a reference family of ubiquitously expressed
mRNA, ideally containing high-, medium- and low-
abundance transcripts (33) would provide a practical
framework to plan a SAGE project with successive
sequencing stages. In this study, we have investigated
whether the CRT can be used as a reference family of
mRNA to propose a guideline for SAGE sequencing
stages.

MATERIALS AND METHODS

Publicly available SAGE experiments

We downloaded all the publicly available Homo sapiens
and Mus musculus Nla3 SAGE experiments from the
Gene Expression Omnibus server (34,35). Thus, 371
human and 123 mouse SAGE experiments were collected.
These SAGE experiments originate from various cell
types, developmental stages, physiological conditions
and pathological situations. The smallest (GSM718,
SAGE_HMEC-B41) and largest (GSM14799, SAGE_
Brain_fetal_normal_B_S1) human Nla3 SAGE experi-
ments contain respectively, 1430 and 308 589 sequenced
ET, whereas the smallest (GSM5050, P10 cerebellum)
and largest (GSM75582, SAGE_hypothalamus_
adrenalectomized) mouse Nla3 SAGE experiments
contain respectively, 464 and 194 345 sequenced ET.
The efficiency of the SAGETTARIUS ET to transcript
mapping procedure has been evaluated on the GSM14740
experiment (SAGE_Brain_ependymoma_B_R1023 with
122 690 sequenced ET and 40 027 unique ET sequences).
A sample of 8 human Nla3 SAGE experiments has been
used to evaluate the number of IRE-derived ET mapped
to multiple transcripts: GSM23394 (THP-1, cultured
THP-1 cells; 2147 unique ET), GSM764 (SAGE_normal_-
prostate; 6719 unique ET), GSM14804 (SAGE_
Lung_normal_CL_L15; 9078 unique ET), GSM14805
(SAGE_Lung_normal_CL_L16; 11 894 unique ET),
GSM762 (SAGE_normal_lung; 24 962 unique ET),
GSM14740 (SAGE_Brain_ependymoma_B_R1023;
40 027 unique ET), GSM41378 (SAGE_Embryonic_
stem_cell_H9_normal p38_CL_SHES1; 37 097 unique
ET) and GSM14799 (SAGE_Brain_fetal_normal_B_S1;
80 125 unique ET).

SAGEmap resources ofH. sapiensNla3 VT
to Unigene cluster associations

We downloaded from the SAGEmap (NCBI) bioinfor-
matics mapping server (ftp://ftp.ncbi.nlm.nih.gov/pub/
sage/map/Hs/Nla3) both ‘full’ and ‘reliable’ resources
of human Nla3 VT to Unigene cluster associations,
built from Genbank version 151 and H. sapiens Unigene

release 187. These resources propose VT associated
with Unigene clusters of transcripts according to the
SAGEmap procedure (23). Briefly, the ‘full’ resource
contains significantly more VT to Unigene cluster
associations than the ‘reliable’ one, although the ‘reliable’
associations are more robust.

Computational servers, operating systems and source code

A Sun Solaris 9 server with 4� ultra-sparc-3 64 bits
processors, 800MHz and 16GB of RAM hosts the
SAGETTARIUS database of VT to transcript associa-
tions. The database information is currently stored in
a Relational Sybase DBMS (Database Management
System). Updates of the SAGETTARIUS database are
performed on a 6� 4 Sun AMD Opteron processors
(2.6GHz) using the Linux Operating System. The
SAGETTARIUS database is queried using Perl 5.6.1
scripts integrating the DBI (Database Interface Module).
The SAGETTARIUS web interface has been developed
in PHP and Perl cgi (common gateway interface) scripts
run on a Sun Enterprise 450 (Solaris 9) server with
four processors, 1GB of shared memory and the Unix
operating system.

Construction of the VT to transcript association database

VT to transcript associations stored in the
SAGETTARIUS database all originate from Genbank
(30) (release 151) transcript sequences, except for the VT
to CRT associations which originate from the transcript
sequences of the RefSeq-RNA database (36). Locally
updated copies of Genbank and RefSeq-RNA are
maintained on our bioinformatics platform and are
both indexed with SRS 7.1.3.1 (Sequence Retrieval
Software, Lion Bioscience). The construction of the
SAGETTARIUS database of VT to transcript associa-
tions relies on a three-step process (Figure 1).
(i) The selection and sorting step exhaustively identifies

in Genbank and RefSeq-RNA, the human and mouse
30 poly-adenylated (at least six adenines) transcripts and
classifies the transcripts according to four groups: CRT,
verified cDNA, HTC and EST. EST sequences that are
50 poly-thymidylated instead of being 30 poly-adenylated
are reversed and complemented. We have also obtained
from RefSeq-RNA the complete catalog of human and
mouse full-length 30 poly-adenylated CRT and their
annotated splicing variants. The Ribosomal Protein
Gene (RPG) database (37) provides the complete list of
the 80 human and 79 mouse cytoplasmic ribosomal
protein coding genes. Using gene name-based queries in
the RefSeq-RNA database, we obtained the CRT
sequence records. When a CRT sequence record contained
a 30 poly-adenylated boundary and anchoring enzyme
sites, the most 30 VT was extracted according to the SAGE
tag definition. When a CRT sequence record did not
contain a 30 poly-adenylated boundary, the VT could not
be extracted. Therefore, a blastn search was performed
in the HTC-division of Genbank to find a redundant
sequence record displaying an additional 30 poly-
adenylated boundary. The best scoring redundant
HTC (identity percent >98 and identity number >400)
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was selected to complement the RefSeq-RNA CRT which
lacked the 30 poly-adenylated boundary.
(ii) Next, the IRE delineation step compares the human

