
royalsocietypublishing.org/journal/rsif
Review
Cite this article: Hancock F, Rosas FE,
Mediano PAM, Luppi AI, Cabral J, Dipasquale

O, Turkheimer FE. 2022 May the 4C’s be with

you: an overview of complexity-inspired

frameworks for analysing resting-state

neuroimaging data. J. R. Soc. Interface 19:
20220214.

https://doi.org/10.1098/rsif.2022.0214
Received: 17 March 2022

Accepted: 9 June 2022
Subject Category:
Reviews

Subject Areas:
bioinformatics, biocomplexity, biophysics

Keywords:
complexity, connectivity, computation,

criticality, metastability, integrated information
Author for correspondence:
Fran Hancock

e-mail: fran.hancock@kcl.ac.uk
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6049225.
May the 4C’s be with you: an overview
of complexity-inspired frameworks for
analysing resting-state neuroimaging data

Fran Hancock1, Fernando E. Rosas2,3,4, Pedro A. M. Mediano5,6,
Andrea I. Luppi7,8,9,10, Joana Cabral11,12, Ottavia Dipasquale1 and
Federico E. Turkheimer1

1Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London,
London, UK
2Centre for Psychedelic Research, Department of Brain Science, Imperial College London, London SW7 2DD, UK
3Data Science Institute, and 4Centre for Complexity Science, Imperial College London, London SW7 2AZ, UK
5Department of Psychology, University of Cambridge, Cambridge CB2 3EB, UK
6Department of Psychology, Queen Mary University of London, London E1 4NS, UK
7Division of Anaesthesia, School of Clinical Medicine,8Department of Clinical Neurosciences, and 9Leverhulme
Centre for the Future of Intelligence, University of Cambridge, Cambridge, UK
10Alan Turing Institute, London, UK
11Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
12Department of Psychiatry, University of Oxford, Oxford, UK

FH, 0000-0001-7383-7205; FER, 0000-0001-7790-6183; PAMM, 0000-0003-1789-5894;
AIL, 0000-0002-3461-6431; JC, 0000-0002-6715-0826

Competing and complementary models of resting-state brain dynamics
contribute to our phenomenological and mechanistic understanding of
whole-brain coordination and communication, and provide potential
evidence for differential brain functioning associated with normal and patho-
logical behaviour. These neuroscientific theories stem from the perspectives
of physics, engineering, mathematics and psychology and create a complicated
landscape of domain-specific terminology and meaning, which, when used
outside of that domain, may lead to incorrect assumptions and conclusions
within the neuroscience community. Here, we review and clarify the key con-
cepts of connectivity, computation, criticality and coherence—the 4C’s—and
outline a potential role for metastability as a common denominator across
these propositions. We analyse and synthesize whole-brain neuroimaging
research, examined through functional magnetic imaging, to demonstrate
that complexity science offers a principled and integrated approach to describe,
and potentially understand, macroscale spontaneous brain functioning.
1. Introduction
The orchestrated activity of the approximately 100 billion neurons connected via
an estimated 200 trillion synapses in the human brain [1] is certainly perplexing,
and its explanation has allured scientists for more than 100 years [2]. A popular
way to approach this challenge has been to see the brain as a computer, i.e. a phys-
ical instantiation of algorithms that works on inputs from various sensory systems
in order to generate behaviour [3–6]. The computational view of the brain has
introduced important new conceptual resources to neuroscience, providing a
(in principle) feasible roadmap of how one could attempt to understand the
brain—e.g. through Marr’s celebrated ‘three levels of analysis’ [7].

While the brain can be seen as a computer, it is first and foremost a living
organ driven by metabolic and thermodynamic constraints. In effect, while an
uninformed computational view could suggest that the brain is ‘idle’ when not
actively engaging with a specific task, early evidence has shown that the brain
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accounts for 20% of the body’s energy consumption while
making up just 2% of bodyweight [8]. In effect, brain functional
activity may be spontaneous or evoked with cognitive, behav-
ioural or motor tasks, and the metabolic cost of spontaneous
or intrinsic activity far exceeds the costs for evoked activity
[9]. Despite this evidence, and the work of notable pioneers
such as Freeman [10], neuroimaging data from resting-state
conditions did not attract as much attention within the neuroi-
maging community as data from task-related conditions.
Nonetheless, there is nowadays a growing consensus that
making sense of spontaneous brain activity is crucial for
understanding brain function [11–13].

Among the available neuroimaging techniques, functional
magnetic resonance imaging (fMRI) provides a modality
to probe resting-state whole-brain activity at a high spatial
resolution. Evidence has repeatedly shown that the resulting
time series of resting-state experiments are highly structured,
in a way that is not easy to explain purely in terms of an
input/output information-processing perspective. Here, we
argue that complexity science provides an important comp-
lement to the computational view for building explanations
on the nature of these data.

