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Abstract
The role of a stiffening extra-cellular matrix (ECM) in cancer progression is documented but

poorly understood. Here we use a conditioning protocol to test the role of nonmuscle myosin

II isoforms in cell mediated ECM arrangement using collagen constructs seeded with breast

cancer cells expressing shRNA targeted to either the IIA or IIB heavy chain isoform. While

there are several methods available to measure changes in the biophysical characteristics

of the ECM, we wanted to use a method which allows for the measurement of global stiff-

ness changes as well as a dynamic response from the sample over time. The conditioning

protocol used allows the direct measurement of ECM stiffness. Using various treatments, it

is possible to determine the contribution of various construct and cellular components to the

overall construct stiffness. Using this assay, we show that both the IIA and IIB isoforms are

necessary for efficient matrix remodeling by MDA-MB-231 breast cancer cells, as loss of

either isoform changes the stiffness of the collagen constructs as measured using our con-

ditioning protocol. Constructs containing only collagen had an elastic modulus of 0.40 Pas-

cals (Pa), parental MDA-MB-231 constructs had an elastic modulus of 9.22 Pa, while IIA

and IIB KD constructs had moduli of 3.42 and 7.20 Pa, respectively. We also calculated the

cell and matrix contributions to the overall sample elastic modulus. Loss of either myosin

isoform resulted in decreased cell stiffness, as well as a decrease in the stiffness of the cell-

altered collagen matrices. While the total construct modulus for the IIB KD cells was lower

than that of the parental cells, the IIB KD cell-altered matrices actually had a higher elastic

modulus than the parental cell-altered matrices (4.73 versus 4.38 Pa). These results indi-

cate that the IIA and IIB heavy chains play distinct and non-redundant roles in matrix

remodeling.
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Introduction
Breast cancer is a widespread disease that remains a leading cause of death in the US, despite
public education and research initiatives in recent years. With 232,340 new cases of invasive
disease estimated in 2013, and 39,620 expected deaths, breast cancer is the second leading
cause of cancer related deaths in women [1]. An initial sign of breast cancer is the presence of a
palpable lump in the breast [2]. This lump, or stiffening of the breast tissue, corresponds to
up to a ten-fold increase in the rigidity of the extracellular matrix (ECM) of the tissue [3].
Changes to cell and/or tissue mechanics, such as the increased rigidity of the breast during can-
cer tumorigenesis, may have an influence on cell signaling, proliferation, invasion and migra-
tion [2, 4–6], and can therefore have a vast impact on how cancer is diagnosed and treated.

Tissues maintain a balance of overall stiffness by a phenomenon known as mechanorecipro-
city. This involves a feedback loop between the cells and their surrounding matrix to maintain
a particular rigidity [2, 7, 8]. In some diseases, including many solid cancers, this homeostasis
is lost and promotes disease progression [2, 9]. This loss of homeostasis can be the result of
changes in ECM content and cross-linking [3, 10], as well as the increased cell pressure caused
by the high cell density within a growing tumor [4, 11]. In fact, these two facets of tissue stiff-
ness can feed into each other. Tumor cells excrete factors that activate stromal cells, including
fibroblasts, inducing them to deposit ECM components and secrete crosslinking factors such
as lysyl oxidase. The resultant increased matrix rigidity in turn stimulates cell proliferation,
which increases tumor cell density and pressure [2, 4, 5, 7, 11]. During the latter stages of dis-
ease progression, ECM stiffness and reorganization influences cancer invasion and metastasis
[2, 4, 6, 10, 12–14]. Breaking the link between increasing ECM stiffness and cell proliferation
and invasion could be a powerful therapeutic target, especially considering that the increased
matrix stiffness can alter the efficiency of chemotherapeutic agents [15]. This interplay between
matrix rigidity and cell signaling and growth is dependent on mechanosensing in the cells, a
process which requires the force generation power of nonmuscle myosin II as part of the trans-
mission and response to the force signal from focal adhesions and integrins at the cell surface
[16–20].

There are three isoforms of nonmuscle myosin II: A, B, and C. Nonmuscle myosin II func-
tions as a hexamer with a pair of heavy chains and two pairs of light chains, regulatory and
essential. It is an ATPase capable of converting chemical energy into mechanical work, which
is integral to its role in mechanosensing [16, 21]. In addition to its role in mechanotransduc-
tion, it has also been shown to be involved in cytokinesis and other cellular processes [22–24].
Force generation is also needed in order for cells to reorganize their surrounding matrix, which
contributes to mechanical homeostasis [2, 4, 7]. While we know that myosin II is involved in
these processes, limited research has been done looking into the involvement of this motor pro-
tein in cancer progression. It has been shown that upregulation or overactivation of myosin
IIA is associated with poor prognosis in esophageal [25] and lung cancer [26]. Additionally, in
gastric cancer, a decrease in expression of Let-7f, a microRNA that directly binds the 3’UTR of
the myosin IIA gene, is associated with an increase in myosin IIA expression and the invasive
potential of gastric cancer cells [27]. Finally, tumor tissue in the 3MC induced murine hind leg
model of cancer has increased levels of both myosin IIA and IIB compared to tumor associated
normal tissue [28]. Given these changes in myosin II regulation in various cancers, and its role
in mechanoreciprocity, it could be a strong potential target to break the ECM stiffness/cancer
progression feedback loop.

To investigate the role of nonmuscle myosin II isoforms in tumor cell driven remodeling
of the ECM, we generated stable myosin IIA and IIB knockdown (KD) MDA-MB-231 cell
lines. The morphology was characterized in both two- and three- dimensional culture model
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systems. We then tested the cell lines for their ability to remodel and constrict a 3D collagen
matrix. Complementing the gel compression measurements, we used mechanical testing proto-
cols to measure the stiffness and elasticity of cell populated collagen matrices. This assay allows
the direct measurement of biophysical characteristics of the matrix and is similar that used by
Wakatsuki, et al [29]. Here we show that loss of myosin IIA blocks the ability of the cells to
compress a matrix and results in a matrix with decreased stiffness compared to parental or IIB
KD modified matrices. The IIB KD cells are able to compress the collagen gels, but the collagen
constructs containing these cells have a different elastic modulus profile than parental cell con-
structs, indicating that the changes they make to the collagen matrix are not the same as those
made by the parental cells. These results indicate that nonmuscle myosin II is involved in
matrix remodeling and mechanical homeostasis, making it a potential therapeutic target for
blocking the effects of matrix stiffness on tumor proliferation and progression.

Materials and Methods

Cell culture
MDA-MB-231 (ATCC, HT-B26) cells were grown and maintained in Minimal Essential Media
(MEM) supplemented with 10% FCS, 100 U/ml penicillin, and 100 μg/ml streptomycin (media
components were purchased from Sigma Aldrich) in a 37°C humidified 5% CO2 tissue culture
incubator.

Generation of Myosin II Knockdown Cell Lines
Lentiviruses were produced in 293T/17 cells as outlined by Tiscornia, et al. [30] using 2nd gen-
eration transfer plasmids. Myosin IIA Heavy Chain shRNAs (Cat # RHS4533) and IIB Heavy
Chain shRNAs (Cat # RHS4531) were obtained from Openbiosystems (Waltham, MA, USA).
After screening all clones, myosin IIA shRNA clone #29467 and myosin IIB shRNA clone
#123076 were determined to be isoform specific and produce the most efficient myosin II
knockdown. These clones were used in all experiments. For viral infections, MDA-MB-231
cells were seeded at a density of 4X105 cells and allowed to adhere and spread overnight. Two
mL of viral stock was added to each culture and virus incubated with cells for 72 hours. Cul-
tures were washed with MEM+10% FCS and allowed to recover for 1 day. For selection and
maintenance of MDA-MB-231 cell lines, cultures were fed with MEM+10%FCS containing
5 μg/mL puromycin (Sigma Aldrich). Myosin IIA and IIB KD was verified using Western Blot
analysis.