and mouse 30 poly-adenylated transcript sequences to the
Genetic Information Research Institute (GIRI) collections
of IRE sequences (38) using RepeatMasker V3.1.3
(Smit,A., unpublished data) and Crossmatch (Green,P.,
unpublished data) and identifies IRE sequences integrated
into transcripts and VT derived from IRE sequences.
(iii) Finally in the VT extraction step, VT of both 10 and

17 nt lengths are extracted from transcript sequences
to produce VT to transcript associations. Sequence
redundancy is especially frequent among HTC and EST
sequences and leads to the generation of equivalent VT
to transcript associations, i.e. associations displaying
the same VT linked to the same transcript description.
For HTC sequences, all but one of the equivalent associa-
tions are eliminated. SAGETTARIUS uses Unigene
cluster titles and EST accession numbers recorded in
Unigene. Thus, all EST gathered in the same Unigene
cluster and generating the same VT are eliminated
except for one representative sequence. However,
the accession numbers of the eliminated EST are
stored in the SAGETTARIUS database for use in
downstream sequence analyses. Finally, VT to transcript
associations are stored in 32 specialized libraries

(see Supplementary Data at http://bips.u-strasbg.fr/
Sage_docs/Supp_Material.html), according to organism
(human, mouse), anchoring enzyme (Nla3, Sau3A),
tag length (10 or 17 nt) and transcript primary sequence
group (CRT, cDNA, HTC, EST).

Calculation of individual CRT detection probability
for 10 000, 50 000 and 100 000 sequenced ET

Among all the human and mouse Nla3 SAGE experiments
available, we have collected the SAGE experiments
with 10 000, 50 000 and 100 000 sequenced ET (�10%).
For human, the probabilities of CRT detections were
calculated on the available 9, 22 and 8 experiments
with 10 000, 50 000 and 100 000 sequenced ET (�10%),
respectively. For mouse, the probabilities of CRT
detections were calculated on the available 5, 13 and
2 experiments with 10 000, 50 000 and 100 000 sequenced
ET (�10%), respectively. For each collected experiment,
we have determined whether the 80 human or 79 mouse
CRT have been individually detected. The probability of
detecting a CRT at 10 000, 50 000 or 100 000 sequenced
ET (�10%) is defined as the number of times the CRT
has been detected divided by the number of SAGE
experiments.

Genbank

3′ poly-A 
CRT sequences

VT_to_CRT_associations 

3′ poly-A
cDNA sequences

3′ poly-A
HTC sequences

3′ poly-A
or 5′ poly-T EST

sequences

VT_to_cDNA_associations 

VT_to_HTC_associations
equivalent associations

removed 

    

genomic DNA
full-length mRNA,
fragments, EST, ... 

(transcripts)

1) Selection and sorting: exhaustive retrieval of human and mouse 3' poly-adenylated
transcripts (6 adenines at least), sorting of CRT, verified cDNA, HTC and EST.

3) VT extraction: extraction of  Nla3 and Sau3A  most 3' VT from the 3' poly
adenylated transcript sequences

-

2) IRE delineation: comparison of 3' poly-adenylated 
transcript

sequence
redundance

VT_to_EST_associations
equivalent associations

removed 

RefSeq
RNA

Figure 1. Generation of SAGETTARIUS database information. The final results of the procedure are VT to transcript associations.
Bold: procedure steps.
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Progressive and reductive ET to transcript mapping process

SAGETTARIUS ET to transcript mapping is a progres-
sive and reductive process. Unique ET sequences
generated by a SAGE experiment are progressively
compared to the VT sequences stored in the libraries
of VT_to_CRT_associations, VT_to_cDNA_associations,
VT_to_HTC_associations and VT_to_EST_associations,
according to a four-step process (Figure 2). The process is
reductive because unique ET sequences that match VT
sequences are removed from the ET pool of the SAGE
experiment. At the beginning of the process, unique ET
sequences are compared to the VT sequences of the
VT_to_CRT_associations library (first step). Unique ET
sequences which obtain a match in this library are
removed from the pool of ET. Then, the remaining
unique ET sequences are compared to the VT sequences of
the VT_to_cDNA_associations library (second step).
Unique ET sequences which match the VT of this library
are removed from the ET pool. Similarly, comparisons of
the remaining unique ET sequences and VT sequences
are carried out using the VT_to_HTC_associations and
VT_to_EST_associations, successively. At the end of the
process, unique ET sequences which cannot be matched to
any VT sequence in the four libraries remain unmapped.