Complexity science aims to identify common laws that
govern complex systems made by multiple interactive
elements, bringing together tools from statistical physics, dyna-
mical systems theory (DST), information theory (IT) and
other fields [14–16]. Although this multiplicity of approaches
brings richness to the research, it can also inadvertently lead
to inconsistent use of terminology, misunderstandings, and to
potentially inconsistent conclusions.Adding to theseproblems,
neuroscientists face the challenge of translating diverse
domain-specific conceptual theories and models into plausible
biophysical mechanisms. Acknowledging the magnitude of
this challenge, in this paper, we review the notions of connec-
tivity, intrinsic computation, criticality and coherence—the
4C’s of the brain at rest—fromacomplexity science perspective.
2. Background
2.1. Complexity in the brain
Conceptualizing the brain as a complex system is an
especially powerful way to investigate the spontaneous
ongoing dynamics of the brain [17]. While the exact definition
of a complex system is still under debate [17,18], the brain
satisfies the four properties all systems characterized as
‘complex’ necessarily share [19]:

1. Multiplicity and interdependence: the brain is made of
small subunits that interact with each other through a
vast network of local and long-range connections.

2. Nonlinearity: the interactions between neural elements are
often nonlinear, giving rise to rich dynamical phenomena.

3. Self-organization: the activity of themultiple brain subunits
develops into structured patterns spontaneously, in the
absence of any form of centralized control mechanisms.

4. Emergence: the macroscopic behaviour of coordinated
brain activity cannot be understood purely in terms of
the neuron-to-neuron interactions.

This perspective allows us to bring the sophisticated concep-
tual machinery of complexity science to the study of the
brain, while extending the repertoire of techniques employed
in neuroimaging analysis with tools specifically designed to
fully exploit the richness of such datasets.

At a high level, we will consider two distinct approaches
to brain complexity: one from the perspective of nonlinear
DST, and one from the application of IT. In the former, com-
plexity is associated with dynamical instabilities giving rise
to pattern formation, self-organization and metastability
[20–22]. In the latter, complexity is related to the statistical
structure of brain activity, typically quantified with tools
derived from entropy or mutual information (MI) [23]. In
order to situate our 4C’s within these approaches, we provide
in the next sections a brief overview of the intuitions and
terminologies native to these two approaches.
2.2. Dynamical systems theory
A dynamical system is a system that changes over time in away
that can be described by a single or a set of differential equations
[24]. If there arenonlinear interactions among thevariables of the
system, the system is described by nonlinear equations and is
referred to as a nonlinear dynamical system. Given a set of initial
conditions, the solution to the differential equation(s) can be
plotted in aphasediagramthat illustrates the temporal evolution
or trajectory of the system. These trajectories exist within an
n-dimensional phase space,1 which gives an account of the poss-
ible solutions that the system could potentially adopt—with n
reflecting the dimensionality of the representation of the
system. If a family of trajectories (i.e. solutions of the equations
starting from different initial conditions) flows towards a par-
ticular region of phase space, that region is known as an
attractor. If small perturbations in the system eventually return
the system to its current attractor, the attractor (solution) is said
to be stable. Conversely, if the trajectories flow away from a
region, that region is considered a repellor. If trajectories flow
towards an attractor in one dimension, but away from it in
another, the region is referred to as a saddle point. Attractors
may be fixed points, fixed lines, stable or unstable limit cycles,
or when characterized by more complex forms, they are
termed strange attractors [24] as illustrated in figure 1.

Thinking in terms of attractors enables some useful taxo-
nomies for dynamical systems: a multi-stable system is a
system with more than one attractor; a metastable system is
a system with a saddle which may be linked in sequence
with other saddles; and finally, a critical system is a system
that has an attractor that responds to small perturbations
with long and unstructured excursions [28] (the notion of
criticality is developed in a later section).

A system exhibits dynamic stability if it reliably returns to
its steady-state attractor after perturbations. A parameter
of the system that is capable of driving the system out of
dynamic stability is called a control parameter. At a point
of instability, a bifurcation often occurs—where a single attrac-
tor divides in two or changes shape, and solutions that were
previously stable become unstable.

The preceding description adheres to the terminology of
mathematics. In statistical physics, a variable in a dynamical
system is known as a state variable; and a bifurcation is
referred to as a phase transition [29]. Water turning into ice
at 0°C is an example of a first-order phase transition where
the density of H2O changes abruptly at the freezing point
(resulting in the well-known increase in volume). By contrast,
an iron magnet changing from being ferromagnetic to para-
magnetic at 770oC is an example of a second-order phase
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Figure 1. Phase portraits—geometrical representations of trajectories in dynamical systems with different attractor types (with or without vector fields). A phase
portrait is a plot of the trajectories of a dynamical system. Colour-coded slope or vector fields represent the rate of change of the trajectory at that point with respect
to time—deep red indicates high rates of change and dark blue indicates low rates of change. Examples of trajectories for different initial conditions are shown in
black. (a–d) Produced with Phase Portrait Plotter [26]. (e) XaosBits at English Wikipedia, CC BY 2.5, https://commons.wikimedia.org/w/index.php?curid=732841. ( f )
The Lorenz attractor is an example of a strange attractor [27].
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transition. The net magnetization does not change abruptly at
the Curie temperature; rather, at the critical point there is a
divergence of the magnetic susceptibility, resulting in large
fluctuations of the magnetization. Hence, first-order phase
transitions display a discontinuity on an observable (e.g. den-
sity), while second-order transitions display discontinuities
in some of their derivatives (e.g. the rate of change of the
magnetization with respect to an external field) [30].
2.3. Information theory
In the dynamical systems framework, relationships between
variables are typically described in terms of differential
equations. A complementary description investigates the
interactions between the variables through their statistical
interdependencies. These interdependencies may be probed
via statistics and probability theory, and more specifically
through the framework of information dynamics [31,32], which
aims to describe complex dynamical interdependencies via
MI [33,34] and related tools.

