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Abstract: Graphene has become a bridge across optoelectronics, mechanics, and bio-chemical sensing
due to its unique photoelectric characteristics. Moreover, benefiting from its two-dimensional nature,
this atomically thick film with full flexibility has been widely incorporated with optical waveguides
such as fibers, realizing novel photonic devices including polarizers, lasers, and sensors. Among the
graphene-based optical devices, sensor is one of the most important branch, especially for gas
sensing, as rapid progress has been made in both sensing structures and devices in recent years.
This article presents a comprehensive and systematic overview of graphene-based microfiber gas
sensors regarding many aspects including sensing principles, properties, fabrication, interrogating
and implementations.
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1. Introduction

Microfibers with sub-wavelength geometry and large index contrast between the fiber core
and surroundings [1,2] has become a widely used technique in fiber optics, benefiting from its
outstanding properties: evanescent field excitation, electromagnetic confinement, low transmission
loss, and coupling convenience [3,4]. Among diverse microfiber applications, optical sensing is very
interesting due to its potential of realizing miniaturized fiber optic sensors with small footprint,
high sensitivity, fast response, good flexibility, and low power consumption [5,6]. Especially in recent
years, people have found that microfibers can work as an ideal substrate for realizing high-performance
chemical sensors incorporated with two-dimensional optoelectronic materials, such as graphene or
graphene oxide.

Graphene is a unique two-dimensional material composed of carbon in a honeycomb lattice
with atomic thickness [7,8], and has spurred remarkable advances ranging from chemical physics and
materials science [9,10], to optoelectronics, mechanics, and thermal processes [11–14]. In photonics,
driven by its quasiparticle Dirac fermions obeying a linear dispersion and chiral symmetry [15,16],
graphene enables its optical conductivity defined only by the fine structure constant [17], which is with
remarkable carrier-density tunability and corresponding surface sensitivity [18–21]. Consequently,
a series of state-of-the-art graphene-based optoelectronic and photonic devices have been investigated,
including modulators, fast lasers, detectors, converters, and biochemical sensors [22–29].

Among them, graphene-based gas detection is one of the most creative and successful applications,
showing the potential to achieve ultimate sensitivity: single molecule gas detection [30]. Moreover,
benefiting from its atomic thickness with ultrahigh conductivity, graphene can also realize remarkable
functionalities, such as wearable sensors for smart systems [31–33] and switching-sensing devices for
high-precision measurements with thermal compensation [34,35].
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When deposited on microfibers, graphene interacts with the evanescent field, enabling different
kinds of graphene-based microfiber gas sensors. Here we conclude the recent progress in this
fiend regarding their sensing principles, fabrication and performances. Typical graphene-based
microfiber gas sensors include biconical tapers, gratings, interferometers, coils, ring cavities, and so
on. These fiber-optic graphene gas sensors are categorized in both passive (such as interferometric)
and active (such as pumping laser-based) techniques, which shows the potential applications in
highly-sensitive gas sensing in combining with microfiber and new materials. Although some review
articles on graphene-based electrical gas sensors have been published [9,10], there are currently no
available review articles on graphene-based microfiber gas sensors. Hence, this article aims to provide
an overview of the research and development on graphene-based microfiber gas sensors over the
past 5 years. Finally, we summarize with an outlook for challenges and opportunities of the optical
graphene gas sensors based on microfibers.

2. Principles of Graphene-Based Gas Sensing on Microfibers

The electronic conductive band and valence band crosses at the Dirac point, as shown in
Figure 1a [36]. The Fermi level of graphene can be simply described by using the dispersion relation
E±(κ) = ±h̄νF|κ|, where κ is the wave vector, νF ≈ 106 m/s is the Fermi velocity, and h̄ is Planck’s
constant [37]. When the Fermi level is higher than the Dirac point, graphene is N-doped; otherwise it
is P-doped. Accordingly, the optical conductivity of graphene can be written as [38]:
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Specifically, the intraband conductivity and the interband conductivity can be approximately
separated as:
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The theoretically calculated results are shown in Figure 1b. Here EF is the quasi Fermi level,
directly determined by the external bias. f is the optical frequency, τ ≈ 10−13 s is the carrier
relaxation lifetime, T is the temperature, fd(ε) = {exp[(ε-µ)/kBT] + 1}−1 is the Fermi–Dirac distribution,
h̄ = 1.05 × 10−34 J·s, kB = 1.3806505 × 10−23 J/K is Boltzmann’s constant, and e = −1.6 × 10−19 C is
the unit charge. External electric tuning majorly influences the σg,inter, which is also directly related to
the saturable absorption, which is driven by the photoexcited electron kinetics [39]. Considering the
fact that graphene has an atomically thick planar waveguide with such a complex sheet conductivity,
we write its effective optical permittivity as

