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Background: The potential biological processes and laws of the biological components in
malignant tumors can be understood more systematically and comprehensively through
multi-omics analysis. This study elaborately explored the role of lipid metabolism in the
prognosis of colorectal cancer (CRC) from the metabonomics and transcriptomics.

Methods: We performed K-means unsupervised clustering algorithm and t test to identify
the differential lipid metabolites determined by liquid chromatography tandem mass
spectrometry (LC-MS/MS) in the serum of 236 CRC patients of the First Hospital of Jilin
University (JLUFH). Cox regression analysis was used to identify prognosis-associated lipid
metabolites and to construct multi-lipid-metabolite prognostic signature. The composite
nomogram composed of independent prognostic factors was utilized to individually predict
the outcome of CRC patients. Glycerophospholipid metabolism was the most significant
enrichment pathway for lipid metabolites in CRC, whose related hub genes (GMRHGs) were
distinguished by gene set variation analysis (GSVA) and weighted gene co-expression
network analysis (WGCNA). Cox regression and least absolute shrinkage and selection
operator (LASSO) regression analysis were utilized to develop the prognostic signature.

Results: Six-lipid-metabolite and five-GMRHG prognostic signatures were developed,
indicating favorable survival stratification effects on CRC patients. Using the independent
prognostic factors as variables, we established a composite nomogram to individually
evaluate the prognosis of CRC patients. The AUCs of one-, three-, and five-year ROC curves
were 0.815, 0.815, and 0.805, respectively, showing auspicious prognostic accuracy.
Furthermore, we explored the potential relationship between tumormicroenvironment (TME)
and immune infiltration. Moreover, the mutational frequency of TP53 in the high-risk group
was significantly higher than that in the low-risk group (p < 0.001), while in the coordinate
mutational status of TP53, the overall survival of CRC patients in the high-risk group was
significantly lower than that in low-risk group with statistical differences.

Conclusion: We identified the significance of lipid metabolism for the prognosis of CRC
from the aspects of metabonomics and transcriptomics, which can provide a novel
perspective for promoting individualized treatment and revealing the potential molecular
biological characteristics of CRC. The composite nomogram including a six-lipid-
metabolite prognostic signature is a promising predictor of the prognosis of CRC patients.
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INTRODUCTION

The morbidity and mortality of CRC remained stubbornly
high in the world, respectively ranking the third and fourth
(Gao et al., 2016; Zhang et al., 2017). The progress of CRC was
associated with the hereditary factor, age, chronic
inflammation, lifestyle such as smoking and drinking,
dietary habits, and environmental factors (Aran et al.,
2016). At present, the improvement of the prognosis of
CRC patients was still fairly limited, mainly because a
substantial portion of CRC patients were often
asymptomatic in the early stage. However, the mechanism
of occurrence, development, and invasion of CRC was still well
unclear. Therefore, to find the molecular mechanism and
favorable prognostic monitoring index for the occurrence,
development and invasion of CRC was the hotspot of the
current research.

At present, a large number of studies have shown that
abnormal lipid metabolism was closely correlated with the
occurrence and development of tumor. The accelerated
process of malignant transformation and cancer cell
proliferation required more energy, which could induce the
dysfunction of lipid metabolism to allow cancer cells to survive
(Santos and Schulze, 2012). It has been reported that higher
level of plasma total cholesterol (TC) was associated with an
increased incidence of CRC (Zalloua et al., 2019), and the
absorption of polyunsaturated fatty acids in the diet would
moderate the level of TC, thereby reducing the risk of CRC
(Muka et al., 2016). In some prospective studies, the level of TC
was positively correlated with the occurrence of breast cancer,
prostate cancer, and colon cancers. Contrarily, TC level was
negatively correlated with the occurrence of hepatocellular
cancer, gastric cancer, and lung cancer (Kitahara et al., 2011).
The previous studies reported that the levels of low-density
lipoprotein (LDL) level in nearly two-fifths of CRC patients
presented rising trend, while the high-density lipoprotein
(HDL) level in most patients (88.3%) were normal (Liao
et al., 2015; Rodriguez-Broadbent et al., 2017). In view of
the fact that the dysfunction of lipid metabolism played an
important role in genesis and development of tumor, the
biological activity of lipid metabolism has always been the
key research area screening tumor therapeutic targets. ACOT8
was a kind of peroxisome lipolysis-related enzyme that
catalyzed the decomposition of acyl CoA into free fatty
acids and CoA for β-oxidation. It has been suggested that
ACOT8 was overexpressed in certain kinds of cancers
(Ramakrishna et al., 2010; Hung et al., 2014). What is more,
downregulated expression of FASN via RNAi technique had a
significant effect on lipid metabolism inhibition and TG
storage of metastatic prostate cancer cells in human lymph
nodes (De Schrijver et al., 2003). Since the survival of tumor
cells mainly depended on FASN-mediated de novo synthesis of
fatty acids, FASN was considered as the one of the important
targets for human cancer therapy (Lupu and Menendez, 2006).