In general, the (statistical) entropy of a signal measures its
degree of variability or diversity. Similarly, the MI between
two signals captures their covariation—or more precisely, to
what extent the observed values are different from the
values from similar but statistically independent signals.
Using these basic building blocks, a range of different
extended measures of interdependencies can be built. For
example, transfer entropy corresponds to how well the
future of a ‘target’ signal can be predicted from the past of
a ‘source’ signal, over and above how well the target signal
predicts itself [35,36]. As another example, there exist various
multivariate extensions of the MI that capture high-order (i.e.
beyond pairwise) interactions, which can be characterized as
assessing different types of covariation [37], or via other
mathematical principles such as cohomology [38].

An important feature of information-theoretic tools is
their great flexibility: these tools can be applied to ordinal,
categorical, and continuous data from linear and nonlinear
systems. Their generality and wide range of applicability
turns the notion of information into a powerful ‘common cur-
rency’, through which interdependencies in different systems
can be characterized and compared [31,37,39,40].

It is important to bear in mind that, in these types of
applications, information-theoretic quantities are not
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conceptualized in terms of optimal solutions to engineering
problems of data transmission (i.e. Shannon’s characteriz-
ation), but as descriptions of states of incomplete
knowledge—following the seminal work of Jaynes [41]. There-
fore, measures like statistical entropy, MI, transfer entropy and
multivariate information measures are understood not as
actual bits being transferred through a communication channel
[42], but as inferential statements about the statistical structure
of the system of interest [43].
3. The 4C’s: conceptual approaches to
spontaneous brain dynamics

Building on a view centred on complexity, dynamical systems
and IT, the following sections review various approaches to
analyse brain activity captured with fMRI at rest from a com-
plexity-science perspective. Furthermore, we discuss recent
findings where this approach revealed novel relationships
between DST and information dynamics.
3.1. Connectivity: networks and patterns
Experimental evidence accumulated in recent years has
revealed that variation in structure and function in the
human brain (both for normal development and for disease)
tends to be widely distributed, and hence there is often no
simple one-to-one mapping between cognitive functions
and individual brain regions [44–47]. An important paradigm
shift in neuroimaging research was therefore to go beyond
mere activation and focus instead on co-activation, i.e. on the
interdependency between the activity of multiple regions.
The fact that the latter approach is providing rich empirical
results is likely related to the anatomical configuration
of the central nervous system, which constitutes an organized
network of axonal tracts between distinct grey matter regions.
This evolving map of structural connections between neur-
onal elements is known as the (structural) ‘connectome’
[48,49], which can be assessed non-invasively in vivo via
probabilistic or deterministic tractography based on
diffusion-weighted MRI imaging [48].
Contrasting with structural connectivity (SC), which refers
to the physical anatomical connections between regions, func-
tional connectivity (FC) refers to the statistical relationship of
coordinated activity in spatially distant regions [50]. Before
moving on to more elaborate (and perhaps more principled)
approaches to connectivity, we will briefly review the origins
of FC. Temporal correlations of slow spontaneous fMRI fluctu-
ations of less than 0.1 Hz between brain regions were initially
observed in the early 1990s during task execution [51]. Similar
correlations were then observed between the left and right
sensorimotor cortices when the brain was at rest [52]. Since
then, it has been shown—initially through positron emission
tomography, and nowmore commonly with fMRI—that spon-
taneous activity reflects sustained functionality in the form of a
‘default mode’ of intrinsic connectivity [53]. Patterns of resting-
state temporal correlations have been extracted and documen-
ted as resting-state networks (RSNs) [53–55] using a multitude
of methods.

Evolving from FC, whether static or time-varying [56], a
number of different forms of connectivity have been defined
and named to distinguish them from canonical statistical
relationships. Effective connectivity, evaluated, for example,
via dynamic causal modelling [57,58], aims to infer the causal
architecture of dynamical systems. Time-varying or dynamical
FC (dFC) has also progressed beyond statistical relationships
in temporal correlations. Indeed, dFC has been elucidated
with phase relationships [59–61] and information-theoretic
measures [62], which are in principle more amenable for inves-
tigations in nonlinear dynamical systems [63,64].

Although theword ‘network’ is usually used to define rest-
ing-state FC, the tools of graph theory (such as community
structure [65]) can be applied to a range of scenarios. For
example, from a complexity science perspective both SC and
FC (however defined) can be conceptualized as networks—
considering systems of neuronal ensembles or regions to be
nodes (or vertices), connected by links (edges) corresponding
to either axonal projections (SC) or FC relationships [66,67]
(figure 2). As a matter of fact, the broad application of graph
theory to a range of aspects of brain imaging data has given
birth to the emerging field of network neuroscience [68–71].