εg =
−Im

(
σg,i
)
+ iRe(σg)

2π f ∆
, (4)

where Re(σg) and Im(σg) are the real and imaginary parts of σg, respectively. By regarding the graphene
monolayer thickness ∆ = 0.4 nm, the refractive index of the graphene layer can be derived from [40]:{
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For media modes with real permittivity, we can calculate the relationship as
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Figure 1c maps the numerically calculated results of the complex permittivity and complex
refractive index. These results directly indicate the optical dispersion of graphene-based microfiber
structures, which was experimentally demonstrated by Yao et al. in 2013 [41].

Sensors 2018, 18, x FOR PEER REVIEW  3 of 16 

 

ەۖۖ
۔ۖۖ
(௚݊)ܴ݁ۓ = ଶோ௘(ఢ೒)ቌೃ೐(ച೒)మ ାටೃ೐(ച೒)మష಺೘(ച೒)మమ ቍభ/మିଶቌೃ೐(ച೒)మ ାටೃ೐(ച೒)మష಺೘(ച೒)మమ ቍయ/మ

ఢ೒,೔
(௚݊)݉ܫ = ቌටோ௘(ఢ೒)మାூ௠(ఢ೒)మଶ − ோ௘(ఢ೒)ଶ ቍଵ/ଶ .  (6) 

Figure 1c maps the numerically calculated results of the complex permittivity and complex 
refractive index. These results directly indicate the optical dispersion of graphene-based microfiber 
structures, which was experimentally demonstrated by Yao et al. in 2013 [41]. 

 
Figure 1. Optoelectronic property of graphene (a) Band structure; (b) Calculated conductivities 
varying in Fermi level; (c) Calculated permittivity and refractive index, in real and imaginary parts, 
respectively. Here (a,b) are reproduced from Refs. [36,42], respectively. 
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different graphene–microfiber hybrid geometries, the mode field distributions and complex effective 
index neff can be numerically simulated or calculated via finite element method (FEM) [43,44]. Figure 2a 
illustrates the idea of modelling the graphene-based microfibers for effective index approximation. 
Figure 2b provides examples of the spatial distributions of electric field intensity (fundamental mode) 
for different types of graphene-based microfiber structures. Upper panels: graphene-wrapped 
microfiber with core diameter ≈ 0.5 µm and 1 µm [43,45], lower panels: graphene-wrapped microfiber 
with core diameter ≈ 8 µm while cladding thickness ≈ 2 µm [46]. The mode effective index of a hybrid 
waveguide is also influenced by the optoelectronic dynamics of graphene. Figure 2c plots the 
simulated “neff vs. |EF|” correlation of a graphene-based microfiber with core diameter ≈ 8 µm. It can 
be seen that by changing the Fermi level of graphene, both the transmission phase and the 
transmission loss of a graphene-based microfiber could be modified remarkably. Such a mechanism 
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Figure 1. Optoelectronic property of graphene (a) Band structure; (b) Calculated conductivities varying
in Fermi level; (c) Calculated permittivity and refractive index, in real and imaginary parts, respectively.
Here (a,b) are reproduced from Refs. [36,42], respectively.

Once incorporated with a microfiber, the graphene performs as a part of the cladding, and can
influence the optical transmission via mode effective refractive index modulation. According to different
graphene–microfiber hybrid geometries, the mode field distributions and complex effective index neff can be
numerically simulated or calculated via finite element method (FEM) [43,44]. Figure 2a illustrates the idea
of modelling the graphene-based microfibers for effective index approximation. Figure 2b provides
examples of the spatial distributions of electric field intensity (fundamental mode) for different
types of graphene-based microfiber structures. Upper panels: graphene-wrapped microfiber with
core diameter≈ 0.5 µm and 1 µm [43,45], lower panels: graphene-wrapped microfiber with core
diameter≈ 8 µm while cladding thickness≈ 2 µm [46]. The mode effective index of a hybrid waveguide
is also influenced by the optoelectronic dynamics of graphene. Figure 2c plots the simulated “neff vs. |EF|”
correlation of a graphene-based microfiber with core diameter ≈ 8 µm. It can be seen that by changing
the Fermi level of graphene, both the transmission phase and the transmission loss of a graphene-based
microfiber could be modified remarkably. Such a mechanism can not only be applied to sensing, but has
also been widely used for fast optical modulation [47,48].

