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Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), remains a significant global health emergency with new
variants in some cases evading current therapies and approved vaccines. COVID-19
presents with a broad spectrum of acute and long-term manifestations. Severe COVID-19
is characterized by dysregulated cytokine release profile, dysfunctional immune
responses, and hypercoagulation with a high risk of progression to multi-organ failure
and death. Unraveling the fundamental immunological processes underlying the clinical
manifestations of COVID-19 is vital for the identification and design of more effective
therapeutic interventions for individuals at the highest risk of severe outcomes. Caspases
are expressed in both immune and non-immune cells and mediate inflammation and cell
death, including apoptosis and pyroptosis. Here we review accumulating evidence
defining the importance of the expression and activity of caspase family members
following SARS-CoV-2 infection and disease. Research suggests SARS-CoV-2
infection is linked to the function of multiple caspases, both mechanistically in vitro as
well as in observational studies of individuals with severe COVID-19, which may further the
impact on disease severity. We also highlight immunological mechanisms that occur in
severe COVID-19 pathology upstream and downstream of activated caspase pathways,
including innate recognition receptor signaling, inflammasomes, and other multiprotein
complex assembly, inflammatory mediators IL-1b and IL-18, and apoptotic and
pyroptotic cell death. Finally, we illuminate discriminate and indiscriminate caspase
inhibitors that have been identified for clinical use that could emerge as potential
therapeutic interventions that may benefit clinical efforts to prevent or ameliorate severe
COVID-19.
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INTRODUCTION

According to the World Health Organization (WHO), as of
December 2021, the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) pandemic and the cause of
Coronavirus disease 2019 (COVID-19) has led to over 244
million infections and ~5 million deaths globally since the
virus outbreak was first reported in 2019. SARS-CoV-2
infection we know now can result in a vast range of clinical
pulmonary manifestations, from no symptoms to critical illness,
which the latter could lead to extrapulmonary complications,
including neurological, thromboembolic, cardiovascular, renal,
gastrointestinal, hepatobiliary, endocrinologic, and dermatologic
manifestations (1–3). Furthermore, unlike any other respiratory
viruses, many individuals who recover from COVID-19 report
lingering short term and long term persistent symptoms referred
to as long-COVID or post-acute sequelae SARS-CoV-2 infection
(PASC). Long-COVID can persist beyond 6 months after
symptom onset and present with neurological, psychosocial,
cardiothoracic, pulmonary, gastrointestinal, hematologic, and/
or renal issues (4–7). The complexity of COVID-19 has been
contentious in the area of therapies to combat the infection (8).
Current FDA approved treatment for adults and children with
COVID-19 include VEKLURY (remdesivir) and several
emergency use authorizations (EUA) have been issued for
several monoclonal antibodies, molnupiravir, and paxlovid (9–
11). Treatment options targeting both the virus and/or host
factors for the various stages and presentations of COVID-19
continue to expand and remain an area of critical need in an
attempt to reduce the risk of hospitalization or death. With the
advent of highly protective vaccines against SARS-Cov-2
infection the spread, disease severity, and mortality has been
altered, though protection against novel variants of concern
(VOCs) is proving an ongoing challenge.

Caspases are a highly conserved family of intracellular
cysteine-dependent aspartate-specific proteases that primarily
mediate cell death and inflammation (12–14). All caspases are
constitutively expressed during homeostasis in both immune and
non-immune cells as catalytically inactive zymogens that require
appropriate signals to activate c-terminal protease domain (15).
Caspases contain common highly conserved protein domains,
such as caspase-associated recruitment domains (CARDS) and
death effector domains (DEDs). Caspases have been functionally
classified according to their involvement in either apoptosis or
inflammation. Apoptosis is an immunologically silent and
coordinated non-lytic process of dismantling and removing of
damaged, infected, and aging cells. Host cellular apoptosis is
thought to be a common viral infection response mechanism for
restricting viral expansion. Much like apoptosis, inflammation is
another initial host cell response to viral infection. Caspases that
mediate inflammation facilitate the maturation of pro-
interleukins by cleaving and activating their zymogen forms as
well as promoting an inflammatory form of cell death called
pyroptosis (16, 17). While there are also ‘outlier’ caspases defined
by their role in the cell cycle and cell differentiation (18, 19), they
are currently not known to be of significance in SARS-CoV-
2 infection.