Studies following this approach have shown that healthy
brain SC and FC networks exhibit a host of complex network
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features, including small-worldness [72,73], short path
lengths, high clustering, hubs [66], a rich club [74], a diverse
club [75], within a modular and fractal (self-similar) commu-
nity structure [76–78]. Examples of graph-theoretic metrics
that are commonly employed in neuroscience may be found
in electronic supplementary material, table S1. The ‘rich
club’ of strongly interconnected bi-hemispheric hub regions
includes superior parietal and frontal cortices, precuneus,
putamen, hippocampus and thalamus, which are considered
to be crucial for whole-brain communication [74].

Overall, conceptualizing the brain in terms of structural
and functional networks has made it possible to import
into neuroscience a number of well-developed mathematical
tools from complexity science, providing a much-needed
framework to study the brain as the interconnected system it is.

3.2. Computation and information dynamics
3.2.1. Integrated information and partial information

decomposition
The great flexibility and interesting interpretability of
information-theoretic measures have triggered a large range
of investigations of the human brain using such tools. Early
efforts in information-theoretic analysis of resting brain activity
endeavoured to formalize the notion of ‘dynamical complex-
ity’, understood as the simultaneous occurrence of functional
segregation and global integration in the brain [79]. Systems
exhibiting both high integration and a high specialization exhi-
bit functional patterns of the highest dynamical complexity.
Subsequent work inspired by further developments of these
ideas led to ameasure of ‘integrated information’,Φ, that quan-
tifies the ability of a system to carry information as a whole
beyond what is carried by its parts [80], which leads towards
novel and practical measures for data analysis [81,82].

However, the intuition that information can only be trans-
ferred or stored between parts of a system fails to capture
the full range of possible information dynamics, as noted, for
example, by James et al. [42]. Another important extension of
classic information-theoretic tools to capture such higher-order
interactions is provided by the framework of partial information
decomposition (PID) [83].2 PID proposes a formal decompo-
sition of the MI provided by various predictors about a target
variable, introducing three fundamentally distinct types of
information: redundant, unique and synergistic. Intuitively,
unique information refers to information that is provided by
one predictor but not the others, redundancy refers to the case
where multiple predictors each provide the same information
about the target, and synergy refers to predictive information
that only becomes available if the predictors are considered
together. There is an ongoingdiscussiononhow to best calculate
these different types of information in practice, which constitu-
tes an active area of ongoing research. However, despite their
technical differences, many of these proposals do not differ
much in practical setups [84,85], and have been proven
successful in various applications.

This powerful extension of classic IT has already found
successful application in neuroscience; for example, PID has
been used to assess synergistic information processing in an
organotypic culture of spiking neurons [86], to link infor-
mation storage and information transfer to sub- and
supercritical regions of phase transition in a neuronal popu-
lation oscillator model [87], and to show that rich club
neurons perform 160% more computation than non-rich
club neurons [88]—providing avenues to combine the
information-dynamic and graph-theoretic views of the brain.

3.2.2. Applications of ΦID: integrated information decomposition
However, the framework of information dynamics introduced
by PID is restricted to scenarios with a single target variable,
being unable to discriminate between different ways in
which two ormore target variables can be affected collectively.
To account for how multiple variables jointly affect one
another’s temporal evolution, a further generalization is
needed. Building on intuitions frombothΦ andPID, the frame-
work of integrated information decomposition (ΦID) proposes an
encompassing taxonomy for the diverse information dynamics
phenomena that can take place in complex stochastic systems
[82], [Preprint] [89]. ΦID has two main features: it can be
used to decompose and hence better understand existent
measures of complexity; and it can provide the fundamental
building blocks to tailor new measures that track specific pro-
cesses of interest. Such new measures have been able to
reconcile the dynamical systems and information dynamic
views of complexity. As an example of the former, ΦID has
been used to show that existing quantifications of integrated
information (and related quantities such as ‘causal density’
[90]) are not capturing a unique type of information dynamics,
but rather conflating multiple ones. Following this finding, a
revised version of Φ—denoted by ΦR—has been proposed,
which has been shown to capture various important aspects
of a broad range of complex systems [91,92], and be more pre-
cise than Φ in finding or detecting specific differences between
conscious and unconscious dynamics of the human brain [93].

More broadly, ΦID is enabling novel ways to conceptualize
brain function, by providing an information-resolved FC that
complements the time-resolved perspective [93]. Empirical ana-
lyses based on fMRI data have shown a role for redundancy in
ensuring robust input/output communication channels, as is
especially prominent in somatomotor and sensory regions. By
contrast, synergy is related to efficient communication in high-
order association cortices, and supports humans’ sophisticated
cognitive functions, being more prominent in evolutionarily
expanded regions of the cerebral cortex [93]. The further identi-
fication of specific molecular, cytoarchitectonic and metabolic
profiles suggests that in the close future we may be able to
embody information processing properties into tissues’ bio-
physical properties, a critical step towards supporting the
biological plausibility of intrinsic computation in the brain.