It is known that the electromagnetic field distributed along microfibers obeys the Bessel equations
in cylindrical coordinates [49], which has a general solution

E = Ae
ωIm(ne f f )z

c ei[
ωRe(ne f f )z

c +t], (7)
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where A is the optical amplitude, Re(neff) and Im(neff) are the real and imaginary parts of the
graphene-based microfiber, z is the transmission distance, t is the time delay, c is the light velocity in
vacuum, and ω is the optical frequency. As a conclusion, the Fermi-level modification of graphene
would modulate both the output phase and output power of the microfiber. In optical nonlinear
processes, such an effect also alters the phase-matching and nonlinear threshold [50].
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Figure 3. Mechanism of graphene-based electric and optical gas sensors. (a) Gas molecules adsorbed on 
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molecules adsorbed on graphene optically. Here (a–d) are reproduced from Refs. [30,51–53], 
respectively. 

When gas molecules are adsorbed on the surface of graphene, the Fermi level of graphene is 
tuned [54,55]. Figure 3a shows chemical connections between graphene and gas molecules 

Figure 2. Calculation and simulation of graphene-based microfibers. (a) Scheme of the finite element
method (FEM) simulation for graphene-based microfibers. (b) Simulated electric field intensity
distributions. (c) Calculated effective index of a graphene-based microfiber, relying on the Fermi
level of graphene. Here simulations in (b) are reproduced from Refs. [43,46].
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Figure 3. Mechanism of graphene-based electric and optical gas sensors. (a) Gas molecules adsorbed
on graphene. (b) Detecting gas molecules adsorbed on graphene electrically. (c) Method to detect gas
molecules adsorbed on graphene optically. Here (a–d) are reproduced from Refs. [30,51–53], respectively.

When gas molecules are adsorbed on the surface of graphene, the Fermi level of graphene is
tuned [54,55]. Figure 3a shows chemical connections between graphene and gas molecules schematically.
For pristine graphene film, the absorption of polar molecules is dominant, hence pristine graphene had
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been demonstrated with high electronic sensitivity to polar gases such as NH3, NO2, and H2O. It is worth
pointing out that for graphene oxide (GO) or other functionalized graphene, non-polar gas such as H2 is
also detectable [56]. Figure 3b plots the measured “gas adsorption vs. conductivity” for graphene film,
reported in Ref. [30]. As expounded above, the “gas adsorption” and the “conductivity-index relationship”
of graphene form the basis of the optical graphene gas sensing. By using microfibers, the gas adsorption
can be detected via optical interference, power metering, or nonlinearity excitation, as shown in Figure 3c.

3. Design and Fabrication of Graphene-Based Microfiber Structures

Since the first graphene-based microfiber optical gas sensor reported in 2012 [57], a variety
of graphene-microfiber hybrid structures have been investigated for gas sensing applications.
Their fabrication process can be summarized with the following three steps: (1) microfiber fabrication;
(2) graphene growth; (3) graphene-microfiber installation.

Typically, microfibers are fabricated from commercial glass fibers or bulks, by using the
fusing & drawing method [1], which can be controlled either manually or automatically. Figure 4a shows
the microscopic pictures of typical microfibers. The heater source can be either a flame (usually a hydrogen
flame), an electrical heater, or a laser-heated tube [58–60]. Figure 4b demonstrates a typical setup for
fusing & drawing microfibers from glass fibers. Optical loss of a microfiber is mainly determined by
its taper quality. Very recently, taking advantage of the “flame-brushing” technique, high-quality silica
micro-nano fibers with diameters in the range of 800 nm to 1.3 µm, unevenness < 5 nm, and waist length
larger than 30 cm have been achieved [61].
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Figure 4. Fabrication of microfibers. (a) Pictures of silica microfibers. (b,c) Setups for fusing & drawing
glass microfibers. (d) Microfibers besides glass materials. Here pictures of (a,d) are reproduced from
Ref. [1] and Refs. [62–66], respectively.

Sometimes one not only wants a microfiber-guiding evanescent field, but also hopes to keep
the inner microstructures of the original fiber (such as photonic crystals and Bragg gratings); then,
chemical etching becomes a choice [67,68]. For example, for silica-based fiber etching, hydrofluoric acid
is commonly used as the corrosive agent. Compared to microfibers fabricated by fusing & drawing,
the chemically etched microfibers have larger average diameters, usually in the range of 8–12 µm.
Figure 4c shows this method and pictures of the chemically etched microfiber samples. In addition,
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for further specific purposes, microfibers are not only fabricated from glass materials, but also other
materials such as polymers, silicon, and metal-oxides, by using diverse means such as thermal process,
chemical growth, and self-assembly [62–66]. Figure 4d shows examples of these special microfibers.