Web interface

SAGETTARIUS is hosted by the Bioinformatics
Platform of Strasbourg (BIPS) and available through a
user-friendly web interface at http://bips.u-strasbg.fr/
Sage_docs/Sagettarius.php. SAGETTARIUS is interfaced

using three main windows. In the submission window, the
user provides SAGE experiment parameters (organism,
anchoring enzyme, SAGE or LongSAGE protocol) and
uploads a list of unique ET sequences. An e-mail address
is not required to obtain the mapping results. ET to
transcript mapping is displayed in a second window.
The assessment of detected CRT is displayed in a third
window. Results are stored for 1 month after generation
and confidentiality is assured using a user-specific access
code (job-ID).

RESULTS

VT to CRT associations

The ribosome, which acts as a catalyst for protein
synthesis, is universal and essential for all organisms (39)
and the expression of genes encoding cytoplasmic
ribosomal proteins is expected to be ubiquitous in every
cell. The ribosomal proteins are coded by 80 genes in
human and 79 in mouse. We have constructed curated
libraries of VT to CRT associations for both organisms.
Most 30 poly-adenylated mRNA coding for human
ribosomal proteins are (82%) available in the RefSeq-
RNA database. The remaining 18% are present in the
HTC division of Genbank, although the primary
sequences may be of lower quality. For the mouse
organism, the transcripts coding the 79 cytoplasmic
ribosomal proteins are all available in the RefSeq-RNA
database, but only 28% of them display the mandatory
30 poly-adenylated boundary required to derive VT. We
therefore complemented the RefSeq-RNA mouse
CRT lacking 30 poly-adenylated boundaries by redundant
30 HTC sequences showing a 30 poly-adenylation. For
Nla3 and Sau3A anchoring enzymes, we identified the
specificities of CRT and their associated VT (Table 1) such
as CRT displaying AAAAAAAAAA VT, Nla3 and/or
Sau3A undetectable CRT lacking an anchoring enzyme
site, distinguishable versus indistinguishable splicing
transcript variants and VT derived from IRE subse-
quences integrated into CRT. Overall, for both human
and mouse organisms, Nla3 and Sau3A SAGE protocols
respectively detect 76 and 74 CRT which are the products
of different ribosomal genes. The human L4 and L13 CRT
are associated with the AAAAAAAAAA VT and there-
fore their expressions are not measurable. Interestingly,
for both organisms, the S21 CRT does not contain any
Nla3 or Sau3A restriction site, making the expression of
the transcript completely undetectable by the current
SAGE experimental protocols. Nla3 detects slightly more
CRT than Sau3A, since two human CRT are undetectable
by Nla3, whereas six are undetectable by Sau3A. For the
mouse organism, 3 CRT cannot be detected by Nla3
and 5 by Sau3A. The transcript splicing variants 1 and
2 coding for S29 protein isoforms display different VT and
their expression can thus be distinguished. However,
most CRT splicing variants cannot be distinguished by
SAGE because they have identical VT. Finally, the human
L32 CRT is the only sequence found to contain an IRE
which overlaps the most 30 VT. This VT is identical to
the ERO1-like transcript (AF081886) VT. The human and

VT_to_CRT_associations

VT_to_HTC_associations

Unmapped ET

ET pool

ET pool

ET pool

ET pool 

VT_to_EST_associations

ET

ET

ET

ET

Reduction

Reduction

Reduction 

Reduction

ET mapped to CRT

ET mapped to cDNA

ET mapped to HTC

ET mapped to EST

VT_to_cDNA_associations

ET to VT
sequence

comparisons

ET to VT
sequence

comparisons

ET to VT
sequence

comparisons

ET to VT
sequence

comparisons

Figure 2. SAGETTARIUS progressive and reductive ET to transcript
mapping process.
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mouse catalogs of cytoplasmic ribosomal SAGE VT can
be viewed on the web at http://bips.u-strasbg.fr/Sage_bin/
RiboTable.cgi?Hs and Mm, respectively.

VT to cDNA, HTC and EST associations

We have exhaustively determined how many VT to
transcript associations can be generated from the tran-
script sequences recorded in Genbank (Table 2). The
SAGETTARIUS automatic procedure which generates
VT to transcript associations counts the total number of
human and mouse 30 poly-adenylated cDNA, HTC and
EST sequences recorded in Genbank. In Genbank release
156, the total number of transcript sequence records
reaches 6.9 and 4.2 million for human and mouse,
respectively. Most of these transcripts are EST (6.7 million
for human and 4 million for mouse). Individually cloned
and verified cDNA are the least represented group of
transcripts. They account for 31 331 human and 15 153
mouse sequences. Unexpectedly, more than twice as many
HTC have been sequenced for mouse (169 332) than for
human (75 275). The 30 poly-adenylation of a transcript
sequence is mandatory to derive a robust VT to transcript
association, and therefore we have determined how many
Genbank transcripts contain a 30 poly-adenylation of at
least six adenines. A total of 6206 sequences out of 31 331
human verified cDNA show a 30 poly-adenylated bound-
ary (2955 out of 15 153 for mouse). 30 poly-adenylated
HTC represent 18 099 human and 15 703 mouse sequence
records. Furthermore, 30 poly-adenylated HTC are a

subset of all HTC. Finally, 30 poly-adenylated EST
(693 858 human and 196 048 mouse sequences) also
represent a subset of the total EST sequence records.
Overall, 718 161 human and 214 706 mouse 30 poly-
adenylated transcript records were used to derive VT to
transcript associations. Nla3 and Sau3A VT to transcript
associations have been exhaustively derived from the

Table 1. Characteristics of Nla3 and Sau3 VT sequences associated with human and mouse CRT. t.v.: splicing Transcript Variant. Asterisk symbol:

no CRT presents this characteristic.