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Evidence demonstrates that COVID-19 is an inflammatory
disease mediated by a hyperactive immune response.
Conventionally, SARS-CoV-2 gains cellular entry through the
interaction of the spike protein receptor binding domain and
host angiotensin-converting enzyme 2 (ACE2) receptor through
endosomal mechanisms or TMPRSS2-mediated membrane
fusion at the cell surface (20, 21), but noncanonical routes
have also been identified (22–25). Nonetheless of entry
mechanisms, uncoated viral RNA is released into the cell
cytosol for damage recognition by host cell pattern recognition
receptors (PRRs), such as Toll-like receptors (TLRs) and RIG-I
like Receptors (RLRs), which can elicit a robust immune
response. While SARS-CoV-2 viral RNA interactions with
endosomal TLRs and RLRS can lead to the production of NF-
kB pro-inflammatory cytokines (i.e. IL-6, IL-1b) and type I and
III interferons (26), SARS-CoV-2 proteins can also activate host
TLR2 pathways to induce pro-inflammatory cytokine
production (27, 28). However, caspase activity is also a
significant contributor to the pronounced cellular death and
inflammatory characteristics of COVID-19. Unraveling caspase-
related immunological processes contributing to COVID-19
sequelae is vital to identify and design effective host targeted
therapeutic interventions for individuals at the highest risk of
severe outcomes. This review, will focus on updates on the role of
caspases and COVID-19 in disease pathogenesis and targeted
therapies being considered to ameliorate disease outcomes.
CASPASE PATHWAYS IN INFLAMMATION
AND DURING SARS-COV-2 INFECTION

Previous preclinical studies have suggested the role of caspases
primarily as inflammatory and apoptotic mediators in various
pathologies, including Inflammatory, neurological and metabolic
diseases, and cancer. Accumulating evidence reveal new insights
on the importance of caspase-mediated inflammatory and
apoptotic pathways during SARS-CoV-2 infection (Figure 1A).
Cell death and dysregulated caspase activation has been
associated with hematological and immunological findings in
patients with COVID-19 (29, 30). Like other members of the
Coronaviridae family, SARS-CoV-2 is an enveloped single-
stranded positive-sense RNA virus comprised of four structural
proteins: nucleocapsid (N), membrane (M), envelope (E), and
spike (S) proteins (31). Additionally, SARS-CoV-2 open reading
frames (ORFs) also encode for various non-structural proteins
(NSPs) and accessory proteins that can be involved in viral RNA
transcription and replication, and/or controlling the production
of other viral proteins (32). These encoded structural, non-
structural, and accessory proteins can target crucial immune
pathways that contribute to host immune dysregulation and
active viral evasion. SARS-CoV and SARS-CoV-2 proteins
shown to actively modulate the induction and/or signaling of
caspase-mediated pathways are summarized in Figure 1B.

Caspase-Mediated Apoptotic Pathways
Caspases that execute apoptosis either function in initiator
(caspases 8, 9, and 10) or effector (caspases 3, 6, and 7) roles
February 2022 | Volume 13 | Article 842740
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depending on their position in the signaling cascade (16, 17).