The chemical vapor deposition (CVD) and wet transfer techniques provide inch-level large-scale
monolayer graphene for incorporation with microfibers [69–72]. Figure 5a illustrates a schematic
view of a growing graphene film on a copper foil. Graphene on Cu is grown by the decomposition
of CH4 gas in a dilute H2 environment over the surface at 1000 ◦C. With the exposure of Cu foil in
a CH4/H2 environment, the nucleation of graphene islands starts taking place randomly, eventually
aggregating into a continuous graphene film. Figure 5b shows the optical image and pictures of CVD
graphene film samples. CVD graphene has good uniformity in inch-size large-scale, which has been
widely used in optoelectronic devices, via the wet transfer technique. Graphene films can also be
deposited on fiber structures directly by reducing from GO in liquid. Figure 5c shows the chemical
structures of GO and graphene; there are many functional groups containing oxygen connecting the
carbon atoms [73]. Figure 5d shows pictures of liquid dispersions of GO and graphene reduced from
GO [74]. Compared to CVD graphene films, the reduced GO film usually has more defects, but the
deposition of the GO film does not need an additional transferring process, which is more convenient
for implementation. In recent years, by optimizing the solution-based reduction method, large-area
GO films with acceptable uniformity can be obtained [75].
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Figure 5. Graphene fabrication. (a) Graphene grown by using chemical vapor deposition (CVD)
method. (b) Pictures of graphene samples fabricated by using CVD method. (c) Graphene reduced
from graphene oxide (GO) in liquid. (d) Picture of GO and reduced GO (rGO) dispersions, and the
deposited reduced GO film on silicon substrate. Pictures in (b) are reproduced from Refs. [71,72].

Graphene can be either attached on or wrapped around a microfiber, as schematically shown
in Figure 6a. Figure 6b sketches the fabrication flows of a graphene-based fiber structure by using
CVD technique [41]. For graphene attached on microfibers, graphene is transferred to a low refractive
index substrate; afterwards, microfibers are put on the graphene, kept contacted. Such a van der Waals
contact is firm and stable [41]. For graphene-wrapped microfibers, a substrate to carry graphene is
unnecessary. The wet transfer of a CVD graphene film is done as follows: spin-coating a layer of
polymethyl methacrylate (PMMA) on the surface of the graphene, forming the PMMA/graphene/Cu
sandwich-like hybrid; dissolving the Cu under graphene by using FeCl3 solution; covering the
PMMA/graphene flexible film on a substrate or wrapping it on a microfiber; removing the PMMA by
using acetone, leaving only graphene remaining.

Figure 6c shows the process of depositing a reduced GO film on the surface of a microfiber [74].
The process involves oxidizing graphite powder to GO by using strong oxidants such as potassium
permanganate; immersing a microfiber in the GO dispersion liquid; reducing the GO to be graphene by
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using a reductant such as vitamin C; and optimizing the film formation by controlling the temperature
and the reduction time.
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To characterize the quality of graphene on the microfibers, Raman spectroscopy [77–79], scanning
electron microscopy (SEM), scattering measurement, and X-ray photoelectron spectroscopy (XPS) [80]
are commonly applied. Figure 7a–d show the pictures of graphene-based microfibers, measured by
optical microscopy and SEM. One can check the quality of the microfiber-graphene incorporation
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based on these images. Figure 7e plots a typical Raman spectrum of graphene on a fiber structure.
Commonly, high-quality graphene on microfibers should have an ignorable D peak, and a G/2D
ratio 0.3~0.5; the locations of the G peak and the 2D peak are influenced by the graphene doping.
Commonly, CVD graphene is pure in chemistry, while graphene film reduced from GO may contain
more functional groups, such as –OH and –COOH. These functional groups can be extremely useful for
specific sensing applications; XPS is helpful to check them. Figure 7f plots the XPS of CVD graphene
and reduced GO. For better deposition on microfibers, the reductions are usually controlled to make
a C:O ratio > 4 [74].

4. Graphene Gas Sensors with Microfibers

In recent years, graphene gas sensors with microfibers develop rapidly, some of them are also
reviewed in Refs. [81–84]. The roadmap demonstrates that the sensitivity of these graphene-based
microfiber gas sensors increases from parts per kilo (ppk) to part per billion (ppb) by gradually
optimizing the sensing structure.