Homo sapiens Mus musculus

Total number of genes
encoding ribosomal proteins

80 79

Anchoring enzyme Nla3 Sau3A Nla3 Sau3A

Detectable CRT
(splicing variants excluded)

76 74 76 74

AAAAAAAAAA tag L4, L13 � � �

Undetectable CRT S21, L7A S10, S12, S21, S25
L35A, L36

S21, L6, L35A S21, S25, L31
L37, L37A

Distinguishable CRT
splicing variants

S29 t.v. 1 & 2 S24 t.v. 1 & 2
S29 t.v. 1 & 2

� �

Indistinguishable CRT
splicing variants

(Variants 1 and 2)

(Variants 1, 2 and 3)

S15A, S24, L3, L6,
L8, L9, L14, L17,
L34, L38,UBA52,
L41, P0

L32

S15A, L3, L6, L8,
L9, L14, L17, L34,
L38, UBA52, L41,
P0, SA

S14, L32

� �

VT derives from an IRE
integrated in the CRT

� L32 displays the same VT
as the ERO1-like mRNA
(F081886)

� �

Table 2. VT to cDNA, HTC and EST associations in the

SAGETTARIUS database. This assessment has been established on

the database of VT to transcript associations built from Genbank

release 156. H.s.: Homo sapiens, M.m.: Mus musculus. tr. seq.:

transcript sequence. n.d.: not determined.

cDNA HTC EST

H.s. M.m. H.s. M.m. H.s. M.m.

Genbank tr.
seq. records

31 331 15 153 75 275 169 332 6 771 069 4 059 938

Genbank 30 poly-A
tr. seq. records

6206 2955 18 099 15 703 693 858 196 048

VT to tr. seq.
associations (Nla3)

6155 2936 13 537 12 541 135 793 60 535

VT to tr. seq.
associations (Sau3A)

6025 2898 13 099 12 190 105 297 43 985

tr. seq. without
Nla3 site

51 19 101 86 n.d. n.d.

tr. seq. without
Sau3A site

181 57 485 325 n.d. n.d

tr. seq. without
Nla3/Sau3 site

4 1 15 10 n.d. n.d
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pool of Genbank 30 poly-adenylated transcripts. For HTC
and EST, equivalent VT to transcript associations were
removed. We have observed that Nla3 provides slightly
more VT to transcript associations than Sau3A, which
means practically that Nla3 can map more ET than
Sau3A. Total 6155 and 2936 Nla3 VT to transcript
associations were derived from individually cloned and
verified cDNA for human and mouse, respectively.
30 poly-adenylated HTC generated 13 537 human and
12 541 mouse Nla3 non-equivalent VT to transcript
associations. In addition, 135 793 human and 60 535
mouse Nla3 non-equivalent VT to transcript associations
were created from 30 poly-adenylated EST. The
SAGETTARIUS database (Genbank release 156)
includes a total of 155 471 human Nla3 VT to transcript
associations and 76 012 for mouse. These VT to transcript
associations exceed the estimated repertoire of genes and
transcripts coded by the human and mouse genomes.
Interestingly, we noticed that some 30 poly-adenylated
transcripts do not generate any VT to transcript associa-
tions due to a lack of anchoring enzyme sites on their
sequences. Total 41 human-verified cDNA lack the Nla3
site (16 for mouse) and four times as many transcripts
were found to lack the Sau3A site. Finally, four human
transcripts, supported by verified cDNA records are
undetectable by both Nla3 and Sau3A anchoring enzymes:
Rad51C truncated protein (AF029670); apoptosis-related
protein PNAS-1 (AF229831); PNAS-117 (AF275813) and
as previously mentioned the ribosomal protein S21
(NM_001024) encoding mRNA. For mouse, only the
S21 mRNA cannot be detected. An exhaustive list of
transcripts which escape the expression measure by Nla3,
Sau3A or both enzyme SAGE protocols is accessible on
the SAGETTARIUS web site. This list will be updated
every 2 months in conjunction with Genbank releases.

Unique VT sequences associated with a single
versus multiple transcripts

In the SAGETTARIUS database of VT to transcript
associations, we have determined the number of unique
VT sequences which are associated with a single versus
multiple transcripts (Table 3). Almost twice as many
unique VT sequences are available for human (120 234)
than for mouse (65 497). For human, 84% of unique VT

sequences are associated with a single transcript, and 91%
for mouse. Thus, unique VT sequences associated with
multiple transcripts account for 16 and 9% VT respec-
tively for the two organisms. We have also investigated
whether the lengthening of VT from 10 to 17 nt performed
by the LongSAGE technique can help to reduce the
percentage of unique VT sequences associated with
multiple transcripts. We observed that the number of
unique VT sequences increases by a factor of 1.2 when
long VT are extracted from 30 poly-adenylated transcripts
and that the percentage of unique VT sequences asso-
ciated with multiple transcripts decreases to 6 and 4% for
human and mouse, respectively. Thus, the LongSAGE
protocol significantly decreases the percentage of unique
VT sequences associated with multiple transcripts. This
is consistent with the fact that 17 nt long tags are more
specific than 10 nt. However, 8327 and 3019 unique VT
sequences remain associated with multiple transcripts
for human and mouse, respectively.