Initiator caspases are recruited into multiprotein complexes,
such as the apoptosome and death-inducing signaling complex
(DISC), driven by a local increase of concentration that must be
first triggered by either intrinsic or extrinsic processes. In the
intrinsic pathway, intracellular stress signals lead to the release of
cytochrome c (cyt c) from the mitochondria, which induces the
formation of the apoptosome (33, 34). The apoptosome,
consisting of cyt c and apoptotic protease-activating factor-1
(Apaf-1), recruits pro-caspase-9 via its N-terminal CARD. The
extrinsic apoptotic pathway is mediated through the engagement
of certain death receptors of the tumor necrosis factor (TNF)
family (i.e. Fas), leading to the recruitment of adaptor proteins
and caspases-8 or -10 into DISC via DED-mediated interactions
(35, 36). Once recruited to multiprotein complexes, initiator
Frontiers in Immunology | www.frontiersin.org 3
caspases will dimerize to undergo proximity-induced
autoactivation and act as proteolytic signal amplifiers to
activate effector caspases (caspases 3, 6, and 7). However,
caspase-8 can also cleave the pro-death BCL-2 family protein
Bid to its truncated form (tBid) to induce cyt c release from the
mitochondria and propagate the apoptotic pathway (37). Once
effector caspases are activated, they induce the proteolytic
degradation of multiple specific cellular substrates that
facilitate the dismantling of the cell, including those that drive
membrane blebbing, fragmentation of chromosomal DNA, and
apoptotic body formation. Apoptosis is canonically thought of as
an immunologically silent form of cell death; however, Fas-
mediated apoptosis has been shown to result in the production
of monocyte chemoattractant protein-1 (MCP-1), IL-6, and IL-8
(38). Furthermore, while apoptosis is considered an efficient
FIGURE 1 | Activated caspase pathways in SARS-CoV-2. (A) Apoptotic and inflammatory pathways associated with caspases in SARS-CoV-2 infection and
COVID-19. (B) Structural, non-structural, and accessory proteins of SARS-CoV and SARS-CoV-2 that modulate caspase-related pathways. TNFR, tumor necrosis
factor receptor; CASP, caspase; DISC, death-inducing signaling complex; GSDMD, gasdermin D; ROS, reactive oxygen species; LDH, lactate dehydrogenase;
DAMPs, danger-associated molecular patterns; TNFR, tumor necrosis factor receptor; IFNAR, interferon a/b receptor; LPS, lipopolysaccharide; RIPK, receptor-
interacting serine/threonine, protein kinase; MLKL, mixed lineage kinase domain-like protein; NSP, non-structural protein.
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antiviral defense to eliminate infected and damaged cells and
dampen inflammation via the cleavage and inactivation of
proinflammatory cellular signals (39), pathogen-induced
apoptosis may increase infection and viral pathogenicity (40).

Several apoptotic caspases are shown to be active with SARS-
CoV-2 infection. In vitro models using the human lung cancer
line, Calu-3, found that caspases 3, 8, and 9 were cleaved into
their activated forms in SARS-CoV-2-infected cells (41).
Furthermore, active caspase-3 was also increased in SARS-
CoV-2 infected human cortical organoids and glial cells
indicating a strong link with SARS-CoV-2 inducing apoptosis
(42). In COVID-19 patients, caspase-3/7 activity in red blood
cells is upregulated compared to healthy individuals (43).
Caspase-3 is also thought to play a role in the programmed
cell death of platelets with SARS-CoV-2 infection. The
internalization of SARS-CoV-2 by platelets, either in vitro or in
COVID-19 patients, results in the colocalization of SARS-CoV-2
with phosphorylated mixed lineage kinase domain-like protein
(phospho-MLKL), a mediator of necroptosis, and caspase-3 on
nonpermeabilized platelets (44). This caspase-3 activity is
suggested to be a potential contributor to thrombotic events
observed in severe COVID-19 (45). Specific viral components of
SARS-CoV-2 have been identified to modulate apoptosis via
several mechanisms. SARS-CoV-2 accessory protein, ORF3a,
was shown to induce apoptosis in Vero E6, HEK293T, and
HepG2 cells via the extrinsic pathway, through activated
caspase-8 cleavage of Bid to tBid (46). ORF-3a of SARS-CoV
was previously identified to induce apoptosis through both death
receptor- and mitochondria-mediated pathways, propagated
through caspase 8 and 9 pathways, respectively (47–49);
however, it’s pro-apoptotic capacity is shown to be greater
than that of the ORF3a of SARS-CoV-2 (46). Beyond ORF-3a,
SARS-CoV ORF-6, -7a, and 8a, all have been previously shown
to trigger cellular apoptosis. ORF-6 induces apoptosis via
caspase-3 mediated ER stress and JNK-dependent pathways
(50), whereas ORF-8a is through a mitochondria-dependent
pathway (51). While the mechanism of activation for ORF7a in
promoting caspase-associated inflammation is unclear, the
overexpression of ORF7a induces apoptosis in a caspase-3-
dependent manner (52, 53). Finally, membrane glycoprotein M
in conjunction with the N protein is also shown to trigger
caspase-dependent apoptosis via inhibiting the activation of
PDK1-PKB/Akt signaling (54).