Based on the graphene-attached microfiber scheme, we reported gas sensors based on both optical
intensity detection and interferometric demodulation by using mode field analysis or Mach-Zehnder
Interferometer (MZI) [52,84]. Figure 8a,b show their implementations. A microfiber with a length
of several centimeters and ≈1 µm diameter was used to couple light interacting with graphene.
Such a scheme is similar to a graphene-based D-shaped fiber [85,86], but is easier to manipulate.
In Ref. [84], we illustrated that the polarization-dependent transmission of the graphene-attached
microfiber was sensitive to gas adsorptions, especially large molecules. As Figure 8c shows,
the adsorption of acetone gas molecules would dramatically dampen the optical transmission;
for example, for acetone gas with a concentration of 1150 ppm, the transmission loss increased
over 3 dB, the maximum sensitivity of this structure was about 0.3 dB/ppk.

The regeneration time for the acetone gas detection was in the rage of several minutes.
The interferometer scheme was a big step forward to achieve a much higher sensitivity. Figure 8d shows
the performance of the graphene-microfiber-based MZI for NH3 gas detection [52]. It illustrated both
high sensitivity and fast response. For NH3 trace detection, 0.3 ppm resolution and 0.5 s response
delay was achieved.
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Figure 8. Optical gas sensors based on graphene attached on microfibers by using (a) mode-field
analysis and power metering; (b) MZI interferometer; (c) Sensing performance of the graphene-based
acetone gas sensor; (d) Sensing performance of the graphene-based MZI sensor for NH3 gas detection.
Here the results are reproduced from Ref. [52,84].
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Similarly, Figure 9b shows the experimental results [87]. Sridevi et al. chose reduced GO rather
than CVD graphene, getting better selectivity for NO2 gas. A sensitivity of 0.5 ppm was achieved
in this work. As the reduced GO film was thicker and fluffier than the CVD graphene, its response
time was limited to minute-level. In this type of sensor, it is also important to enhance the mode
distribution ratio out of the core and optimize the microfiber diameter (or the thickness of the remained
cladding), as discussed by Zhang et al. in Ref. [88]. Figure 9c replots the experimental results:
a larger microfiber diameter brought lower sensitivity, but also lower attenuation and larger dynamic
range. Considering a composite index H ~ln(S)ln(D)/A, the best diameter could be around 10 µm for
graphene-wrapped silica fiber-Bragg-gratings (FBGs) with standard 8 µm core.

Since the scheme of graphene-microfiber attachment spatially limits the light–graphene
interaction, since 2014, graphene-wrapped microfiber structures have become a trend. For instance,
based on graphene-wrapped micro fiber Bragg gratings (MFBGs), the footprint of the sensors can
be dramatically miniaturized. Wu et al. [89] and Sridevi et al. [87] reported ultrasensitive sensors
based on MFBGs for NH3 gas sensing and NO2 gas sensing, respectively. As shown in Figure 9a,
Wu et al. covered a monolayer of graphene around a chemically etched MFBG. The reflection peak
of the MFBG was determined by the equation λp = 2neffΛ, where Λ is the MFBG period. The gas
adsorption based on neff modulation was measured by detecting the spectral shift of the MFBG.
The maximum sensitivity of the CVD graphene-coated MFBG reached 0.2 ppm for NH3 gas and
0.5 ppm for xylene gas, respectively.
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(b) for NO2 gas detection. (c) Diameter optimization of the micro FBG gas sensors. Figures in (a–c) are
reproduced from Refs. [87–89].