Immunofluorescence staining
For indirect immunofluorescence staining, MDA-MB-231 control (parental) and MDA-MB-
231 myosin II KD cells were fixed and stained for actin and myosin II as described previously
[31]. Cells were labeled with affinity-purified rabbit anti-myosin heavy chain IIA or IIB anti-
body (final dilution 1:1000) as well as TRITC-phalloidin (Sigma-Aldrich, St. Louis, MO, USA
Cat # P1951). Alexa 488 goat α-rabbbit secondary antibody (Invitrogen, Grand Island, NY,
USA Cat # A11070) was used at a final dilution of 1:1000. MDA-MB-231 cells were mounted
in 90% glycerol/10% PBS containing 0.1 M n-propyl gallate (Sigma-Aldrich, St. Louis, MO,
USA Cat # P3130). Imaging was performed using a Zeiss LSM 510 confocal microscope. A
Plan-Apochromat 63x/1.40 Oil DIC M27 objective was used and composite images were con-
structed from 0.3-μm optical sections. To quantify the fluorescent staining, cells were stained
as outlined above, and imaged using a ZEISS Axiovert 40 CFL microscope with a LD A-Plan
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20X objective. Quantification was performed using Image J software on at least 25 cells per
experiment, across three experiments.

3DMorphology
Methods for pouring collagen gels were performed as described in detail previously [31, 32].
Collagen gels were made by suspending 1x106 cells/ml of MDA-MB-231 controls (parental) or
MDA-MB-231 myosin IIA or myosin IIB KD in a collagen/MEM solution containing 1.0 mg/
ml Type I rat tail collagen. Collagen/cell suspension (1 ml) was poured into Teflon casting
molds with a central mandrel and transferred to a 37°C incubator for 1 hour to initiate collagen
polymerization. The collagen gel forms (3 mm thick, 3 cm diameter) between the inner wall of
the Teflon cylinder and the central mandrel giving rise to a collagen/cell matrix in the shape of
a ring (henceforth referred to as a construct). Teflon casting molds were then filled with MEM-
10% FCS and incubated for 4 days in a humidified incubator at 37°C with 5% CO2. At the
appropriate time, collagen gels were removed from the molds, fixed, permeabilized and stained
as described for 2D immunofluorescence. Pieces of the collagen gels were cut and processed for
staining with TRITC-Phalloidin and affinity purified myosin IIA or IIB antibodies as described
above. Alexa 488 goat α-rabbbit secondary antibody was used at a final dilution of 1:1000.
Prior to being mounted, gel pieces were soaked overnight in 9:1 glycerol:PBS containing 0.1 M
n-propyl gallate. Multi-Photon Laser Scanning Microscopy (MPLSM) was used to image
stained constructs for gel compression studies. For 3D cell morphology, a Zeiss LSM 510 was
used with an EC Plan-Neofluar 40x/1.30 Oil DIC M27 objective. Composite micrographs were
constructed from 0.5-μm optical sections. Analysis of cell morphology was performed using
IMARIS image analysis software (Version 8.0 Bitplane, Zurich, CHE). The Filaments function
was used to measure the average number of cell protrusions. To calculate the sphericity of the
cell bodies, the Surfaces function was used. Surfaces contours were manually drawn and the
sphericity calculated by the software. Sphericity compares the surface area of the object, in this
case a cell body, to the surface area of a sphere of the same volume. If the object is a perfect
sphere, the sphericity would be 1. Elongation factor was calculated using the measurements
function in IMARIS. We defined elongation factor as the longest dimension of the object, the
cell body, divided by the shortest. The more elongated the cell body, the higher the elongation
factor. These morphology characteristics were measured on cells across three separate experi-
ments, with more than 18 cells for each cell type analyzed per experiment. One-way analysis of
variance (ANOVA) with a Tukey post-test was performed in GraphPad Prism (GraphPad Soft-
ware, Inc., La Jolla, CA, USA) to determine the statistical significance of the differences seen.

Gel Compression
Collagen gel constructs were poured as described above. While in culture, cells organize and
compress the collagen, reducing its volume approximately 2 to 5 fold. For gel compression
studies (gel thickness), collagen gels were washed with PBS, fixed and removed from Teflon
molds after 1 or 4 days of incubation. These time points were chosen to allow the cells sufficient
time to compress the matrix. Allowing the gels to incubate for longer periods of time (past one
week) does not result in enhanced matrix compression, and the cells within the construct begin
to die. The collagen/cell matrix, which is in the shape of a ring, was cut open and three random
non-adjacent pieces of the collagen gel cut from each MDA-MB-231 construct, stained with
TRITC-Phalloidin and Hoescht 33258 dye (Sigma-Aldrich, St. Louis, MO, USA Cat # 861405),
and mounted as outlined above. To determine the thickness of gels cast with only collagen,
40 μl of 1 μm fluorescent beads (Polysciences, Warrington, PA, Cat# 24062) were added to the
collagen/MEM solution prior to pouring constructs. Multi-Photon Laser Scanning Microscopy

Myosin II in Matrix Rearrangement by MDA-MB-231 Cells

PLOS ONE | DOI:10.1371/journal.pone.0131920 July 2, 2015 4 / 26



(MPLSM) was used to measure the full thickness of all collagen constructs. For all experimental
conditions, constructs were poured in duplicate and a minimum of five measurements were
taken from each piece, for a total of 30 measurements per cell type per experiment. The data
shown are averaged from three separate experiments. Construct thickness was compared
between gels cast from collagen alone, parental and KDMDA-MB-231 cell lines. For experi-
ments using blebbistatin to inhibit myosin II, constructs were fed daily with MEM+10% FCS
containing 50 μM blebbistatin ((S)-(-)-blebbistatin, Toronto Research Chemicals) and fixed at
1 and 4 days. Constructs were then processed and measured as described above. Statistical sig-
nificance was calculated in GraphPad Prism 6 using one-way ANOVA and a Tukey post-test.

Isometric Tension and Mechanical Measurements
Constructs were poured as described above. After 4 days of incubation, the central mandrel
was removed from the Teflon casting mold and the MDA-MB-231 populated construct gently
removed from the mandrel before being looped over a triangular hook connected to an isomet-
ric force transducer (Harvard Apparatus model 52–9545, South Natick MA) as described pre-
viously [31, 32]. The ring is then looped over a horizontal bar which is connected to a stepper
motor controlled by a micro-stepping driver as initially described by Kolodney and Wysol-
merski [33]. The apparatus used in this study, is very similar to that used by Wakatsuki et al
[29], which includes a detailed schematic of the apparatus and construct pouring method. The
collagen gels were placed in a 50 ml thermo-regulated organ bath (Harvard Apparatus, Hollis-
ton, MA, USA Cat# 760165) containing 20 mMHepes-buffered MEM/0.4% bovine serum
albumin (Sigma Aldrich). Organ baths were maintained at 37°C for the duration of experi-
ments. The triangular hook and stationary horizontal bar over which the construct was looped
were set to hold the collagen ring at its original length of 15 mm, which corresponds to half the
circumference of the central mandrel. This configuration allows us to apply a defined stretch
over a specific time period and to relax the constructs to their original length at the same rate.
For mechanical measurements, constructs were hung and allowed to establish a stable basal
tension. After establishing a basal tension, constructs were stretched to a 10% strain (1.5 mm)
at a rate of 0.5 mm/min, and immediately relaxed to their original length at the same rate.
After this initial stretch, constructs were allowed to recover for at least 60 min, or until a stable
basal tension developed. Once a stable tension was reached, 2 μM cytochalasin D was added to
the organ bath to depolymerize cell actin filaments and abolish basal tension. After basal ten-
sion was eliminated (~ 45 minutes) constructs were then subjected to another 10% strain (1.5
mm) at a rate of 0.5 mm/min, and immediately relaxed to their original length at the same rate.
Constructs were allowed to recover for 1 hour before being removed from the apparatus.
Recovery was included in the mechanical testing for thoroughness as failure in long-term elas-
tic recovery could indicate changes in the properties of the samples not measured by the elastic
modulus calculations; alterations in long-term recovery of the samples tested here were not
seen. After being removed from the apparatus, samples were snap frozen for determining DNA
and myosin II isoform content. This protocol allowed us to determine how MDA-MB-231 cells
actively changed the mechanical properties of the collagen matrix after 4 days in culture. It also
allows for determination of how elimination of the active actin contractile cytoskeletal contri-
bution alters construct stiffness. To determine the stiffness of the cell altered collagen matrix
alone, MDA-MB-231 collagen gels were treated with deoxycholate and subjected to the stretch-
ing protocol. This treatment also allows us to determine if other cell components besides the
actin contractile cytoskeleton, such as microtubule networks or cell-matrix attachments, con-
tribute to the overall construct stiffness. For deoxycholate experiments, a separate set of con-
structs, cast on the same day and with the same collagen solution as the initial and cytochalasin
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D treated constructs, were hung on the apparatus and subjected to the initial stretching proto-
col outlined above. After 45 min recovery, deoxycholate was added to the organ bath at a final
concentration of 0.5% and constructs incubated in the presence of the detergent for an addi-
tional 60 min before being subjected to another 10% strain. For all experiments, constructs
were hung in duplicate for each treatment type. During each stretching protocol, isometric ten-
sion generated by constructs was recorded every second at 5Hz for the duration of an experi-
ment. At the end of each experiment, constructs were removed from the apparatus and snap
frozen for DNA and myosin II isoform content analysis. In optimizing stretch parameters,
total strains of 5, 10, 15, and 20%, and strain rates of 0.2, 0.5, 0.7, and 0.9 mm/min were tested.