Crucially, ΦID also provides a mathematical framework
as a basis for formalizing causal emergence. This framework
has shown the emergence of motor information from electro-
corticography recorded from a macaque’s motor cortex, and
also that emergent dynamics are more prevalent in healthy
controls rather than in subjects with serious brain lesions.
Therefore, ΦID provides a way to address two of the key
aspects of a complex system outlined in [19] and [17]:
namely, multiplicity and emergence.

3.3. Criticality
3.3.1. Origins and meanings
Criticality refers to scenarios where collective properties
of a system composed of many parts exhibit an abrupt
change—akin to the freezing of water when temperature
goes below 0°C. In general, a system is said to undergo a
phase transition when a small change in a control parameter
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(e.g. temperature) causes a large collective change (e.g. freez-
ing). In textbooks, criticality is often illustrated through
canonical examples, most prominently the Ising spin model
[94], which possesses a well-studied phase transition between
disordered and magnetized states. Importantly, besides the
abrupt change in the order parameter that defines them, a
system that is near a phase transition (or critical point) displays
a host of unusual features: long-range correlations, power law
(also known as scale-free3) statistics, fractal structure, long tran-
sient periods and sensitivity to external perturbations—to
name a few [28,30,95]. Furthermore, theoretical and compu-
tational work has demonstrated that systems poised near
criticality can exhibit several advantageous computational
properties, such as an extended range of responses to inputs
[96] or increased transfer of information [97]. It is for these
reasons that some have suggested the idea of criticality as a
universal guiding principle for brain organization [30,98,99].

One important distinction is that between statistical criti-
cality, in which a system is in a critical state and follows the
statistical patterns discussed above, and dynamical criticality,
in which the system is close to a phase transition, or in math-
ematical terms, lies close to a dynamical bifurcation, where
small deviations can lead to an abrupt change in its dynami-
cal behaviour. The position of a system with respect to the
bifurcation defines whether it is classified as subcritical (the
system has a steady state equilibrium but responds to pertur-
bation with dampened oscillations) and supercritical (where
the stability of the steady state equilibrium is lost and oscil-
lations are self-sustained). At the bifurcation point, the
equivalent stability of both steady-state and oscillatory equi-
libria drives large amplitude fluctuations exhibiting statistical
patterns of critical systems (figure 3).

The idea that critical states are particularly important in
nature received further support with the idea of self-organized
criticality, which postulates that dynamical systems can self-
organize into a critical state spontaneously, without careful
fine-tuning of a control parameter [100]. Unfortunately, apply-
ing these principles in practical scenarios is a challenging
endeavour. In fact, it is known that some systems may display
some, but not all, of the properties of the classical critical
models; and that exotic phenomena can take place in systems
with heterogeneous components, like smeared phase tran-
sitions [101] or Griffiths phases [102]. Furthermore, while
statistical and dynamical criticality are often related, they can



roya

7
also occur independently of each other [103]. It is for these
reasons, among others, that the study of criticality in neural
systems is rife with difficulties and misunderstandings.
 lsocietypublishing.org/journal/rsif
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3.3.2. Criticality in the brain
Despite significant challenges, over the last 20 years scientists
have found evidence for multiple signatures of criticality
in neural data from multiple modalities. Arguably, the first
evidence of this kind was found in human brain oscillations
in the large variability, long-range temporal correlations,
and power law scaling of electroencephalography (EEG)
amplitude fluctuations in the 10–20 Hz frequency range
[104]. Mesoscale signatures of criticality were demonstrated
in the scale-free power law distribution of size and life-time
of neuronal avalanches in mature organotypic cultures and
acute slices of rat cortex [105]. These local synchronized
activity patterns were confirmed to be scale-free in awake
non-human primates [106]; this finding was an important
intermediate transition towards demonstration of avalanches
in human neuroimaging. Subsequently, scale-free avalanche
dynamics were found in resting magnetoencephalography
(MEG) [107].

More recently, scale-free avalanche dynamics were found
in a combined broadband analysis of MEG and EEG, con-
firming that broadband resting state activity measured with
MEG and EEG can be described as a series of neuronal ava-
lanches [108]. At a larger scale, studies in resting-state fMRI
have shown avalanches of activated clusters of voxels using
an innovative point-process [109]. Scale-free power law distri-
butions have also been found in the life-time of phase-locked
activity between different brain regions in fMRI and MEG
[110], although these findings have been contested [109,111].
Returning to long-range temporal correlations, these ampli-
tude correlations in the 10–20 Hz frequency range have
been found to correlate with behavioural scaling [112], and
to reproduce in broadband signals [108]. In addition to tem-
poral correlations, long-range spatial correlations were found
in resting state fMRI using spatial coarse graining [113].