Another method to enhance light–graphene interaction in graphene-based microfiber structures is to
excite high-order mode propagation with larger mode-field area or to excite plasmons. In 2014, Yao et al.
demonstrated a graphene-based microfiber multimode interferometer, as shown in Figure 10a [46]. In this
structure, the HE21 mode is more sensitive to local refractive index alteration than the in-core HE11 [90],
hence its interference Free Spectrum Range (FSR) could be tuned by gas adsorption, resulting in a spectral
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resonance dip shift. In a sensing experiment, ~0.1 ppm for NH3 gas detection and ~0.2 ppm for H2O
vapor detection were achieved. By using GO-ZnO film, Hu et al. also recently realized a NH3 gas
sensor, demonstrating sub-ppm sensitivity, as shown in Figure 10b [91]. This GO-ZnO incorporated
interferometric optical microfiber illustrated very high selectivity to NH3 gas. Additionally, in 2014,
Mishra et al. also reported a graphene Surface Plasma Resonance (SPR) sensor based on microfibers for
sensing NH3 gas [92]. Mishra et al. applied PMMA/graphene/Cu hybrid membrane directly to enhance
the plasmons on Cu and the gas adsorption on the surface of the PMMA/graphene. It demonstrated both
good sensitivity (ppm level) and relatively large dynamic range (hundreds of ppm).
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Figure 10. Optical gas sensors based on graphene-wrapped microfiber structures. (a) NH3/H2O
sensor based on CVD graphene-microfiber multimode interferometer, (b) NH3 gas sensor based on
ZnO-GO-covered graphene-microfiber multimode interferometer, (c) NH3 gas sensor based on SPR on
a PMMA/graphene/Cu-covered microfiber. Here the figures are reproduced from Refs. [46,91,92].
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Limited by the spectral resolution of the optical interference and the linear loss of the
passive devices, sub-ppm seemed to be the limitation for a graphene-based microfiber gas sensor.
Taking advantage of high Q resonance, the interferometric resolution can be effectively improved.
Yu et al. made such an attempt by building a GO-deposited microfiber knot resonator [93]. Figure 11a
shows the structural diagram. In this study, the GO film covered the whole microfiber resonator,
limiting the Q factor. In future investigations, by optimizing the graphene coverage region [94],
the resolution and detection limit can potentially be further improved.

Moreover, in 2017, based on graphene-enhanced Brillouin scattering, a microfiber interrogated
Whispering Gallery Mode ptomechanical gas sensor was realized. Figure 11b shows the
design and the sensing performance. It reported an unprecedented high sensitivity (1 ppb)
for NH3 gas detection, which is a globally leading number comparable to other advanced
techniques [95,96]. Such a remarkable breakthrough revealed the “electron–phonon–photon”
interaction in the graphene-based optomechanical resonator, going beyond all the conventional
graphene-based optical or solid-state sensors. Optomechanical resonance was generated via Brillouin
phase matching and nonlinear gain:

fM
vA

=
2π fpnp

c
− 2π fcnc

c
, (8)

gB ∝
4π2γe

2np

γecλp2ρ0vAΓB
, (9)

where vA is the acoustic velocity, c is the light velocity in vacuum, np and ns are the effective
indexes of the pump mode and the generated Stokes mode, fp and fs are the pump frequency and
the Stokes frequency, γe is the electro-strictive coefficient, and ΓB is the lifespan of the phonons.
Gas adsorption on the reduced GO film enables an RF spectral shift 200 kHz/ppm, while the
uncertainty of the Brillouin optomechanical generation is only 200 Hz, due to the extremely high
Q factor (106). Moreover, such an optomechanical micro-resonator kept an exceptional dynamic range
from 1 ppb to 400 ppm, crossing over five orders.

The above review summarizes the progress in optical graphene gas sensors based on microfibers.
By optimizing the optical sensing structures, this type of sensor has made significant advancements
in sensitivity, which is summarized in Table 1. Benefitting from the advancements in novel optical
detection methods, the current performance of microfiber-based optical graphene gas sensors has been
comparable to the state-of-the-art gas detection techniques, as displayed in Table 2.

Table 1. Major progress in the optical graphene gas sensors based on microfibers.

Year Sensor Structure Target Gas Performance Reference

2012 Microfiber attached on graphene Acetone Sub-ppk sensitivity [57]

2014 Graphene/gold coated on microfiber
for SPR NH3 1 ppm sensitivity [92]

2014 Graphene-coated
microfiber interferometers NH3, H2O Sub-ppm sensitivity

Fast response [46,89]

2016 Reduced GO coated on microfiber
Bragg gratings NO2

500 ppb
sensitivity~100% recoverability [87]

2017 Reduced GO-based
optomechanic microresonator NH3

1 ppb sensitivity
five orders dynamic range [53]

2018 ZnO-functionalized GO coated on
a microfiber multimode interferometer NH3

Sub-ppm sensitivity
High selectivity [91]
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Table 2. Major progress in optical graphene gas sensors based on microfibers.