Estimation of cross-sectional area
Collagen constructs were laid flat on a glass plate and collagen construct width was calculated
by taking high resolution digital photographs and measuring the number of pixels across the
width of the construct. The thickness of the specimens was determined by Multi-Photon Laser
Scanning Microscopy as outlined above (gel compression).

Measurement of Cell Concentration and DNA Analysis
The final cell concentration within collagen constructs was calculated from standard curves
generated using MDA-MB-231 samples of known cell number in increments from 100,000 to
5 million cells. Frozen construct samples were resuspended in 750 μL of 0.1% SDS in PBS and
sonicated until homogenous. Samples were diluted using 0.1% SDS in PBS at 1:50 and 1:100
dilutions and 100 μL of each dilution loaded into a microwell plate (Nunc Part No. 237017).
Hoescht 33258 stain was added to each well at a concentration of 0.09 μg/mL per well and the
plate was analyzed using the Hoescht 33528 protocol on a Modulus Microplate plate reader
(Turner Biosystems, Model number 9300–002).

Calculation of Elastic Modulus
Tension readings were converted from dynes to millinewtons (mN) and plotted against percent
strain using Sigmaplot (Version 8.02, Systat Software, San Jose, California, USA). Hysteresis
curves were generated by plotting the force readings during stretching and unloading against
strain as a function of time. Because each strain is reached twice, once during stretching and
once during unloading, the resulting graph starts from zero, reaches 10% strain, and then
returns to zero. The upward sweep of each curve is the tension produced during stretching,
and the downward sweep is tension during unloading of the sample. To measure the elastic
modulus of the constructs, the cross-sectional area must be determined. The cross-sectional
area is defined as the area of the sample where the force is applied; in this case, the thickness
and the width of the construct (calculated as outlined above). Tension readings, in N, were
divided by the cross-sectional area, in m2, to determine the stress on the sample in Pascals (Pa;
1Pa = 1N/m2). When the stress in Pa is plotted against strain, the slope of the line during the
stretch portion of the curve is the elastic modulus of the sample. This slope was calculated
using the Linear Regression tool in SigmaPlot, with a confidence interval of 95%. Using the
Rule of Mixtures (below), we calculated the contribution of individual components of a sample
to the total elastic modulus. For the collagen constructs, there are two main components: the
matrix itself and the cells within the matrix.

Econstruct ¼ fEcells þ ð1� f ÞEmatrix

Where Econstruct is the elastic modulus of the entire construct, determined using the initial
stretch of the untreated construct; Ematrix is the elastic modulus of the matrix component of the
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constructs, determined using the DOC treated stretch; and f is the volume fraction. Volume
fraction is defined as the volume of the component of interest, in this case the volume of the
cells, divided by the volume of the complete sample. To calculate the cell volume, samples were
stained with TRITC-Phalloidin and imaged using MPLSM for the full depth of the sample.
Using the Surfaces function of IMARIS software, the volume of the TRITC channel was calcu-
lated. The total volume was calculated using the known frame size of the z-stacks taken. The
volume fractions were determined for two full z-stacks for each construct and were consistent
between constructs for each cell type. After the elastic modulus of the cell component was
determined, the average elastic modulus for individual cells was calculated by dividing Ecells by
the total number of cells in the construct. In addition to the elastic modulus, we calculated the
elastic recovery of samples. For the purposes of this study, elastic recovery is defined as the
slope of the curve during the initial recovery after stretching (the first 30 time points after
unloading begins). These experiments were performed three separate times, and the statistical
significance was calculated using one-way ANOVA with a Tukey post-test.

Collagen Isolation
Rat tails from previously euthanized animals were obtained from animal quarters. Animals
were euthanized under an approved West Virginia University Institutional Animal Care and
Use Committee protocol and the tails removed by veterinarian staff. Immediately upon receiv-
ing the tails, they were sterilized with 70% EtOH. In a sterile environment, the tails were
skinned by snipping off the tip, then making an incision with a scalpel the length of the tail
before peeling back the skin. Collagen bundles were then severed at each end of the tail with a
scalpel, and pulled from the tail using hemostats. Collagen fibrils were placed in sterile 4°C PBS
on ice until collagen from 4–5 large tails had been removed (at least 5 g of collagen). Any excess
tissue was removed from the collagen fibrils before placing the collagen in 70% EtOH for one
hour on ice. Fibrils were then washed twice more with 70% EtOH before being washed once
each with PBS and sterile water. After the collagen was washed, the fibrils were placed in 300
mL of sterile 20 mM acetic acid. The collagen solution was then stirred at a slow rate for 48
hours at 4°C, occasionally mixing with a sterile pipet to ensure complete mixing. After the
extraction period, the collagen was centrifuged at 16,000xg for 90 minutes at 4°C. Collagen
concentration was determined using SDS-PAGE and stored at 4°C, protected from light.

Results

Knockdown of Myosin II Isoforms in MDA-MB-231 Cells
It has been established in the literature that MDA-MB-231 cells express the IIA and IIB isoforms
of nonmuscle myosin II, but express low levels of IIC not detectable byWestern blot [34–36]. In
order to test the contribution of each of the major myosin II isoforms in MDA-MD-231 cells,
we performed knockdown (KD) of myosin IIA and IIB and assessed what effect myosin KD had
on cell morphology (2D and 3D), actin organization, and the ability of MDA-MB-231 cells to
compress and organize 3D collagen matrices. Lentiviral shRNA constructs against the two iso-
forms were screened for specificity and efficient myosin II KD. As shown in Fig 1, each shRNA
construct achieved greater than 85% KD of their respective isoforms, while only minimally
affecting the non-targeted isoform. Efficient knockdown of myosin isoforms was verified using
immunofluorescence (S1 Fig).

We next sought to determine if loss of either myosin IIA or IIB affects general cell morphol-
ogy as well as actin and myosin II distribution. Fig 2 illustrates representative immunofluores-
cent 2D images of parental controls and myosin IIA and IIB KDMDA-MB-231 cells. F-actin
in parental MDA-MB-231 cells was localized to lamellapodia and central stress fibers (Fig 2A
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and 2C). Myosin IIA co-localized to the underlying actin filaments in lamellapodia and stress
fibers (Fig 2B) while myosin IIB was localized to stress fibers and concentrated in the perinuc-
lear region (Fig 2D). Knockdown of myosin IIA caused a disruption in the actin stress fibers of
cells, exhibiting prominent stress fibers at the periphery of the cell, and fewer centrally located
fibers (Fig 2E). Residual myosin IIA (Fig 2F) was detected at low levels in KD cells where it
localized to the actin stress fibers. Knockdown of myosin IIA appears to alter the distribution
of myosin IIB, which seems to assume a microtubule like distribution pattern (Fig 2G and 2H).
We speculate this might result from IIB binding to a microtubule associated protein. Loss of
myosin IIB (Fig 2I–2L) resulted in formation of shorter, thicker stress fibers heavily decorated
with myosin IIA (Fig 2I and 2J). These fibers were randomly distributed throughout the cyto-
plasm. In contrast, KD of myosin IIB for the most part abolished myosin IIB staining associ-
ated with underlying stress fibers (Fig 2L). Any remaining myosin IIB exhibited a perinuclear
localization (Fig 2L). In 2D, MDA-MB-231 cells showed a variety of morphologies and shapes.

In attempt to generate a microenvironment similar to what cells encounter in vivo,
MDA-MB-231 cells were cast within 3-D collagen matrices. MDA-MB-231 parental, IIA, and
IIB KD cell lines suspended in type 1 rat tail collagen were poured into Teflon casting molds
and incubated for 4 days. Over this time period cells spread, organize and compress the colla-
gen matrix. Since neither the cells nor collagen are able to adhere to Teflon, the influence of the
casting mold on matrix organization is minimized. Therefore, MDA-MB-231 cell-matrix and
cell-cell interactions are primarily responsible for generating the 3-D organized matrix within
the Teflon casting mold. After 4 days, collagen constructs were fixed and stained for actin and
myosin IIA or myosin IIB.