Caspase-Mediated Inflammation
and Pyroptosis
Inflammatory caspases are recruited to their cognate activation
complexes called inflammasomes, protein platforms that aggregate
in the cytosol in response to different stimuli (55). However, an
initial priming step is generally required mediated by NF-kB
through the engagement of PPRs that recognize pathogen
associated molecular patterns (PAMPs) or host-derived damage
associate molecular patterns (DAMPs), such as ATP or
mitochondrial DNA. The most studied inflammatory caspase,
caspase-1, is engaged by inflammasomes, including the NLRP,
Frontiers in Immunology | www.frontiersin.org 4
AIM2, and IFI16 inflammasomes. Activated caspase-1 then
mediates the processing and secretion of the proinflammatory
cytokines IL-1b and IL-18 (56). These cytokines havemultiple roles
in innate immunity and in bridging adaptive immune responses.
IL-18 induces downstream IFN-g responses, while IL-1b plays roles
in neutrophil influx and activation, T and B-cell activation,
cytokine and antibody production, and Th17 differentiation (57–
60). On the other hand, inflammatory caspases 4 and 5 directly
recognize intracellular lipopolysaccharide (LPS) (61), but require
an initial step through the signaling of IFNAR and subsequent
members of the signal transducer and activation of transcription
(STAT) protein family. Another outcome of the activation of
inflammatory caspases is pyroptosis, an inflammatory-related
nonprogrammed cell death driven primarily by inflammasome
and caspase-4/5 mediated cleavage of the pyroptotic executor
cytosolic protein gasdermin D (GSDMD) (62–64). As caspase-1-
dependent cytokines and DAMPs lack secretion signals, pyroptosis
is thought to be one of the prime mechanisms mediating their
cellular release (65–69). Although the conventional idea that
inflammatory caspase activation would be protective by
enhancing immunity against SARS-CoV-2 through the removal
of infected cells and recruitment of monocytes to injury sites,
concomitant pyroptosis exacerbating inflammation due to cellular
release of DAMPs could lead to tissue death, organ failure, and
septic shock (70, 71). While caspase-8 is known predominately as a
mediator of apoptosis, it is also a master regulator of pyroptosis
and necroptosis (72) and is capable of processing pro-IL-1b and
pro-IL-18 into their functional cytokine forms (73–75). Caspase-8
can regulate necroptosis, unregulated cell death, by preventing the
phosphorylation of MLKL into its active form, phospho-MLKL, by
inactivating RIPK1 and RIPK3 by proteolytic cleavage (76–78).