Sensor Type Max Sensitivity Dynamic Range Response Time Reference

Photothermal spectroscopy 2 ppb six orders minutes [96]

Graphene-based SPR on fiber 1 ppm NG minutes [92]

Ultrasensitive plasmonic
sensors based on metal ~ppm NG NG [97]

Visible spectroscopy 5 ppb NG minutes [95]

Microfiber-based graphene
optomechanic resonator 1 ppb five orders seconds [53]

5. Conclusions and Outlook

In this article, we review the principles, fabrications, implementations, and performances of
optical graphene gas sensors with microfibers, which have attracted intense interest in research and
development and play an important role in industry. The mode of “graphene and microfiber” has
become a widely used platform for—but not limited to—gas detections. In this way, higher sensitivity
and better selectivity are constant pursuits, while still remaining challenges. On one hand, to increase
the sensitivity, more and more new optical mechanisms and techniques are being reported, such as
graphene-based laser sensing [98], high-order nonlinearity-based enhancement [42], and plasmonic
sensing in the Mid-Infrared Range to THz region [20]. On the other hand, determined by the graphene’s
nature that it can interact with any gas molecule, most of the above optical gas sensors are focused on
polar gas sensing, such as NH3, H2O, or NO2, and these sensors lack selectivity. Towards the realization
of graphene-based microfiber sensors for other gas detection, the graphene material itself would be
further functionalized, such as by using element-doped films [99], graphene grains [100], or fluorescent
resonance energy transformation technology [74]. With the progress in both the microfibers and
graphene materials, there is no doubt that more graphene-based fiber-optic gas sensing structures and
devices can be foreseen to meet the practical application requirements.
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35. Matko, V.; Milanović, M. Temperature-compensated capacitance–frequency converter with high resolution.
Sen. Actuators A Phys. 2014, 220, 262–269. [CrossRef]

36. Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of
graphene. Rev. Mod. Phys. 2009, 81, 109–162. [CrossRef]

37. Semenoff, G.W. Condensed-Matter Simulation of a Three-Dimensional Anomaly. Phys. Rev. Lett. 1984, 53,
2449–2452. [CrossRef]

http://dx.doi.org/10.1038/nphoton.2010.186
http://dx.doi.org/10.1016/j.compscitech.2012.05.005
http://dx.doi.org/10.1021/nl0731872
http://www.ncbi.nlm.nih.gov/pubmed/18284217
http://dx.doi.org/10.1126/science.1231119
http://www.ncbi.nlm.nih.gov/pubmed/23430645
http://dx.doi.org/10.1038/nature04235
http://www.ncbi.nlm.nih.gov/pubmed/16281031
http://dx.doi.org/10.1038/nphys384
http://dx.doi.org/10.1126/science.1156965
http://www.ncbi.nlm.nih.gov/pubmed/18388259
http://dx.doi.org/10.1038/nnano.2008.67
http://www.ncbi.nlm.nih.gov/pubmed/18654505
http://dx.doi.org/10.1038/nnano.2010.89
http://www.ncbi.nlm.nih.gov/pubmed/20512128
http://dx.doi.org/10.1126/science.aab2051
http://www.ncbi.nlm.nih.gov/pubmed/26160941
http://dx.doi.org/10.1038/nphoton.2012.262
http://dx.doi.org/10.1038/nature11458
http://www.ncbi.nlm.nih.gov/pubmed/23060189
http://dx.doi.org/10.1038/nphoton.2016.15
http://dx.doi.org/10.1038/nphoton.2013.304
http://dx.doi.org/10.1038/nphoton.2010.40
http://dx.doi.org/10.1109/JSEN.2011.2167608
http://dx.doi.org/10.1039/C1CS15270J
http://www.ncbi.nlm.nih.gov/pubmed/22143223
http://dx.doi.org/10.1021/jz300358t
http://www.ncbi.nlm.nih.gov/pubmed/26291854
http://dx.doi.org/10.1038/nchem.907
http://www.ncbi.nlm.nih.gov/pubmed/21107364
http://dx.doi.org/10.1038/nmat1967
http://www.ncbi.nlm.nih.gov/pubmed/17660825
http://dx.doi.org/10.3390/polym9080303
http://dx.doi.org/10.1038/ncomms14997
http://www.ncbi.nlm.nih.gov/pubmed/28447604
http://dx.doi.org/10.1021/acsnano.5b04680
http://www.ncbi.nlm.nih.gov/pubmed/26321290
http://dx.doi.org/10.3390/s110504474
http://www.ncbi.nlm.nih.gov/pubmed/22163858
http://dx.doi.org/10.1016/j.sna.2014.09.022
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevLett.53.2449


Sensors 2018, 18, 941 14 of 16

38. Mikhailov, S.A.; Ziegler, K. New Electromagnetic Mode in Graphene. Phys. Rev. Lett. 2007, 99, 016803.
[CrossRef] [PubMed]

39. Sun, Z.; Hasan, T.; Torrisi, F.; Popa, D.; Privitera, G.; Wang, F.; Bonaccorso, F.; Basko, D.M.; Ferrari, A.C.
Graphene Mode-Locked Ultrafast Laser. ACS Nano 2010, 4, 803–810. [CrossRef] [PubMed]