Fig 3 shows representative images illustrating the morphology and the actin/myosin II dis-
tribution of MDA-MB-231 cells in 3D matrices. Parental (Fig 3A–3F), myosin IIA KD (Fig
3G–3L) and myosin IIB KD (Fig 3M–3R) cells exhibit distinct morphology in 3D. Parental
cells (Fig 3A–3F) exhibited a rounded or pyramidal like cell body with multiple cell processes
extending in various directions and focal planes. Actin (Fig 3A and 3D) was localized to the
cytoplasm and cell processes. Both myosin IIA and IIB (Fig 3B 3C 3E and 3F, respectively) co-
localize to the underlying actin filaments in the cell body and processes, and also exhibit diffuse
staining throughout the cytoplasm. Myosin IIA KD cells (Fig 3G–3L) have a more rounded cell
body with numerous slender cell processes extending into several focal planes of the 3D con-
struct. Lack of myosin IIA staining (Fig 3H and 3I), in conjunction with western blot analysis
(Fig 1), confirms efficient myosin IIA KD and shows that loss of IIA had little effect on myosin
IIB localization (Fig 3K and 3H). In contrast, IIB KD cells within the collagen matrix are long

Fig 1. Knockdown of myosin II isoformsMDA-MB-231 cells expressing shRNA targeting either the IIA
or IIB isoform of nonmusclemyosin II were analyzed for myosin expression levels; GAPDHwas used
as a loading control.Greater than 85% knockdown of myosin protein content was achieved in stable cell
populations. Myosin isoform levels were assessed for every experiment to verify the level of myosin IIA and
IIB knockdown.

doi:10.1371/journal.pone.0131920.g001
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Fig 2. Knockdown of myosin II isoforms induces cytoskeletal changes in MDA-MB-231 cells in 2D
Parental (A-D), IIA KD (E-H) and IIB KD (I-L) cells were fixed, permeabilized, and immunostained with
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slender cells that lack cell processes, confining IIB KD cells to a single focal plane. Lack of myo-
sin IIB staining (Fig 3Q), in conjunction with western blot analysis (Fig 1B), showed IIB KD
had little effect on IIA distribution. The changes in cell morphology in 3D were quantified
using IMARIS software (Fig 4). Fig 4A shows the average number of protrusions per cell.
Parental cells had 6.7 protrusions per cell, while IIA KD cells had 12.9, and IIB KD cells had 2.9
protrusions. IIA KD cells had significantly more protrusions per cell than either the parental or
IIB KD cells. We also calculated the sphericity (Fig 4B) and elongation (Fig 4C) of the cell bod-
ies. IIA KD cells had slightly more spherical cell bodies, and IIB KD cells had slight more elon-
gated cell bodies, though these differences were not statistically significant. These results
suggest that myosin II isoforms may regulate how cells are able to interact and organize their
surrounding matrices.

Myosin II Isoforms and 3-D Collagen Gel Compression
Myosin II has been proposed to be critical for mechanotransduction [21], and for generation of
cellular forces essential for matrix remodeling. To measure the ability of MDA-MB-231 cells to
organize and compress 3-D collagen gels, we developed a gel compression assay. MDA-MB-
231 cells were mixed in type I collagen and cast into a Teflon casting mold and allowed to orga-
nize and compress the collagen gel for 1 to 4 days, before being fixed and removed from the
molds. At this point, the cells have compressed the collagen matrix into a tight ring around the
central mandrel of the casting mold. The ring is cut open and the thickness of the collagen
constructs measured using microscopy. For determining the thickness of gels cast with only
collagen, 1 μm fluorescent beads were added to the collagen/MEM solution prior to casting
constructs. Construct thickness was compared between gels cast from collagen alone, parental,
and myosin KDMDA-MB-231 cell lines.

Examples of representative z-stacks depicting the thickness of collagen constructs generated
from collagen alone, parental and myosin IIA and IIB KDMDA-MB-231 cell lines are shown
in Fig 5A. Comparing the measured thickness of these different constructs allowed us to calcu-
late to what extent control and KD cells compress a collagen gel. Collagen constructs cast from
collagen alone were approximately 1024.7 μm thick 1 day post casting, and after 4 days were
measured to be 1023.7 μm thick (Fig 5A and 5B). Parental cells were able to compress the
matrix by 50% (540.6 μm) 1 day post casting, and 57% (442.1 μm) 4 days post casting, com-
pared to constructs containing collagen alone. Although the majority of the matrix organiza-
tion/compression occurs within 24 hours, the process continued for the 4 day duration of the
experiment. Myosin IIA KD cells were unable to effectively constrict the collagen construct
(Fig 5B). Myosin IIA KD cell were only able to compress the matrix 15.2% (870.2 μm) and
16.1% (858.9 μm) 1 and 4 days post casting compared to constructs cast from only collagen.
Parental cells generated 36% and 40% more matrix compression on day 1 and day 4, respec-
tively, compared to the myosin IIA KD cells. These differences were statistically significant
(p< 0.0001). Interestingly, we found that the IIB KD cells behaved similarly to parental cells in

affinity purified polyclonal myosin IIA and IIB primary antibodies and TRITC-Phalloidin to visualize
actin filaments andmyosin localization. In parental MDA-MB-231 cells, myosin IIA (B) localizes to stress
fibers and the leading edge of cells, while myosin IIB (D) had cytosolic, stress fiber, and perinuclear
localization. Myosin IIA KD cells had altered actin cytoskeletal structure and were slightly larger than parental
controls, while the residual IIA (E) in these cells localized to stress fibers and myosin IIB (H) localization was
slightly affected, displaying a microtubule-like staining pattern, thought there was still an amount remaining
largely diffuse throughout the cytosol with some stress fiber and perinuclear localization. Myosin IIB KD cells
exhibited a more irregular shape with short, prominent stress fibers, and the residual IIB in these cells
exhibited a perinuclear localization (L) IIA localization was primarily to stress fibers (J), as in the parental
cells.

doi:10.1371/journal.pone.0131920.g002
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Fig 3. Loss of myosin II isoforms inducesmorphological changes in 3D Cells were added to a
collagen solution, poured into Teflonmolds and allowed to incubate for 4 days.Constructs were
washed, fixed, permeabilized, and stained with Phalloidin-TRITC and affinity purified myosin II antibodies.
Cells were examined using Two Photon Microscopy. (A-F) Parental MDA-MB-231 cells in three dimensions
had pyramidal cell bodies with multiple projections and significant staining of both IIA (B) and IIB (E)myosin
isoforms, mainly diffuse throughout the cytosol. (G-L) IIA KD cells had rounded cell bodies with highly
branched and elongated projections in all directions and very little residual myosin IIA (H) staining, mostly
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their ability to organize and compress the collagen constructs. Myosin IIB KD cells compressed
the matrix 53% (483.0 μm) and 64% (369.9 μm) after 1 and 4 days, respectively compared to
constructs cast from only collagen. This extent of compression was similar to the parental
control 50% and 57% 1 and 4 days post casting (Fig 5B). We speculate that the loss of matrix
remodeling exhibited by the myosin IIA KD cells could be due to the loss of the force generat-
ing capacity needed to physically modify the matrix or the loss of myosin IIA involvement in
integrin signaling [37, 38]. Since loss of myosin IIB did not cause significant disruption in
matrix compression, our data suggests that myosin II isoforms do not have redundant roles in
this cellular process, but rather have separate functions.

In an attempt to inhibit total myosin II function we also measured the ability of parental
cells treated with the small molecule myosin II inhibitor blebbistatin to compress a collagen
construct. Parental cells treated with blebbistatin were only able to compress the gel 40%
(583 μm) after 4 days compared to constructs cast from only collagen (data not shown). Bleb-
bistatin treated constructs have a decreased ability to alter the matrix, however, it is not
completely ablated. This suggests that cells may be using a myosin II independent mechanism
or we were unable to completely inhibit myosin due to blebbistatin absorbing to the collagen
matrix or its degradation in aqueous media.