Excessive inflammation is central to poor clinical outcomes in
COVID-19, with data suggesting caspase-mediated inflammation
being an important feature. Higher levels of active caspase-1
(Casp1p20) in the sera of COVID-19 patients are associated with
severe disease and poor clinical outcomes (79). Caspase-1 activity
is also upregulated in CD4+ T cells of COVID-19 patients that
were hospitalized, those with liver disease, and long-haulers (43,
80). Human caspase-4 in infected individuals and its mouse
homologue caspase-11 in SARS-CoV-2 murine models were
recently found to be upregulated in lung tissue histologically
and promote COVID-19-associated inflammation and
coagulopathy (81). SARS-CoV-2 infection activates caspase-8,
which triggers inflammatory cytokine processing of pro-IL-1b
in lung epithelial cells and lung cells of SARS-CoV-2-infected
HFH4-hACE2 transgenic mice (41). Inflammatory mediators IL-
1b and IL-18, the main cytokine products of caspase-1 activation,
are observed to be increased in the lungs and sera of patients with
symptomatic COVID-19 compared to asymptomatic patients and
healthy individuals (82–84). IL-18 levels are also shown to
correlate with other inflammatory markers in SARS-CoV-2
individuals (83). Interestingly, IL-18 can contribute to the
pathology of COVID-19 by altering MAIT cell function (85). In
human monocytes, caspase-1 activation along with IL-1b
production and pyroptosis is observed in both SARS-CoV-2
infected ex vivo and from infected ICU patients (86). RNH1
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protein, an inhibitor of inflammasome activation through
proteasome-mediated degradation of caspase-1, is increased in
the blood and lung biopsies from individuals with COVID-19 and
is negatively associated with SARS-CoV-2-mediated
inflammation and adverse clinical outcomes (87). In vitro,
SARS-CoV-2 infected human monocytes demonstrate
pyroptotic activity, which was associated with caspase-1
activation, IL-1b production, GSDMD cleavage, and enhanced
pro-inflammatory cytokine levels (86). High serum levels of
lactate dehydrogenase (LDH), an indicator of pyroptosis, is also
shown to associate with poor prognosis and the extent of lung
damage and disease severity in individuals with COVID-19 (88–
90) and has been proposed as a potentially useful marker for
monitoring treatment response in COVID-19-associated
pneumonia (91).

Mechanistically, SARS-CoV-2 N protein has been shown to
promote NLRP3 inflammasome activation to induce caspase-
mediated inflammatory milieu (IL-1b, IL-18) and pyroptotic cell
death (88, 92–94). However, N protein is also shown to inhibit
the cleavage of GSDMD by caspase-1 in monocytes in vitro (95).
In previous studies of SARS-CoV, several accessory proteins have
been shown to modulate inflammasome activation. The
accessory protein ORF3a is shown to act as a K+ channel to
induce NLRP3 inflammasome activation (96). However, another
study indicates ORF3a can promote NLRP3 inflammasome
activation by enhancing the ability of TNF receptor-associated
factor 3 (TRAF3) in ubiquinating the inflammasome adapter
ASC (97). In macrophages, SARS-CoV ORF8b was found to
directly bind the LRR of NLRP3 inflammasomes to propagate
caspase-1 activation (98). However, two SARS-CoV-2 NSPs,
NSP1 and NSP13, are shown to inhibit NLRP3 inflammasome
caspase-1-mediated IL-1b production in the monocytic cell line
THP-1 (99). The E glycoprotein of SARS-CoV is also involved in
inflammasome activation, as in mouse models show that viruses
lacking E protein induced lower levels of inflammasome-
activated IL-1b (100) by possessing calcium ion channel
activity (101). Finally, many SARS-CoV encoded proteins are
shown to induce NF-kB activation in vitro, including ORF3a,
ORF7a, M, and N proteins (102, 103).
THERAPEUTIC POTENTIAL OF
TARGETING CASPASE PATHWAYS
FOR COVID-19
The COVID-19 pandemic is going on its third year, and efforts
are still converging globally to effectively distribute SARS-CoV-2
vaccinations. Global vaccination efforts have not proceeded at a
similar pace worldwide and vaccine hesitancy persists in the
public. Furthermore, the continuous evolution of SARS-CoV-2
could lead to new VOCs, such as the recently emerged and
rapidly disseminating Omicron variant. These new VOCs could
impact the efficacy of neutralizing antibodies, monoclonal or
vaccine-induced, and exhibit potential for increased
transmissibility, as observed with Omicron (104, 105). While
Frontiers in Immunology | www.frontiersin.org 5
vaccination and previous infection by SARS-CoV-2 so far have
shown to provide protection, particularly regarding the
prevention of serious disease and mortality, therapeutics are
still an urgent need to attenuate severe disease and are highly
investigated due to the persistent unvaccinated population,
breakthrough cases, and the potential emergence of
immunoevasive VOCs. Therapeutics recommended by the
WHO for severe and critical COVID-19 mainly aim at
disrupting the viral life cycle to limit the spread of infection,
such as the use of neutralizing monoclonal antibodies (i.e.