Interestingly, these signatures of criticality seem to be
characteristic of healthy, conscious brain dynamics. Deviations
from critical dynamics were found in MEG in interictal epilep-
tiform activity in epilepsy patients [114] and disruption of long
range temporal correlations has been found in patients with
major depressive disorder [115], early-stage Alzheimer’s dis-
ease [116] and in healthy adults during deep sleep [117].
During loss of consciousness, the long-range amplitude corre-
lations across brain regions disappear [118] and overall the
brain appears to move away from dynamical criticality
towards greater dynamic stability [119]. By contrast, during
consciousness dynamical criticality ismaintained as the under-
lying dynamical modes hover in the vicinity of the critical
stability threshold [120]. These findings are consistent with
a computational model of the difference in stability between
awake and sleep states [121]. The dynamic stability in
the sleep state was reflected in a rigidity to external pertur-
bations. By contrast, the awake state was reflected in a longer
integration of the perturbations and a slower return to equili-
brium dynamics. Building on these findings, a further study
showed that shifting certain dynamical modes in the model
towards their critical stability threshold through local bifur-
cation parameter changes, stimulated switching between
sleep and awake states [122] as shown in figure 4. Although
the studies of Solovey et al. [119] and Deco et al. [121,122]
were not related, the results demonstrate the linkages between
critical control parameters at the level of individual regions or
dynamical modes, and the resulting whole-brain dynamical
criticality or stability.

Considering the previous discussion on information
dynamics, it is interesting to note the link between neuronal
avalanches and computation. In neuronal cultures and non-
human primates, a special type of neuronal avalanche called
coherence potential was identified when a threshold function
was applied to binarize local field potentials [125]. Coherence
in this sense refers to the resulting waveform (similarity of
local field potentials), and potential reflects their all-or-none
behaviour, characteristic of action potentials. These coherence
potentials propagate macroscopically keeping their amplitude
and waveform, involving both short- and long-range cortical
co-activations [125]. The emergence of coherence potentials
has been likened to the emergence of gliders in Conway’s
Game of Life [126], and theorized to play a role in information
transfer within the cortex at the network level [127,128]. This
hypothesis alludes to a powerful link between criticality and
computation, which we believe deserves more investigation.

Nonetheless, the concept of criticality in the brain is not
without controversy [129]. This stems from its occasional
metaphorical use without robust support of empirical data
[98,130], and fundamental challenges to power law statistics
and universal scaling as critical phenomena [131]. Moreover,
recent proposals suggest that the brain may not be in a
critical regime, but rather in a quasi-critical [132] or a slightly
subcritical regime [133]. Overall, it is clear that while these
difficulties continue to generate heated debate, the theory of
dynamical criticality and phase transitions brings extremely
useful tools to neuroimaging, which can be used pragmatically
to characterize brain dynamics across states.
3.4. Coherence and synchronization in the brain
The concept of coherence is fundamental for investigating
fluctuating quantities in many scientific disciplines [134].
Although the term is commonly used in neuroimaging
research, the precise meaning and mathematical definition
varies across studies. For example, FC has been estimated
with time–frequency coherence derived from signal magnitude
and phase as a function of time and frequency [60], and with
phase coherence derived from instantaneous phase differences
as a function of time [123]. For narrow band-pass filtered
signals, coherence has been defined as the correlation coefficient
between two signals [134], and phase synchrony as the instan-
taneous phase difference between two signals [135]. Using
this definition, Varela proposed that dynamic connections,
mediated by synchrony between distributed networks, create
transient neuronal assemblies that facilitate large-scale
integration of functionally specialized brain regions [135].

To understand synchrony, one must first recognize that
neural activity is mainly oscillatory due to nonlinear inter-
actions between neurons, with the resulting aggregation of
electrical signals producing rhythmic activity at distinct
frequencies. Such activity has been measured in spiking neur-
ons, local field potentials and macroscopically with EEG, MEG
and fMRI [1]. Oscillations in the gamma frequency (30–60 Hz)
reflect the collective firing of action potentials in pyramidal
excitatory neurons, coordinated via the delayed negative feed-
back of gamma aminobutyric acid (GABA) interneurons [136].
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This coupling of pyramidal and GABA neurons is known as
the pyramidal interneuronal network gamma (PING) network.
GABA interneurons also link PING networks into and across
individual cortical columns, creating a mechanism for the
spread of rapid synchronization and desynchronization
across the cortex [137]. It has been shown in computational
and empirical studies that these gamma rhythms generate
the slow macroscopic whole-brain dynamics observed in
MEG and fMRI [138–140]. Varela proposed that canonical
motifs such as the PING network were matched by parallel
phase synchrony [135].