SAGE sequencing stages based on the detection
of CRT-specific tags

We have estimated how many ET should be sequenced
when planning a human or mouse SAGE project in order
to map the 80 human or 79 mouse CRT-specific tags. It is
noteworthy that the expression of the complete repertoire
of human and mouse CRT cannot be detected by Nla3
or Sau3A SAGE protocols, since several CRT sequences
lack the anchoring enzyme sites or are associated with
AAAAAAAAAA tags. However, the expression of 76
CRT should be detected by Nla3 (74 CRT for Sau3A)
for both organisms. We downloaded the ET collections of
all publicly available H. sapiens and M. musculus Nla3
SAGE experiments from the Gene Expression Omnibus
server, with the number of sequenced ET ranging
from 1430 to 308 589 and 464 to 194 345, respectively.
The unique ET sequences collected in all experiments
were automatically mapped to their transcripts by
SAGETTARIUS and the detected CRT-specific tags
were counted. We observed that the number of detected
CRT-specific tags increases with the number of sequenced
ET in both organisms (Figure 3). Here, we propose to use
the detection of CRT-specific tags to define four major
sequencing stages when planning a human or mouse
SAGE experiment. The initial sequencing of 10 000 ET
corresponds to a rapid increase in CRT-specific tag
detection (stage 1). Total 10 000 ET allows the detection
of 63 CRT with a probability greater than 0.66 (Table 4)
in human and mouse. The sequencing of 40 000 additional
ET (stage 2) substantially increases the number of detected
CRT-specific tags which reaches 65 in human and 69
in mouse with a probability greater than 0.66. The
sequencing of a further 50 000 ET (stage 3) allows the
detection of 69 CRT in human and 70 in mouse. Finally,
the sequencing of more than 100 000 ET corresponds to a
plateau in CRT-specific tag detection (stage 4). We have
analyzed the probabilities of individual CRT-specific tag
detection in Nla3 human and mouse SAGE experiments
with 10 000 �10%, 50 000 �10% and 100 00 �10%
sequenced ET (Table 4 and also Supplementary Data at

Table 3. Unique VT sequences associated with a single vs multiple

transcripts in the SAGETTARIUS database (Nla3). H.s: Homo sapiens,

M.m: Mus musculus. SAGE: 10 nt VT, LongSAGE: 17 nt VT. tr.:

transcript

VT to transcript (cDNA, HTC, EST)
associations

H.s. M.m.

SAGE LongSAGE SAGE LongSAGE

unique VT seq. 120 234 149 853 65 497 72 800
unique VT seq. associated
to a single tr.

101 117 141 526 59 440 69 781

unique VT seq. associated
to multiple tr.

19 117 8327 6057 3019
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http://bips.u-strasbg.fr/Sage_docs/Supp_Material.html for
details). We have derived three classes of CRT detection
Probabilities (P): high (P> 0.66), medium (0.66�
P> 0.33) and low (P� 0.33). In human, a set of 63 CRT
display a high detection probability at stages 1, 2 and 3 of
ET sequencing. Outside this set, the more ET are
sequenced, the greater is the probability to detect most
of the remaining CRT (SA, S4Y, S23, S24, L14, L22, L32,
L34, L23A and UBA52). The human L10, L28 and L37
CRT invariably remain in the low probability detection
class at stages 1, 2 and 3 of ET sequencing. In mouse, a set
of 62 CRT display a high detection probability at stages 1,
2 and 3 of ET sequencing. Moreover, 53 CRT of these
CRT have human orthologs in the set of the 63 human
CRT which display a high detection probability at stages
1, 2 and 3 of ET sequencing. The more ET are sequenced,
the greater is the probability to detect most of the
remaining mouse CRT (S15A, S8, S16, S17, L7, L14,
L27A, L29 and L22). The mouse S25, L28, and L36 CRT
invariably remain in the low probability detection class at
stages 1, 2 and 3 of ET sequencing. Moreover, the mouse
L10 CRT was not detected in any SAGE experiment.
A number of discrepancies are observed, e.g. the human
SA CRT requires at least the sequencing of 100 000 ET to
be part of the medium detection probability class, whereas
its mouse ortholog already belongs to the high detection
probability class when 10 000 ET are sequenced. In addi-
tion, the human L37 CRT invariably belongs to the low
detection probability class regardless of the sequencing
stage, whereas the mouse ortholog is invariably part of the
high detection probability class. Unexpectedly, the mouse
L26 CRT is more likely to be detected when less ET are
sequenced. Some of these discrepancies might be due
to the SAGE experiment sampling.
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Figure 3. Progressive detection of CRT-specific tags in (a) 371 human
Nla3 SAGE experiments with the number of sequenced ET ranging
from 1430 to 308 589 and (b) 123 mouse Nla3 SAGE experiments with
the number of sequenced ET ranging from 464 to 194 345. In both
human and mouse, SAGE experiments can be divided into four major
sequencing stages (- -) based on the detection of CRT-specific tags.