casirivimab) and the protease inhibitor Paxlovid, or to hinder
the development of severe disease, including the use of systemic
corticosteroids (i.e. dexamethasone). For the latter, targeting
inflammatory innate immune pathways are a viable target,
given the therapeutic promise of IL-6 receptor blockers, such
as toclilizumab or sarilumab, in reducing severe outcomes in
COVID-19 (106–109). Given the role of caspases in SARS-
CoV-2, targeting related pathways could emerge as a potential
therapeutic strategy that may benefit clinical efforts to prevent or
ameliorate severe COVID-19.

Therapeutics for caspase-associated inflammation and cell
death can be through the modulation of caspase activity directly,
the targeting of upstream signaling complexes (i .e.
inflammasomes), or the neutralization of caspase substrates
(i.e. IL-1b). Regarding caspase targeting agents, the pan-
caspase inhibitor Emricasan (EMR) was shown to attenuate
caspase-1 hyperactivity in CD4+ T cells from COVID-19
patients ex vivo (43) and the caspase-8 inhibitor Z-IETD-FMK
subdued SARS-CoV-2-induced BID cleavage and caspase-3
activation (41). However, direct caspase-1 inhibition did not
affect SARS-CoV-2-induced IL-1b processing and secretion (41).
Interestingly, several caspase inhibitors were shown to target the
main protease of SARS-CoV-2 Mpro, including pan-caspase
inhibition with Z-VAD(OMe)-FMK and discriminate
inhibitors Z-DEVD-FMK and Z-IETD-FMK, for caspase-3 and
caspase-8, respectively (110). Furthermore, among ~6,070 drugs
screened, EMR was identified to inhibit the activity of Mpro in
vitro and through computation screening shown to bind to
ACE2 (111, 112). Nonetheless, while several targeted and
indiscriminate caspase inhibitors have been identified and
developed with intended therapeutic use, only few have
advanced into clinical trials, and none are used clinically.
However, therapeutics targeting the downstream effects of
caspase-mediated inflammation and pyroptosis are making
progress. The use of IL-1 receptor antagonist anakinra in
COVID-19 patients showed significant decreases in oxygen
requirements, increased duration without invasive mechanical
ventilation, and decreases of fever and C-reactive protein,
indicating early IL-1 receptor blockade could hold therapeutic
value in acute hyperinflammatory respiratory failure (113). The
anti-IL-1b antibody inhibitor canakinumab was also suggested as
a viable therapeutic for COVID-19 patients (114); however, a
recent clinical trial investigating its use showed that it did not
significantly increase survival without invasive mechanical
ventilation (115). NLRP3 inflammasome inhibition with
MCC950 reduced lung inflammation and COVID-19-like
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pathology in human ACE2 transgenic mice infected with SARS-
CoV-2 (116). Finally, Disulfiram, the GSDMD inhibitor that
covalently modifies GSDMD to block pyroptotic pore formation,
was shown to associate with a lower incidence of COVID-19 in a
retrospective study (117).
CONCLUSION

This review highlights multiple caspases implicated in SARS-
CoV-2 infection and disease severity. Although targeting
caspases and related pathways may be a promising
intervention, caspase signaling may still be paramount for
functional and balanced immune activity against SARS-CoV-2
infection. Further understanding the roles caspase pathways play
during the progression of infection and disease including PASC
is crucial for further therapeutic development or the repurposing
Frontiers in Immunology | www.frontiersin.org 6
of drugs, combination therapies to curtail inflammation and cell
death in COVID-19 and limit disease severity and death in all age
and risk groups following SARS-CoV-2 infection.
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