To avoid confusion with the terms of coherence, phase
coherence and phase synchrony, we prefer to discuss the
different phase relationships that may exist between distributed
neuronal assemblies, or in the context of whole-brain studies,
between distributed brain regions. We will focus on two
common and complementary measures of phase relationships
(figure 5).
3.4.1. Phase synchrony and the Kuramoto order parameter
The Kuramoto model of coupled oscillators is a classic model
of mathematical physics, being a simple model that is capable
of displaying phase transitions and other interesting collec-
tive phenomena of great relevance for the study of brain
dynamics [141]. The Kuramoto order parameter (KOP) is a
metric of instantaneous phase synchrony that encapsulates
the collective behaviour of the group of oscillators. Addition-
ally, the time average of this order parameter is a measure of
global synchrony, and the variability of the order parameter
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over time provides a proxy measure of metastability (dis-
cussed in detail in the next section). Phase synchrony refers
to phase uniformity between neuronal assemblies, being cal-
culated as the magnitude of the average phase. As such,
phase synchrony of 1 represents full synchrony while 0 corre-
sponds to complete asynchrony. The KOP has been used to
compare global synchrony and metastability in a pharmaco-
logical challenge [142], to predict clinical symptoms in
schizophrenia [143], and to assess the emergence of cluster
synchronization in semi-empirical computational models of
coupled oscillators [139].
3.4.2. Phase-locking
Phase-locking refers to a constant relationship between the
phases of two neuronal assemblies, commonly calculated as
the cosine of the phase difference between two signals.
Hence, phase-locking of −1 and +1 represents anti-phase-
locking and in-phase-locking, respectively. Phase-locking
has been used to identify community structure in fMRI rest-
ing state data through dynamic FC [59,144]. Neuronal
coherence, measured with phase-locking, underlies the
hypothesis that distant neuronal communities do not necess-
arily need to be synchronized (phase synchrony), since
(phase-locked) coherence is sufficient for optimal transfer of
spiking-encoded information between the sender and the
receiver. Although this communication-through-coherence
(CTC) [145–147] hypothesis was proposed for gamma-
mediated microscopic neuronal assemblies, the signature of
an underlying gamma-band coherence mechanism has been
observed in semi-empirical fMRI data [148].

The complementary phase relationships of phase syn-
chrony and phase-locking have recently been investigated in
resting state fMRI data. Using a complexity-science approach,
a battery of metrics derived from theories of dynamical sys-
tems, stochastic processes and information dynamics was
developed to characterize resting state dynamics. Novel
relationships between the metrics were revealed, allowing a
predictive model for ΦR to be constructed using metrics from
dynamical systems and IT. Overall, the study showed the
complementary utility of phase synchrony and phase-locking,
and revealed that the majority of fMRI resting-state
characteristics reflected an interrelated dynamical and
informational complexity profile [92].
4. Discussion
Viewing the brain as a complex system complements alterna-
tive domain-specific models of spontaneous brain activity.
With a focus on mesoscale interactions leading to macroscale
phenomena, complexity science provides a rich set of con-
cepts, theories and methods from disparate scientific
disciplines, which can be used for investigative and explana-
tory studies of brain dynamics. Complexity in the brain has
been associated with dynamic instabilities that give rise to
pattern formation and self-organization [22] and with balan-
cing the dialectic dynamics of regional functional segregation
with global coherent integration [79]. Taking this into con-
sideration, we have reviewed the key concepts of DST,
network science and information dynamics, and illustrated
how these notions provide complementary perspectives on
the temporal evolution, organization and interactions of
macroscopic brain components. We have shown how network
science expands on the limitations of canonical FC through
identification and quantification of network properties. The
notion of criticality was addressed from the perspectives of
statistical and dynamical criticality, and the role of perturbation
analysis to investigate criticality in both empirical and semi-
empirical computational models was discussed [149]. Compu-
tation in the absence of tasks, intrinsic computation, was
reviewed and shown to be characterized in terms of synergistic
and transfer information flows, and quantified by ΦR. Coher-
ence was discussed under its many guises and the
complementary nature of phase synchrony and phase-locking
was explored. Finally, metastability was introduced as the
standard deviation of the Kuramoto order parameter.

Metastability appears to be universal across the 4C’s of
complex brain dynamics, although it is not yet clear if meta-
stability plays an enabling or a defining role for healthy brain
functioning. Metastability expresses a healthy tension
between the competition for functional specialization and
global coordination in the brain [150]. Indeed, when we
review our 4C’s we see that for connectivity, metastability
was maximized for a community and small-world structure



Figure 6. Representation of a path that joins metastable states. In the phase
space of a dynamical model, a metastable state is represented by a saddle
fixed point. Based on this landscape metaphor, it is easy to see that two
saddles can be connected by an unstable one-dimensional saddle. Adapted
from [155] with permission from Elsevier.
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[151], reduced after damage to SC following traumatic brain
injury [152], and when at a maximum, revealed a dynamic
core in FC [123]. For criticality, statistical indicators of criticality
have been observed when metastability was at a maximum
[109,110,153]. For computation, global synchronization and
ΦR were found to be intimately dependent on metastability
[91,92]. Importantly, cluster synchronization, also dependent
on metastability, has been shown to drive the transient
emergence of collective oscillations, replicating features of
resting-state MEG [139]. For coherence, CTC-like routes of com-
munication were found to be optimized when metastability
was at a maximum [148].

Metastability has been described as a subtle blend of segre-
gation and integration among brain regions that show
tendencies to diverge and function independently, as well as
tendencies to converge and function collectively [150].
In dynamical systems, these tendencies occur when a system
moves away from a stable equilibrium or attractor and exhibits
transient dynamicswhile remaining away from anyattractor of
the system [154]. Trajectories in the metastable regime follow a
sequence of metastable states or saddle nodes (see §2.2) on a
path that joins different equilibrium points, where the unstable
dimension of one saddle node is the stable dimension for the
following saddle node as illustrated in figure 6 [156]. The
system moves between saddle nodes without the need for
energy consuming disengagement mechanisms [157], and so
freely explores a repertoire of metastable states until changes
in the control parameter move the system to a different
regime of mono- or multi-stability [157].