Table 4. Probabilities (P) of individual CRT-specific tag detections correlated with the number of sequenced ET in human and mouse SAGE

experiments. Group A contains 63 human CRT, namely S2, S3, S3A, S4X, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15, S15A, S16, S17, S18, S19,

S20, S25, S26, S27, S27A, S28, S29, S30, L3, L5, L6, L7, L8, L9, L10A, L11, L12, L13A, L15, L17, L18, L18A, L19, L21, L23, L24, L26, L27,

L27A, L29, L30, L31, L35, L35A, L36, L36A, L37A, L38, L39, L41, P0, P1 and P2. Group B contains 62 mouse CRT, namely SA, S2, S3, S3A, S4,

S5, S6, S7, S9, S10, S11, S12, S13, S14, S15, S18, S19, S20, S23, S24, S26, S27, S27A, S28, S29, FBR-MuSV, L3, L4, L5, L7A, L8, L9, L10A, L11,

L12, L13, L13A, L15, L17, L18, L18A, L19, L21, L23, L23A, L24, L27, L30, L31, L32, L34, L35, L36A, L37, L37A, L38, L39, UBA52, L41, P0, P1

and P2. Bold: invariably low detectable CRT

Sequenced
ET

Homo sapiens Mus musculus

High

P> 0.66

Medium

0.66>P> 0.33

Low

P< 0.33

High

P> 0.66

Medium

0.66>P> 0.33

Low

P< 0.33

10 000
�10%

Group A S24, L14 SA, S4Y, S23, L10, L22, L23A,
L28, L32, L34, L37, UBA52

Group B,
L26

S8, S16, S17,
L7, L14, L27A, L29

S15A, S25,
L10, L22,
L28, L36

50 000
�10%

Group A,
S24, L14

S4Y, S23,
L22, L23A

SA, L10, L28, L32, L34, L37,
UBA52

Group B,
S8, S16, S17, L7, L14,
L27A, L29

S15A, L26, S25, L10,
L22, L28,
L36

100,000
�10%

Group A, S23, S24,
L14, L22,
L23A,
UBA52

SA, S4Y,
L32, L34

L10, L28, L37 Group B,
S8, S16, S17,
L7, L14, L22,
L27A, L29

S15A S25, L10,
L26, L28,
L36
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Comparison of ETmappings performed by
SAGETTARIUS and other tools

We mapped the 40 027 unique ET sequences generated by
the GSM14740 (SAGE_Brain_ependymoma_B_R1023)
SAGE experiment with SAGETTARIUS, TAGmapper,
SAGEmap-reliable and SAGEmap-full. SAGETTARIUS
maps ET sequences to transcripts, whereas the other tools
(TAGmapper, SAGEmap-reliable and SAGEmap-full)
map ET sequences to Unigene clusters. For each tool
output, the number of ET sequences mapped to a single,
multiple and no transcript or Unigene clusters respectively
were counted (Figure 4). Important differences were
observed between the outputs of the 4 ET mapping
resources. SAGETTARIUS performed the best for the
reduction of ETs to multiple transcript mappings: only
4357 unique ET sequences out of 40 027 were mapped to
multiple transcripts. In contrast, SAGEmap-full resulted
in a high rate (70%) of unique ET sequences mapped to
multiple Unigene clusters. TAGmapper was the most
successful at mapping ET sequences to single Unigene
clusters, with three unique ET sequences out of four
mapped by TAGmapper to a single Unigene cluster.
TAGmapper and SAGEmap-full resulted in the smallest
numbers of unmapped ET sequences, whereas
SAGETTARIUS produced the most. Indeed, half of the
ET sequences did not obtain any match to VT when using
SAGETTARIUS. It is noteworthy that 86% of the
GSM14740 unique ET that remained unmatched to any
VT when using SAGETTARIUS corresponded to single
copy ET sequences.

Comparison of ET to CRTmapping produced by different
mapping resources

The 40 027 unique ET sequences generated by the
GSM14740 (SAGE_Brain_ependymoma_B_R1023)
experiment were mapped by SAGETTARIUS, TAG-
mapper, SAGEmap-reliable and SAGEmap-full mapping
resources. In each tool output, we searched for ET
sequences that were mapped to CRT or cytoplasmic
ribosomal-specific Unigene clusters. In the SAGETTAR-
IUS database, curated specialized libraries of VT to

CRT associations were built from 30 poly-adenylated
CRT sequences and their annotated isoforms. Important
differences in ET to CRT or Unigene cluster associations
were observed between the four mapping tools. Of
the 40 027 different ET sequences in the GSM14740
SAGE experiment, SAGETTARIUS mapped 72 unique
ET sequences to CRT. These CRT are the products of
72 ribosomal protein coding genes. Both TAGmapper
and SAGEmap-reliable tools mapped more than 660 ET
sequences of the GSM14740 experiment to cytoplasmic
ribosome-specific Unigene clusters and SAGEmap-full
associated more than 2400 ET with these Unigene clusters.
Our curated library of VT to CRT associations shows that
the S21, L7A, L4 and L13 CRT cannot be detected by the
Nla3 SAGE protocol. In contrast, TAGmapper proposed
a mapping of ET sequences to these four cytoplasmic
ribosome protein coding genes. Interestingly, the SAGE-
map-reliable mapping resource did not map any ET
sequence to S21, whose transcript product (NM_001024)
lacks an Nla3 anchoring enzyme site. In addition,
no ET sequence was mapped by SAGEmap-reliable and
SAGEmap-full for the L4 protein coding gene, which is
consistent with the SAGETTARIUS result.