Myosin II Isoform Involvement in Isometric Tension of Collagen
Constructs
While the gel compression assays are a measure of the amount of matrix remodeling cells are
capable of, it does not directly measure changes in the matrix itself. Because matrix stiffness
can also independently affect tumor progression, we sought to develop a way to directly mea-
sure matrix rigidity and elasticity. To begin to measure this, we first needed a method to mea-
sure changes in tension and force production in the collagen constructs as a whole. Using
our isometric tension recordings apparatus we were able to measure the tension produced by
collagen constructs both at rest and in response to physical strain. Collagen constructs were
poured into the Teflon casting molds, removed after 4 days and hung from isometric force
transducers, as described in Wakatsuki, et al [29]. After establishing a basal tension, constructs
were stretched to 10% strain (1.5 mm) at a rate of 0.5 mm/min and immediately relaxed to
their original length at the same rate. The resulting tension was measured and plotted against
strain in hysteresis curves. In these graphs, the upward sweep of the curve represents the ten-
sion produced by the construct during stretching, while the downward portion is the recovery
of the sample during unloading. These hysteresis curves are used to gain insight into the stiff-
ness and elasticity of the constructs.

Fig 6A shows the hysteresis curves, plotted as mN versus percent strain, for collagen alone
(blue line), parental (black line), myosin IIA KD (red line), and IIB KD (green line) MDA-MB-
231 collagen constructs during stretching and unloading from a single, representative experi-
ment. Parental samples (the black line in Fig 6A) show a marked increase in tension during the
period of stretching, a 10-fold increase in tension at the maximum stretch. Comparing the
parental samples to the collagen alone (the blue line in Fig 6A), it is evident that the cells are
significantly altering the collagen matrix. The collagen alone constructs are very loose com-
pared to the much tighter network generated by parental cells. The loose, unorganized matrix

localized to the cell bodies. The IIB (K) in these cells remained diffuse throughout the cytosol. (M-R) IIB KD
cells were elongated with fewer projections and tended to be localized to a single focal plane, with residual IIB
(O) localized at cell edges and near the nucleus. For all cell types, myosin isoform localization in 3D was
mainly cytosolic.

doi:10.1371/journal.pone.0131920.g003
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Fig 4. Morphological characteristics of cells lacking myosin II isoforms Collagen constructs
containing cells were prepared and imaged as outlined. IMARIS image analysis software was used to
quantify the observations made on cell morphology in 3D collagen gels across three separate experiments.
(A) The average number of protrusions per cell were measured using the Filaments function in IMARIS.
Statistical significance was calculated using one-way ANOVA with a Tukey post-test. The difference between
parental and IIA KD cell types was significant (p < 0.01), as was the difference between IIA and IIB KD cells
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produces a decreased tension signature in response to strain. The myosin IIA KD and IIB KD
samples (the red and green lines in Fig 6A, respectively), also show a decreased response to
physical strain when compared to the parental samples, indicating that they do not respond to
physical stress in the same way as the parental cells. Interestingly, the MDA-MB-231 samples
do not return to the same baseline tension after unloading, indicating the collagen constructs
are not perfectly elastic. The changes in collagen construct tension between the various cell
lines correspond well to the differences seen in the gel compression assay (Fig 5). Parental
cells are able to compress the collagen and generate a significant tension in response to
increased strain, while myosin IIA KD cells are unable to properly modify their surrounding
matrix resulting in a 2.4 fold decrease in peak tension generation in response to applied strain.
Myosin IIB KD cells exhibit a tension response to strain similar to that seen in parental cells,
a 10 fold increase from baseline at the maximum stretch. The distinct tension profiles in
response to strain for these cell lines suggest differences in the structural arrangement of the

(p < 0.001). (B) The sphericity of the cell bodies was calculated using the Surfaces function in IMARIS. IIA KD
cells were slightly more spherical than parental or IIB KD cells, though the difference was not statistically
significant. (C) The elongation factor of the cell bodies was calculated using the measurements function in
IMARIS. We defined the elongation factor as the measurement of the longest dimension of the cell body,
divided by the measurement of the shortest dimension. IIB KD cells had a slightly higher elongation factor
than the parental or IIA KD cells, though the difference was not statistically significant.

doi:10.1371/journal.pone.0131920.g004

Fig 5. Loss of myosin II isoforms inhibits the ability of MDA-MB-231 cells to compress a collagen gel MDA-MB-231 cells or 1 μm fluorescent beads
were mixed with a collagen solution and poured into a Teflonmold with a central mandrel.Constructs were incubated for 1 to 4 days to allow the cells
to compress the collagen gel. MDA-MB-231 constructs were washed, fixed, permeabilized, and stained with TRITC-Phalloidin and Hoescht 33258 dye. Cells
were examined using Two Photon Microscopy. (A) Z-stacks were taken from the top to the bottom of the constructs and the thickness recorded.
Representative z-stacks of each cell type, stained with Hoescht 33258 dye to ensure even distribution of the cells through the depth of the collagen gel, are
shown. Images were examined using IMARIS software and maximum intensity projections were generated using the Volume function. (B). Data shown are
average collagen gel thickness measurements (error bars are SD) from three separate experiments. Parental MDA-MB-231 cells were able to constrict the
collagen gel by over 50%, as were IIB KD cells, while IIA KD cells were only able to constrict the gel by 15%. The statistical significance was calculated using
one-way analysis of variance with a Tukey post-test on both the 1 and 4 day measurements. The difference between collagen with fluorescent beads alone
and parental and IIB KD cell constructs (p < 0.0001) was significant, as was the difference between the beads alone and IIA KD constructs (p < 0.05). In
addition, the difference between parental and IIA KD constructs was significant (p < 0.0001).

doi:10.1371/journal.pone.0131920.g005
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matrix, resulting in lower tension generation for less organized, looser constructs (myosin IIA
KD cells). This interpretation is in agreement with data obtained from gel compression assays
(Fig 5).

The isometric tension measurements examined thus far measure the collagen construct as a
whole, i.e. cells and the microenvironment generated by modifying their surrounding matrix.

Fig 6. Isometric tension development of MDA-MB-231 cellsRepresentative isometric tension tracings from a single experiment, plotted as mN stress
versus percent strain, are shown for each of the following: (A) readings generated by parental cells (black), IIA KD cells (red), IIB KD cells (green), and
collagen alone (blue) during an initial 10% stretch of untreated constructs. Myosin KD cells exhibited a lower response to strain compared to parental
constructs, especially IIA KD cells, while collagen alone constructs had a negligible response to the strain. (B) Parental cell constructs with no treatment
(black), treated with cytochalasin D to disrupt the active actin component (red), or treated with deoxycholate to remove the cell completely (green). These
readings are compared against collagen alone (blue). (C) IIA KD cell constructs with no treatment (black), treated with cytochalasin D (red), or treated with
deoxycholate (green) are compared to collagen alone (blue). A similar pattern in treatment responses was seen to that of the parentals. Inset IIA KD cell
construct force measurements are shown with a reduced y-axis scale to highlight the differences between treatment conditions. (D) IIB KD cell constructs
with no treatment (black), treated with cytochalasin D (red) or treated with deoxycholate (green) are compared to collagen alone (blue) For all cell types (B-D)
treatment with either cytochalasin D or deoxycholate greatly disrupted the response of the collagen constructs to stretching, with deoxycholate having a
greater effect, indicating that cell components other than the actin contractile component contribute to the overall construct response to mechanical strain.

doi:10.1371/journal.pone.0131920.g006
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By eliminating certain components of the constructs, we can determine what role(s) each com-
ponent plays in matrix organization and tension generation. For example, treating the con-
structs with cytochalasin D, an actin disrupting agent, before subjecting the construct to
mechanical testing allowed us to compare the applied strain response produced in cells with an
intact actin cytoskeleton (active contractile cell) with those from which the actin cytoskeletal
contributions of the cell have been eliminated. This treatment provided information about the
active contractile force generated by the cells within the construct. Furthermore, treating con-
structs with the non-ionic detergent deoxycholate uncoupled cell membrane matrix interac-
tions (by dissolving the cell) leaving only the collagen construct, devoid of cells, to respond to
the applied strain. The cell bodies themselves and their attachments to the matrix may contrib-
ute to tension simply because their attachments act as an anchor, prohibiting the collagen fibers
from stretching as far as they could without these attachments. The tension produced in
response to strain after removing cells with detergent allowed us to measure only the inherent
contribution of the matrix to the construct rigidity and elasticity.