This highly theoretical conceptualization of metastability
has not prevented its investigation in computational and
semi-empirical models, and in empirical imaging data. A
first quantification of metastability goes back to the late
1990s where it was estimated as the entropy of the spectral
density of a time series [158]. However, it was the appearance
of the seminal article on the Kuramoto model [141] that led to
the now most common quantification of a proxy for
metastability as the standard deviation of the KOP4

[138,151,159,160]. Computational models have used this
metric of metastability to investigate the relationship between
the amplitude modulation envelopes of MEG and the slow
fMRI signal [139], to study the effect of lesions on functional
brain dynamics [161], to reveal the coincidence ofmetastability
with integrated information [91], and to show that the brain at
rest operates at maximum metastability [123]. Furthermore,
CTC-like routes of communication, as discussed in §3.4,
emerged when metastability was at a maximum in a semi-
empirical model of whole-brain dynamic FC [148], putting
forward a possible mechanism for flexible communication
within a fixed SC.

Studies of metastability have not been confined to
computational models. In empirical studies, metastability
was shown to be at a maximum when the brain was at rest
[162], being reduced during states of unconsciousness [163],
and increasing beyond the resting state value during psyche-
delic states [142,164]. Metastability has also been shown to
predict clinical symptoms of schizophrenia [143], reduce pro-
gressively for mild cognitive impairment and Alzheimer’s
disease [165], and be correlated with cognitive flexibility
[152] and high-order cognitive ability [166].

In summary, metastability is ubiquitous across diverse
models of brain functioning in resting state. Proxy measures
of metastability and ΦR provide complementary quantifi-
cation of complexity, and reveal novel relationships between
dynamical and informational complexity [91,92]. It may
now be time to better understand the physics behind metast-
ability [167] and so improve the proxies used to measure this
universal phenomenon in resting state brain dynamics.
5. Conclusion
Unravelling the mysteries of coordination and communication
in RSNs has attracted attention in the scientific disciplines of
mathematics, statistical and theoretical physics, network
science and IT. This classical leakage of discipline-related
methods into neuroimaging research is welcome, despite the
resulting introduction of a plethora of terminology and con-
cepts which are not always applied in their strict scientific
sense. Under the auspices of complexity science, this review
has attempted to disentangle the ‘4C’s’ most commonly
found in resting-state fMRI literature, locate them in their
respective disciplines and conceptualizations, and highlight
their complementarities and intersections. The nebulous con-
cept of metastability was shown to be universal across these
4C’s and symbiotic with ΦR as a proxy for complexity. Accept-
ing the plausibility and legitimacy of different models of brain
functioning, and embracing their eclectic methods and tools,
should ultimately lead to improved descriptions, and even-
tually to understanding and prediction for healthy
and disordered brain functioning.

Data accessibility. This article has no additional data.

Authors’ contributions. F.H.: conceptualization, writing—original draft,
writing—review and editing; F.E.R.: writing—review and editing;
P.A.M.M.: writing—review and editing; A.I.L.: writing—review and
editing; J.C.: writing—review and editing; O.D.: writing—review
and editing; F.E.T.: conceptualization, supervision, writing—review
and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.
Conflict of interest declaration. We declare we have no competing interests.

Funding. F.H. received no financial support for the research, authorship
and/or publication of this article. F.E.R. is supported by the Ad Astra
Chandaria foundation. P.A.M.M. is funded by the Wellcome Trust
(grant no. 210920/Z/18/Z). A.I.L. is supported by a Gates Cam-
bridge Scholarship (OPP1144). This work was supported by the
Alan Turing Institute under EPSRC grant no. EP/N510129/1. J.C.
was funded by Portuguese Foundation for Science and Technology
(FCT) grant nos. CEECIND/03325/2017, UIDB/50026/2020 and
UIDP/50026/2020, Portugal. O.D. is supported by the NIHR



royalso

11
Maudsley’s Biomedical Research Centre at the South London and
Maudsley NHS Trust.

Acknowledgements. The authors would like to acknowledge the use of
the following freely available code: Kumar [26].
cietypublishing.org/jou
Endnotes
1For historical reasons, the term ‘phase’ here does not refer to the
phase of an oscillation, but more in general to the possible phases
that any system can explore [25].
2The pioneering work from Williams & Beer [83] initiated a subfield
of information theory and has been cited in more than 300 peer-
reviewed publications.
3Scale-free denotes that a system does not possess a characteristic
time or length scale. Statistically, the system exhibits a power law
probability distribution where the constant exponent k in y ∝ x−k,
the critical exponent, is less than 2.
4The reasoning behind this proxy is that both extreme values of the
KOP (0 and 1) correspond to equilibrium points of the model (desyn-
chronized and hyper-synchronized, respectively). Thus, the standard
deviation of the order parameter quantifies how widely it fluctuates
between the vicinity of these two equilibrium states.
rnal/rsif
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