Unique ET sequences mapped to multiple transcripts
due to IRE subsequences

In a sample of 8 SAGE experiments with the number of
unique ET sequences ranging from 2147 (GSM23394)
to 80 125 (GSM14799), we measured the rate of unique
ET sequences which matched VT derived from IRE
subsequences integrated into transcripts. The unique ET
sequences of all eight SAGE experiments were mapped
to transcripts by means of the SAGETTARIUS tool. For
each experiment, we counted the number of unique ET
sequences matching IRE-derived VT. In these examined
SAGE experiments, the IRE-derived ET sequences/unique
ET sequence ratio varies from 3� 10�3 to 13� 10�3,
depending on the mRNA expressed in a cell type. This
number is however negligible, showing that the power
of the SAGE protocol is not significantly weakened by the
IRE-derived tag problem.

DISCUSSION

SAGE and LongSAGE are elegant and powerful mole-
cular biology methods designed to measure genome-wide
gene expression profiles. They rely on cloning and
sequencing techniques carried out on a high-throughput
scale. SAGE and LongSAGE have been applied to
various organisms and cell types and have generated
millions of ET, containing gene expression level informa-
tion. However, once the ET of an experiment have been
sequenced and counted, a major problem must be
addressed, determining which genes are expressed using
nucleotide sequences as short as 10 or 17 nt.
Bioinformatics has taken up this challenge and two
problems have been identified. First, ET sequences may
map to several genes, and second, ET sequences may not
map to any gene. The reasons why ET sequences map to
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Figure 4. Number of unmapped, multiply mapped and single-
mapped ET sequences from the GSM14740 SAGE experiment
(40 027 unique ET sequences). ET mappings have been carried out by
SAGETTARIUS, TAGmapper, SAGEmap-reliable and SAGEmap-full
resources.
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multiple genes or do not map to any gene have been
discussed recently (22). Briefly, ET to multiple gene
mapping may be due to the sequence match between ET
originating from different genes, while unmapped ET may
result from new gene expression discovery. In both cases,
sequencing errors, VT databases and the mapping
procedures themselves can strongly influence the rate
of multiply versus unmapped ET. We have developed a
new program and VT database, SAGETTARIUS, both
specifically designed to address the problem of ET to
multiple gene mapping. When developing this resource,
we also wished to provide the biologist with a practical
means of planning ET sequencing stages during a
SAGE project.Among the current mapping tools,
SAGETTARIUS is the most successful in decreasing
the rate of ET mapping to multiple transcripts.
SAGETTARIUS progressively maps ET sequences to
libraries of VT to transcript associations, which are
hierarchized according to primary sequence reliability.
Thanks to this progressive and reductive mapping
procedure, SAGETTARIUS avoids ET to multiple
transcript mappings which are likely to result from
sequencing errors. The number of ET which map
to multiple transcripts due to non-random IRE subse-
quences seems to be negligible. Indeed, it concerns only
3� 10�3 to 13� 10�3 unique ET sequences in a complete
collection of SAGE tags. Moreover, the LongSAGE
protocol efficiently reduces tag to multiple transcript
associations.
SAGETTARIUS has been developed to reduce the

number of VT associated with multiple transcripts.
In order to reliably associate VT to transcripts, we
decided to consider only mRNA sequences displaying a
30 poly-adenylated boundary. Indeed, the absence of a 30

poly-adenylated boundary might indicate an incomplete
mRNA sequence. Consequently, the most 30 anchoring
enzyme site cannot be efficiently determined and no robust
VT to transcript association can be derived. In mammals,
cleavage of the mRNA on the 30 boundary and its subse-
quent poly-adenylation to the newly formed 30 end occurs
10–30 nt downstream of a specific nucleotide hexamer,
generally the AAUAAA pattern (41,42). However, in a
recent study carried out on 13 942 human and 11 155
mouse genes, it appeared that only 53.2% of the
poly-adenylation signals correspond to the canonical
AAUAAA hexamer (43). Moreover, current methods for
poly-adenylation signal prediction achieve moderate sensi-
tivity and specificity (44). Therefore, we have chosen not
to use mRNA sequences lacking a 30 poly-adenylated
boundary to derive VT to transcript associations even
in the case where a poly-adenylation signal could be
predicted.
The construction of the SAGETTARIUS database

of VT to transcript associations revealed that 30 poly-
adenylated transcript records are unexpectedly scarce
in Genbank. Thousands of human verified cDNA are
available in Genbank but most of them lack the crucial
30 poly-adenylated boundary (80%). Multi-pass sequen-
cing of transcripts including the 30 poly-adenylated