Fig 6B shows representative hysteresis curves of untreated parental control constructs, as
well as parental constructs treated with cytochalasin D and dexoycholate. Cytochalasin D
treated constructs (red line in Fig 6B) have a much lower baseline tension compared to
untreated controls, 0.19 versus 0.59 mN. Treatment with deoxycholate reduces the baseline
even lower to 0.12 mN. As shown in Fig 6B, parental cells generate a peak tension of 5.8 mN in
response to applied strain. Disruption of actin filaments resulted in a 1.5 fold (to 3.8 mN) reduc-
tion in tension at max stretch, indicating an intact actin/myosin cytoskeleton was needed to
generate tension in response to applied strain. Incubation of constructs in the presence of deox-
ycholate further reduced the peak tension response by 1.3 fold (to 2.9 mN). Parental control
constructs cast with MDA-MB-231 cells containing both myosin IIA and IIB generate a peak
strain tension 8 fold higher (5.8 mN) than constructs cast with collagen alone (0.75 mN). Both
myosin IIA KD (Fig 6C) and IIB KD (Fig 6D) showed a similar pattern of changes in tension
production after treatment with cytochalasin D or deoxycholate as the parental constructs. The
myosin IIA KD constructs (Fig 6C) generated a 2.4 fold lower peak tension than control con-
structs indicating the IIA KD cells were unable to stiffen the matrix in a manner comparable to
parental cells. After treatment with cytochalasin D and deoxycholate (Fig 6C, red and green
curves, respectively), the hysteresis curves indicate the matrix has been organized by the IIA KD
cells to impart a structural rigidity to the construct 2.5 fold stiffer than constructs cast from col-
lagen alone; though the IIA KD generated matrix is still 2.9 fold lower than parental controls.
This implies that even though the constructs are looser and larger (width and depth) than con-
trols, the IIA KD cell still have the ability to modestly compress and organize the matrix. Myosin
IIB KD (Fig 6D) constructs more closely approximate parental control responses, however, the
hysteresis curves show that myosin IIA alone (the remaining isoform in IIB KD cells) is not
capable of generating the same matrix stiffness as exhibited by parental controls (Fig 6B).

These results, in conjunction with the gel compression studies, indicate that both myosin
IIA and IIB are needed for MDA-MB-231 cells to respond to applied stress and organize 3D
matrices. Our data points to myosin IIA as the prominent myosin II isoform regulating matrix
organization/compression, since loss of IIB has only minimal effects on 3D matrix compres-
sion and stiffness. However, myosin IIA is unable to completely compensate for the loss of
myosin IIB, indicating that both isoforms are necessary for these cell processes.

Myosin II Involvement in Matrix Rigidity and Elasticity
In order to calculate the elasticity of a sample, the stress generated by the construct, rather than
the recorded tension, must be determined. Stress is defined as force divided by the cross-sectional
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area of the sample and is reported as Pascals (1 Pa is equal to 1 N/m2). The cross-sectional area
of the samples in this study was calculated using the width of the collagen construct multiplied
by the thickness of the construct, which corresponds to the area of the construct the strain is act-
ing upon. The cross-sectional areas for the various cell lines differ due to differences in their abil-
ity to alter and compress the matrix. Fig 7A shows representative hysteresis curves corrected for
the differences in cross-sectional area for parental, myosin IIA and IIB KDMDA-MB-231 cells.
The differences between cell lines are highlighted when the cross-sectional area is taken into
account. This is especially evident in the IIA KD constructs (the red line in Fig 7A), which exhib-
its a 64% reduction in peak tension in response to mechanical testing compared to parental con-
structs and a 50% reduction when compared to myosin IIB KD constructs. These results show
myosin II is an essential player in development of matrix stiffness and suggest myosin IIA is
more involved in matrix organization than IIB.

Once the stress (force/cross-sectional area) has been calculated it is used to determine the
elastic modulus of the construct. Constructs are subjected to mechanical testing and hysteresis
curves plotted as Pa versus strain. The slopes of these hysteresis curves are used to calculate the
elastic modulus of the sample. This calculation comes from the following equation:

s ¼ Eε

Where ε is the strain on the sample, σ is the stress of the sample, and E is the elastic modulus of
the sample. Because the elastic modulus is defined as stress (Pa) divided by strain (unitless) it
has units in Pa. The stress-strain curves for representative experiments of all cell types, as well
as collagen alone, are presented in Fig 7A. Similar to the results obtained from the tension ver-
sus strain curves (Fig 6), we found major differences in the mechanical properties between con-
structs cast with collagen alone and constructs cast with MDA-MB-231 cells. Table 1 shows the
calculated Construct elastic modulus (organized/compressed collagen matrix containing cells)
and Matrix elastic modulus (samples treated with detergent to remove the cells) for parental,
myosin IIA and myosin IIB KDMDA-MB-231 cells. Parental constructs had an elastic modu-
lus of 9.22 Pa, 23-fold greater than for constructs cast from collagen alone (0.40 Pa). Myosin
IIA KD cell constructs had an elastic modulus of 3.42 Pa, a 2.7 fold decrease from parental con-
trols and 8 fold increase over collagen alone. Myosin IIB KD constructs had an elastic modulus
of 7.20 Pa, more closely approximating parental control constructs. These numbers are in
agreement with the differences in the ability of cells to alter the collagen gel as measured by gel
compression (Fig 5B).

It is also important to understand construct mechanics during recovery (unloading) from
the strain. For the purposes of this study, we defined elastic recovery as the slope of the hystere-
sis curve during the initial 30 seconds of sample unloading. As shown in Table 2, the differ-
ences between cell types are evident and in agreement with our gel compression data and the
elastic modulus: parental cell constructs had an elastic recovery of 38.61 Pa, IIA KD constructs
15.89 Pa, and IIB KD cells 31.86 Pa (Table 2). The difference between collagen alone and colla-
gen containing cells is evident here as well; IIA KD constructs, which are unable to efficiently
alter the matrix, produce a 8.3 fold greater elasticity than collagen constructs alone, which
exhibited an elastic recovery of 1.92 Pa.

Myosin II Isoforms Play Different Roles in Matrix Arrangement and
Cellular Response to Strain
The elastic moduli calculated above represent the collagen construct as a whole (Construct
Modulus), both matrix and cell component, and that of the cell modified matrix alone after
cells are removed using detergent (Matrix Modulus). While cells may be arranging the matrix
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in a similar way, the cells’ response to physical stress may be different, especially if myosin II
isoforms play different roles in matrix interactions and cellular force generation. Using the
Rule of Mixtures it is possible to separate the contribution of the matrix and cells to overall
construct elasticity. The Rule of Mixtures states that:

Econstruct ¼ fEcells þ ð1� f ÞEmatrix

In the above equation Econstruct is the elastic modulus of the untreated samples, Ematrix is the
elastic modulus of the constructs treated with deoxycholate (Fig 7B) and f is the volume frac-
tion. The volume fraction is defined as the volume of the component of interest (cells), divided
by total volume of the construct. For this study, the volume of the cell component of the con-
structs was calculated using microscopy and divided by the total volume of the image frame.
Myosin IIA KD cells had a smaller volume fraction than IIB KD or parental cells (0.014 for the
IIA KD cells versus 0.017 and 0.02 for the parental and IIB KD cells, respectively) because the
total volume of the construct is greater due to the fact that the IIA KD cells are unable to con-
strict the matrix (870 μm for the IIA KD cells versus 540 μm for the parental cells). However,
the overall cell volume between the cell types is not significantly different (about 9 x 106 μm3).

Fig 7. Matrix rigidity of MDA-MB-231 cells Representative collagen construct stress calculations from a single experiment for the initial, untreated
stretch (A) and the deoxycholate treated stretch (B) plotted as Pa versus percent strain. For both, myosin II KD cell constructs had a decreased
stiffness in response to strain. Because the stiffness calculation takes the cross sectional area of the constructs into account, and the IIA constructs are much
larger, the difference between the parental and IIA KD constructs is enhanced when compared to the differences seen when the strain response is plotted as
mN versus Strain (Fig 6). Loss of myosin IIA had a more significant effect on force in response to strain than did loss of myosin IIB.

doi:10.1371/journal.pone.0131920.g007

Table 1. Elastic modulus of collagen constructs seeded with MDA-MB-231 cells.

Cell Type Construct Modulus (Pa) P Value Matrix Modulus (Pa) P Value

Parentals 9.22 ± 0.61 NA 4.38 ± 0.50 NA

IIA KD 3.42 ± 0.34 <0.001 2.39 ± 0.37 <0.05

IIB KD 7.20 ± 0.78 ns 4.73 ± 0.53 ns

Collagen 0.40 ± 0.03 <0.0001 0.40 ± 0.03 <0.001

Shown are the averaged elastic moduli (± SEM) for constructs across three separate experiments

doi:10.1371/journal.pone.0131920.t001
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For calculations such as this, it is important that the cells be evenly distributed throughout the
matrix. As can be seen in Fig 5A, these cells are well distributed and not clustered in one region
of the construct. For parental constructs, the cell modulus was determined to be 286.26 Pa.
Myosin IIA KD cells had a modulus of 52.89 PA, and IIB KD cells had a modulus of 107.43 Pa
(Table 3). The parental cell elastic modulus was 5.4 fold greater than myosin IIA KD total cell
elastic modulus and 2.7 fold greater than myosin IIB KD cells. This is consistent with the
changes in matrix remodeling ability of the different cell lines, again suggesting that myosin
IIA assumes a greater role in organizing/compressing the microenvironment than myosin IIB.