40. Yang, L.; Pei, C.; Shen, A.; Zhao, C.; Li, Y.; Li, X.; Yu, H.; Li, Y.; Jiang, X.; Yang, J. An all-optical modulation
method in sub-micron scale. Sci. Rep. 2015, 5, 9206. [CrossRef] [PubMed]

41. Yao, B.; Wu, Y.; Wang, Z.; Cheng, Y.; Rao, Y.; Gong, Y.; Chen, Y.; Li, Y. Demonstration of complex refractive
index of graphene waveguide by microfiber-based Mach–Zehnder interferometer. Opt. Express 2013, 21, 29818.
[CrossRef] [PubMed]

42. Yao, B.; Liu, Y.; Huang, S.-W.; Choi, C.; Xie, Z.; Flor Flores, J.; Wu, Y.; Yu, M.; Kwong, D.-L.; Huang, Y.; et al.
Broadband gate-tunable terahertz plasmons in graphene heterostructures. Nat. Photonics 2018, 12, 22–28. [CrossRef]

43. Yao, B.C.; Wu, Y.; Zhang, A.Q.; Wang, F.; Rao, Y.J.; Gong, Y.; Zhang, W.L.; Wang, Z.G.; Chiang, K.S.;
Sumetsky, M. Graphene Bragg gratings on microfiber. Opt. Express 2014, 22, 23829. [CrossRef] [PubMed]

44. Wu, Y.; Yao, B.; Cheng, Y.; Rao, Y.; Gong, Y.; Zhou, X.; Wu, B.; Chiang, K.S. Four-wave mixing in a microfiber
attached onto a graphene film. IEEE Photonics Technol. Lett. 2014, 26, 249–252. [CrossRef]

45. Li, W.; Chen, B.; Meng, C.; Fang, W.; Xiao, Y.; Li, X.; Hu, Z.; Xu, Y. Ultrafast All-Optical Graphene Modulator.
Nano Lett. 2014, 14, 955–959. [CrossRef] [PubMed]

46. Yao, B.C.; Wu, Y.; Zhang, A.Q.; Rao, Y.J.; Wang, Z.G.; Cheng, Y.; Gong, Y.; Zhang, W.L.; Chen, Y.F.; Chiang, K.S.
Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing.
Opt. Express 2014, 22, 28154. [CrossRef] [PubMed]

47. Liu, M.; Yin, X.; Ulin-Avila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. A graphene-based broadband
optical modulator. Nature 2011, 474, 64–67. [CrossRef] [PubMed]

48. Sorianello, V.; Midrio, M.; Contestabile, G.; Asselberg, I.; Van Campenhout, J.; Huyghebaerts, C.;
Goykhman, I.; Ott, A.K.; Ferrari, A.C.; Romagnoli, M. Graphene Phase Modulator. arXiv, 2017.

49. Tong, L.; Lou, J.; Mazur, E. Single-mode guiding properties of subwavelength-diameter silica and silicon
wire waveguides. Opt. Express 2004, 12, 1025. [CrossRef] [PubMed]

50. Wu, Y.; Yao, B.C.; Feng, Q.Y.; Cao, X.L.; Zhou, X.Y.; Rao, Y.J.; Gong, Y.; Zhang, W.L.; Wang, Z.G.; Chen, Y.F.;
et al. Generation of cascaded four-wave-mixing with graphene-coated microfiber. Photonics Res. 2015, 3,
64–68. [CrossRef]

51. Saffarzadeh, A. Modeling of gas adsorption on graphene nanoribbons. J. Appl. Phys. 2010, 107, 114309. [CrossRef]
52. Yao, B.; Wu, Y.; Cheng, Y.; Zhang, A.; Gong, Y.; Rao, Y.J.; Wang, Z.; Chen, Y. All-optical Mach-Zehnder

interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide. Sens. Actuators B Chem.
2014, 194, 142–148. [CrossRef]

53. Yao, B.; Yu, C.; Wu, Y.; Huang, S.-W.; Wu, H.; Gong, Y.; Chen, Y.; Li, Y.; Wong, C.W.; Fan, X.; et al.
Graphene-Enhanced Brillouin Optomechanical Microresonator for Ultrasensitive Gas Detection. Nano Lett.
2017, 17, 4996–5002. [CrossRef] [PubMed]

54. Basu, S.; Bhattacharyya, P. Recent developments on graphene and graphene oxide based solid state gas
sensors. Sens. Actuators B Chem. 2012, 173, 1–21. [CrossRef]
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