boundary are required to enrich VT databases with
high-quality sequences that can be used to derive robust
tag to transcript associations. The relative paucity of
30 poly-adenylated transcripts in Genbank could be
one of the reasons why SAGETTARIUS fails to map
a significant percentage of ET sequences (49% of
GSM14740 unique ET sequences). This is surprising
since the SAGETTARIUS database contains more VT
to transcript associations than the number of estimated
genes and transcripts coded by the human or mouse
genomes. The lack of 30 poly-adenylated transcripts in
nucleic acid databases may also have encouraged other
mapping resources to overexceed the sensu stricto SAGE
tag definition by integrating internal tags into VT
databases, i.e. VT that are extracted from 50 anchoring
enzyme sites on 30 poly-adenylated transcript or VT
originating from transcripts lacking a 30 poly-adenylated
boundary, thus generating new VT possibilities and
decreasing the rate of unmapped tags. Some of these
internal tags might be the result of alternative 30 poly-
adenylation or mRNA alternative splicing but in the
absence of any validation, these VT remain putative and
their associations should be considered with caution.
TAGmapper and SAGEmap resources map most ET
but the risk of generating multiple mapping increases
when the VT database includes internal tags. Another
possibility that might explain the high rate of unmapped
ET when using SAGETTARIUS could be that the
unmapped ET represent novel transcripts whose
sequences are not yet available in the nucleic acid
transcript databases. Using SAGETTARIUS to map the
40 027 GSM14740 unique ET sequences to transcripts,
we observed that 86% of the unmapped ET are
single-copy sequences and thus probably correspond to
low-abundant transcripts. Indeed, three abundance classes
of mRNA have been previously defined: high-, medium-
and low-abundance (32). The sequencing of EST
(the major source of database transcript records) seems
to have technically reached a plateau in new transcript
discovery (20). Thus, high- and medium-abundant
transcripts may have been identified and made available
in databases, but low-abundant transcripts are less
well characterized (7). In contrast, SAGE performs
significantly better than the EST approach to detect
low-abundant transcripts. Consistent with our results, it
has been shown in Drosophila melanogaster that 55%
of the unique ET sequences generated by a SAGE
experiment could not be mapped to any known
Drosophila transcripts. Furthermore most of these ET
sequences displayed low-copy numbers (45). In addition,
in the mouse, 66% of unique ET sequences generated by
a LongSAGE experiment could not be mapped to any
known gene (14). Finally, it is unlikely that all unmapped
single-copy ET are the result of sequencing errors.
Since an ET sequence has a 10% chance of being false,
only 10% of all single copy ET are expected to be false
and thus unmapped.

The mapping of ET sequences to CRT implemented
in SAGETTARIUS allows us to propose four major ET
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sequencing stages during a human or mouse SAGE
project. We found that 63 CRT-specific tags could be
detected with a probability greater than 0.66 with a first
run of 10 000 sequenced ET (stage 1). This first sequencing
stage provides the best information benefit to sequencing
effort ratio for CRT detection whereas the subsequent
three stages require increased sequencing efforts in order
to detect additional CRT. Due to the rapid increase of
CRT-specific tag detection during stage 1, we recommend
that biologists who are planning a SAGE project should
sequence at least 10 000 ET. Moreover, 100 000 sequenced
ET (stage 3) represents a major sequencing stage since it
allows the detection of almost all CRT. Sequencing more
than 100 000 ET provides the lowest information benefit
to sequencing effort ratio for CRT detection. However,
it may be crucial to sequence more than 100 000 ET in
order to detect other transcripts. Discrepancies in the
detection of expression have been observed between some
human and mouse CRT (SA, L37 and L26). These results
should thus be taken with caution. Indeed, we have
observed that RefSeq-RNA entries for these specific CRT
are derived from HTC sequences. Therefore, their VT
to transcript associations must be verified. We are aware
that our analysis does not provide an accurate quantita-
tive differential CRT expression study between the SAGE
experiments. However, in this study our aims basically
were (i) to present a tool to map human and mouse ET
(ii) to verify whether the available CRT sequence records
were of sufficient quality (30 sequence poly-adenylation,
verified cDNA sequences) to allow an accurate mapping
of the 80 human and 79 mouse CRT-specific tags and
(iii) to determine the minimal number of ET required to
detect all the CRT-specific tags for both organisms. For
human, the quality of SAGETTARIUS VT to CRT
associations is satisfying since 82% of the CRT records
are supported by verified cDNA and display a 30 poly-
adenylated boundary. For the mouse, the library is less
satisfying since only 20% of CRT are verified cDNA and
the remaining are derived from HTC sequences of more
variable quality. A comparative analysis of CRT expres-
sion levels between the different SAGE experiments is now
conceivable for the human organism. In contrast, for the
mouse, the VT to CRT association quality must first be
improved. Recently, using micro-array data, it has been
shown in 30 different human cell types, that most CRT
are coordinately expressed with higher signals in some
specific tissues, and that 17 are expressed in a tissue-
specific manner (46). Our human VT to CRT association
library represents a valuable resource to cross-validate the
microarray CRT data with transcript expression infor-
mation from SAGE experiments.

In conclusion, SAGETTARIUS is a new high-through-
put ET to transcript mapper integrating its own database
of VT to transcript associations. It performs high quality
ET to transcript mapping for human and mouse organ-
isms, Nla3 and Sau3A anchoring enzymes and SAGE
and LongSAGE protocols. SAGETTARIUS has the
advantage of significantly reducing the rate of multiply
mapped tags. However, because of the high rate of

unmapped ET, it is advisable to use SAGETTARIUS in
combination with other tools.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online
and also available at http://bips.u-strasbg.fr/Sage_docs/
Supp_Material.html
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