Once the elastic modulus of the cell component of the constructs has been calculated, divid-
ing the total elastic modulus by the total number of cells in the constructs will determine the
average elastic modulus of each individual cell (Single Cell Modulus; Table 3). The number of
cells in each construct was determined to be between 1.3 and 1.8 million cells for each cell type.
The single cell elastic modulus was calculated as 189.25 μPa for parental cells, 36.78 μPa for IIA
KD cells, and 79.843 μPa for the IIB KD cells (Table 3). Interestingly, the total cell elastic mod-
ulus calculated for the parental cells and the IIB KD cells (286.26 and 107.435 μPa, respectively,
Table 3) show a divergence with what was predicted based on the overall construct elastic mod-
ulus (9.22 vs 7.20 Pa respectively; Table 1). This can be explained when comparing the matrix
elastic modulus (deoxycholate treated stretches) for the two cell types. While the overall con-
struct modulus is higher for the parentals than IIB KD, the matrix elastic modulus for the
parental constructs is actually lower than that for the myosin IIB KD (4.38 Pa versus 4.73 Pa).
This suggests the myosin IIB KD cells arrange and compress the collagen matrix in a different
way than parental cells, creating a stiffer construct. It is possible that IIB is restricting or inhib-
iting myosin IIA’s ability to transmit force across the membrane and maximally organize the
matrix. We speculate that upon loss of myosin IIB, myosin IIA is able to transmit force across
the membrane more efficiently yielding a stiffer, more rigid matrix.

Our data also clearly show that cells containing only myosin IIA (IIB KD cells) produce 2.2
fold greater tension within the construct than cells expressing only myosin IIB (IIA KD cells).

Table 2. Elastic recovery of collagen constructs seeded with MDA-MB-231 cells.

Cell Type Construct (Pa) P Value Matrix (Pa) P Value

Parentals 38.61 ± 1.05 NA 19.65 ± 1.32 NA

IIA KD 15.89 ± 2.19 <0.001 10.70 ± 1.56 <0.01

IIB KD 31.86 ± 4.40 ns 18.77 ± 1.55 ns

Collagen 1.92 ± 0.11 0.0001 1.92 ± 0.11 <0.0001

The elastic recovery, here defined as the slope of the initial recovery of the construct after stretching, was calculated for each cell type. Shown are the

averaged (±SEM) elastic recovery for constructs across three experiments.

doi:10.1371/journal.pone.0131920.t002

Table 3. Calculated elastic modulus of MDA-MB-231 cells within collagen constructs.

Cell Type Total Cell Modulus (Pa) P Value Single Cell Modulus (μPa) P Value

Parentals 286.26 ± 30.99 NA 189.25 ± 20.68 NA

IIA KD 52.89 ± 17.28 <0.01 36.78 ± 13.38 <0.01

IIB KD 107.43 ± 23.47 <0.01 79.84 ± 24.48 <0.05

The Construct and Matrix moduli of constructs from each experiment were used to calculate the Total Cell Modulus. This was then divided by the cell

number, determined by a DNA assay for each experiment, to calculate the Single Cell Modulus. Shown are the calculated total and single cell moduli,

averaged across three experiments (± SEM).

doi:10.1371/journal.pone.0131920.t003
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In addition, these data suggest myosin IIA is the major force producing motor protein in the
parental cells, since cells lacking IIA had a cell elastic modulus 5.1 fold less than parental cells,
while those lacking IIB had an elastic modulus only 2.4 fold less. Nevertheless, both motor
proteins are essential for MDA-MB-231 cells to achieve maximum tension production. Thus,
calculating the elastic modulus of the total construct, the matrix, and the cells allows one to
analyze the mechanical properties of the constructs in a more quantitative way than the gel
compression measurements; these calculations are useful in making comparisons to elasticity
and rigidity measurements under various experimental conditions or even whole tissues.
Taken together, these results suggest that myosin II isoforms have separate roles in the genera-
tion and maintenance of cellular stiffness and in their ability to alter and guide matrix organi-
zation and stiffness. Myosin IIA is especially important for matrix remodeling and elasticity.
These cellular characteristics, due to altered mechanoreciprocity in tumors, may have a drastic
impact on tumorigenesis.

Discussion
Matrix rigidity has been shown to stimulate tumor growth and metastasis [2, 4, 5]. It is known
that actomyosin contractility is needed for tension induced cell proliferation in epithelial
monolayers [39] as well as ROCK induced tissue changes and cell hyperproliferation in an
induced ROCK model of murine cancer [40]. However, the importance of cell motor proteins,
such as myosin II, in this process has previously not been directly investigated. Here we show
that the myosin II isoforms, IIA and IIB, are involved in cell mediated matrix reorganization,
cellular stiffness, and cell mediated changes to matrix stiffness. Loss of myosin IIA especially
has a drastic impact on cell mediated matrix reorganization and resulting alterations to matrix
stiffness. This could be part of the explanation as to why myosin IIA upregulation has been
shown to be correlated with poor prognosis in several types of cancer [25–27] if IIA is needed
for matrix alterations that are important for tumor development and later invasion and metas-
tasis [10, 41].

In this study, we measured the matrix remodeling ability of cells with a collagen gel com-
pression assay using Teflon molds. This is similar, on the surface, to the gel contraction assay
that has been used for a variety of cell types as a measure of cell mediated matrix reorganization
[42]. In fact, Yu et al. [43], found that the phosphorylation state of myosin light chain did not
have an effect on cancer cells’ ability to alter the matrix in the gel contraction assay. However,
there are several differences between the gel contraction assay as used in past studies, and the
gel compression assay used here that make the two difficult to compare. In a typical gel con-
traction assay, cells are suspended in a 3D matrix, usually collagen, and poured into a multi-
well plate. After the collagen has solidified, the gel is detached from the well and changes in the
diameter of the resulting matrix disk are measured over time [42]. In such an assay, there is a
strong possibility that the plastic of the multi-well plate may impact the behavior of the cells,
through interaction with the collagen or the cells themselves. In the development of the assay
used here, Teflon was chosen specifically because it is less likely to interfere with the cell medi-
ated alterations to the matrix than a substrate such as plastic, which can interact with collagen.
In the gel contraction assay, once the gel is detached from the bottom of the plate it may roll in
on itself or undergo other physical contortions that alter the diameter measurements. Also,
changes in the thickness of the gel are not measured in the gel contraction assay, generally only
changes in the diameter, circumference, or area of the collagen are measured [44]. While the
data presented in this paper focus on the thickness, there was a significant difference in total
volume of the collagen gels, and this difference is taken into account in the cell elastic modulus
calculations. While we have shown these changes, we can only speculate on how changes in
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myosin status of the cell are translated to the matrix without further study. A likely candidate is
the α5β1 integrin, which has been shown to be involved in the development of traction forces
and myosin II activation [16, 37, 38, 45]. In our gel compression assay, we show that loss of the
IIA isoform of nonmuscle myosin II has more significant effect on the cells’ ability to modify a
surrounding matrix compared to loss of the IIB isoform. This effect could be due to the differ-
ences in myosin II isoform kinetics [46, 47] or the differences seen in isoform response to
mechanical strain [48]. In addition to the known differences in isoform enzyme activity, it has
been shown that myosin IIA and IIB have different activation patterns in durotaxis, the phe-
nomenon of cells migrating from a soft matrix to a stiffer one. Raab et al. [49] showed that the
IIA isoform is diffuse in mesenchymal stem cells on soft 3D polyacrylamide matrices, but local-
izes to oriented stress fibers in cells in stiff matrices. This localization is followed by IIB polari-
zation to the rear of the cell. The loss of IIA may prevent the proper localization of the IIB
isoform in cells suspended in 3D matrices, blocking the cells’ ability to efficiently use the
remaining myosin isoform to interact with the collagen matrix.

There are several methods to measure the elasticity of cells alone or engineered cell/matrix
constructs. A popular method in the literature is Atomic Force Microscopy (AFM) [50, 51].
However, AFM was designed for high-resolution imaging of the topography of specimens. For
this purpose, the cantilevers used in AFM are extremely compliant and the tip size is typically
in the nanometer range [52]. For many studies using AFM to measure stiffness of biological
specimens, a glass bead is attached to the end of the tip to prevent the small tip from punctur-
ing cells or slipping into the pores of a 3D matrix, which would confuse the measurements [50,
51]. However, the weight of the glass bead alters the spring constant of the cantilever, and this
change must be precisely corrected for in calculations. AFM has also been used to measure elas-
ticity of whole tumors [51]. In the case of large specimens such as this, AFMmust take many
measurements of small sections of the sample and then the average elastic modulus is calcu-
lated. Using AFM, it is also difficult to measure changes in sample elasticity over time or in
response to various treatments or conditions. In developing the force conditioning model used
here, we strove to design the stretching protocol in such a way that we could measure the global
response of collagen constructs to stress over time. Putting the entire sample under strain
allows us to calculate how the constructs, and the cells within them, dynamically respond to
physical stretching. Additionally, the protocol is non-destructive, allowing for multiple
stretches of the same sample under different treatment conditions. Combined with the draw-
backs to AFM previously discussed, we determined that the stretching assay was the better
model for what we wanted to measure. Studies of whole tumors using AFM calculated an elas-
tic modulus in the kPa range [51], while we calculated an elastic modulus in the Pa range. This
large difference is possibly due to the more complicated matrix composition in a whole excised
tumor, as well as to differences in the method of measurement.[29, 53–57]. It is also important
to note that AFMmeasures the stiffness of a single point of a specimen in a single point in
time; these numbers are often averaged, however that still does not allow for a dynamic
response from cells. The stretching assays do allow for this dynamic response on a global scale.
The elastic moduli calculated using the stretching assays attach a solid number to the matrix
alterations that are indirectly measured in the gel compression assay, and both assays agree
that myosin IIA is necessary for efficient gel compression and development of a stiff, yet elastic,
matrix. The calculated cell modulus for the IIA KD (52.89 Pa for total cell modulus, 36.78 μPa
for the single cell modulus) was also significantly lower than that for parental cells (286.26 Pa
and 189.25 μPa), indicating that IIA is necessary for cellular stiffness as well as cell generated
matrix changes.

The stiffness of individual cells seeded on glass or plastic substrates, as is used in AFMmea-
surements, would likely be significantly higher than cells seeded in collagen, due to the stiffness
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of the substrate. Also, due to the nature of AFMmeasurements, the placement of the indenta-
tion tip can have a significant impact on the ultimate stiffness measurements since different
cell components have different inherent mechanical properties [53]. Additionally, the spring
constant of the cantilever and the geometry of the tip are important in using AFM to calculate
sample stiffness [54]. This study used a relatively low starting concentration of collagen (1 mg/
mL). Adding additional matrix components, such as laminin, or starting with a higher collagen
concentration, could significantly increase the stiffness of the matrix, which could ultimately
affect the cellular stiffness as well, due to mechanoreciprocity. Other studies using a stretching
method to measure stiffness used contractile fibroblasts, which are much stiffer than epithelial
cells [29, 55–57]. The assay used here relied on the mammary epithelial cells alone to generate
the stiffness of their surrounding matrix. The elastic modulus of a matrix containing stromal
cells such as fibroblasts, which are more contractile than epithelial cells, would likely be much
stiffer than a matrix containing epithelial cells alone. This speculation is supported by the fact
that fibroblasts compress the collagen to a greater degree than the breast epithelial cells (data
not shown). The addition of stromal cells, particularly cancer associated fibroblasts, to this
assay, while beyond the scope of this work, could provide insight into how various types of
cells associated with tumors contribute to the overall tumor stiffness.

The changes in matrix stiffness between parental and myosin II KD cells were as expected
from the gel compression assays, however, the cell modulus, both total and individual, for the
IIB KD cells was much lower than predicted based on the gel compression or total construct
modulus. The elastic modulus of the IIB KD constructs was calculated to be 7.20 Pa, while the
parental was 9.22. Based on these numbers, it was predicted that the IIB KD total cell modulus
would be much closer to the parental value of 286.262 Pa (189.25 μPa for single cell modulus)
than the 107.435 Pa (79.84 μPa single cell modulus) value that was calculated. Part of this unex-
pected result is explained in the elastic modulus values of the two different matrices (the deoxy-
cholate treated samples). For those stretches, the IIB KD modulus was higher than that of the
parental, 4.73 Pa versus 4.38 Pa, respectively. This indicates that in the IIB KD cell constructs,
the matrix is responsible for a relatively large proportion of the overall elastic modulus while
the cells themselves contribute little. In these cells, myosin IIA alone is sufficient to arrange a
collagen matrix, but not for the cells themselves to respond to a dynamic physical strain. This
could be due to the different responses of the two isoforms to mechanical loads. Myosin IIB
has been shown to have different ADP release kinetics under mechanical loads, and to be more
sensitive to such mechanical changes than IIA [48]. Thus, loss of IIB may prevent the cells
from being able to respond to mechanical stress because the remaining IIA isoforms does not
respond to mechanical loading in the same way. Here we used the rule of mixtures to calculate
the contributions of the different construct components, cells and matrix, to the overall elastic
modulus. This method has been used in other studies and is known to have limitations [55–
57]. The calculated cell modulus using the rule of mixtures from an unidirectional strain, as
used here, is somewhat cell distribution and orientation dependent [55].[55] Since the different
cell types used in this study have similar, random, orientations, this effect would not have a
significant bearing on the differences seen here, though it could affect the absolute calculated
elastic moduli. In addition, there is a need to compensate for the voids left when the cells are
removed using deoxycholate [56]. However, the effects are minimal at lower cell concentra-
tions, below 10x106 cells/mL, where the voids do not disrupt the continuity of the matrix. The
number of cells in the constructs used here is well below that threshold.

In general, the results shown here indicate that myosin IIA is critical for matrix rearrange-
ment while loss of IIB had a less intense effect on the ability of cells to organize a matrix,
though the cell elasticity is affected. These differences in isoform behavior could be due to dif-
ferences in their kinetics. Myosin IIB has a much higher affinity for ADP, and a slower release
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rate, which means it spends more of its time bound to actin than does IIA [46, 47, 58]. The two
isoforms also have different means of regulation and interactions with other cytosolic proteins
that alter myosin actin binding and ATPase activity that could explain the differences seen
here [59–61]. Additionally, the two isoforms respond differently under mechanical loads, with
myosin IIB showing enhanced mechanosensitivity [48]. Finally, it has been shown in mesen-
chymal stem cells that myosin IIA localizes to stress fibers of cells in stiff 3D matrices prior to
IIB polarization to the rear of the cell, both of which precede migration [49]. If these observa-
tions hold true in MDA-MB-231 cells, it could provide a partial explanation for the results seen
here. Cells lacking myosin IIA are unable to significantly impact their surrounding matrix. If
IIA localization to stress fibers is needed for proper IIB polarization, then IIB alone is unable to
generate the force needed on the actin cytoskeleton to arrange the collagen. On the other hand,
cells lacking the IIB isoform are able to organize the collagen matrix. In these cells, the IIA iso-
form localizing to the stress fibers may be enough for the cells to interact with and rearrange
the collagen matrix, but not for the cells themselves to generate tension in response to strain.
This would indicate that the two main myosin II isoforms, IIA and IIB, play separate roles in
the generation of cellular tension and cell-matrix interactions, with IIA perhaps playing a role
in IIB localization/activation. There are many possibilities as to why the A and B isoforms of
myosin II play different roles in cell rigidity and matrix interactions, however, a more in depth
study into the regulation and activity of the isoforms during matrix rearrangement is needed to
fully explain the mechanisms behind these actions.

Here we have shown that myosin II isoforms play separate and non-redundant roles in cell
mediated matrix rearrangement. In addition, we have used a method of measuring ECM stiff-
ness and elasticity that allows for a global and dynamic response from cells and matrices, as
well as precise control over matrix components. These characteristics are known to have an
effect on tumor development, therefore having a better understanding of how cancer cells rear-
range and interact with the matrix and affect its rigidity in vitromay lead to innovations in
diagnosis and treatment that could benefit public health. While we have described the differ-
ences in matrix interaction, further research into the mechanics of how myosin II isoforms are
differentially involved in this interaction is needed.

Supporting Information
S1 Fig. Quantification of remaining myosin II isoforms in knockdown cells by immunoflu-
orescent imaging. Cells were stained as outlined for actin and myosin II isoforms and imaged
under low magnification. Levels of myosin II were quantified using Image J.
(TIF)
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