Metabonomics, an important branch of systematic biology,
was mainly utilized to study the changes of metabolites in the
dynamic process of metabolism to uncover the metabolic

features of life activities. The results obtained from the
examination for the metabolites could reflect the
pathophysiological state of the organism more accurately
and directly. Nowadays, blood and urine were the main
research objects, and the accuracies of test results were
guaranteed by removing impure metabolites (such as
protein or saccharide). The applications of metabonomics
(such as LC-MS (Yin et al., 2006), GC-MS (Tian et al.,
2016), and CE-MS (DeLaney et al., 2018) and so on) in
cancer research were intended to improve the diagnosis
and prognosis of cancer, and was employed to distinct
potential cancer biomarkers. Tenori et al. found that the
recurrence of breast cancer was associated with the
decrease of histidine level and the increase of blood glucose
level and blood lipid level through the metabonomic analysis
for the serum of patients with early breast cancer and
metastatic breast cancer (Tenori et al., 2015). Lodi et al.
published an NMR-based metabonomic study, which
analyzed serum and urine samples from myeloma patients
with different stages and metabolic patterns associated with
disease progression to identify useful markers for myeloma
patients. In this way, patients are grouped based on recurrence
or remission (Lodi et al., 2013).

In this study, we firstly utilized LC-MS/MS to determine
differential lipid metabolites altas based on the serum samples
from 236 CRC patients. The functional enrichment analysis and
multi-lipid metabolite prognostic signature analysis revealed the
potential biological function and prognostic significance of
differential lipid metabolites. Moreover, the prognosis of CRC
patients was systematically evaluated by a composite nomogram.
In the meantime, aiming at the most significant functional
enrichment pathway enriching differential lipid metabolites,
namely, glycerophospholipid metabolic pathway, we analyzed
the prognostic value of GMRHG from the transcriptional
level, and constructed the five-GMRHG prognostic signature.
In addition, based on the five-GMRHG prognostic signature, we
further expanded the significance of GMRHG in tumor immune
infiltration, tumor mutation landscape, and antineoplastic
therapy.

METHODS

Sample Source
In this study, the serum samples were collected from 236
patients (all patients voluntarily signed informed consent
forms after being notified full details of the study)
hospitalized in the JLUFH from 2008 to 2013, who were
pathologically diagnosed with primary CRC, had not been
treated with hormonal therapy or chemoradiotherapy, and did
not have acute inflammatory reactions. The exclusion criteria
were (Zhang et al., 2017) congenital disease, metabolic disease,
hematological disease, chronic inflammatory disease, severe
cerebro-cardiovascular disease, respiratory disease, liver and
renal disease, mental disease (Gao et al., 2016); women who
were pregnant or could not rule out possibility of pregnancy
and breastfeeding (Aran et al., 2016); alcoholics, drug addicts,
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long-term use of proton pump inhibitors and hormones or
non-steroidal anti-inflammatory drugs (Santos and Schulze,
2012); patients with any acute symptoms or major stress
response (such as mental trauma or burns) in the past
2 weeks; and patients who had a cubital venous blood
collected on an empty stomach in the early morning. Then,
the blood samples were centrifuged for 2 min with 3500 r/min.
The upper serum was frozen and stored at −80°C until being
used to analyze.

Metabolic Analysis
Each serum sample taken from refrigerator with temperatures as
low as 80°C was dissolved in 500 µl acetonitrile. Then, the serum
samples were blended with the vortex device and centrifuged
with 14000 r/min at 4°C for 5 min, and the supernatant of each
sample was taken for LC-MS analysis, which was conducted
using the triple-quadrupole tandem mass spectrometer (AB
Sciex TripleTOF 5600, AB Sciex, United States) equipped
with the high performance liquid chromatography (HPLC)
column (2.1 × 150 mm, 3.5 μm) (Agilent Eclipse Plus C18,
California, United States). The mobile phase A (positive ion:
0.1 formic acid and water; anion: water) and mobile phase B
(positive ion: 0.1 formic acid and acetonitrile; anion: acetonitrile)
were used for gradient elution (mobile phase A: 0–1.5 min:
80–80; 1.5∼7 min: 80–5; 7–10 min: 5–80; 10–11 min: 80–80.
Mobile phase B: 0–1.5 min: 20–20; 1.5–7 min: 20–95;
7–10 min: 95–20; 10–11 min: 20–20). The flow rate, sample
load, and column temperature were 0.8 ml/min, 20 µl, and
45°C, respectively. The data acquisition software of the
Analyst 1.5.1 software package was used to collect and
organize the raw metabolic data, and we obtained the spectral
peak index, sample name, and peak intensity area with retention
time and precise mass-nucleus ratio. Meanwhile, the raw
metabolic data matrix of 236 CRC patients was loaded into
the MetaboAnalyst 4.0 online tool (https://www.metaboanalyst.
ca/faces/home.xhtml) (Chong et al., 2018) to process with
normalization, missing value processing, and scaling to
acquire the processed metabolic data matrix including mass-
charge ratio (m/z), retention time, and peak area.

Metabonomic Multivariate Statistical
Analysis
To further distinguish metabonomic differences in CRC patients,
based on the processed metabolic data matrix, we performed
K-means unsupervised clustering algorithm to categorize 236
CRC into Kgroup 1 and Kgroup 2, and the procedures were
repeated 1,000 times to determine the stabilization of grouping.
The “survival R package” was utilized to perform Kaplan-Meier
survival analysis for Kgroup 1 and Kgroup 2 to discern their
prognostic differences. Principal component analysis (PCA) and
partial least square discriminant analysis (PLSDA) were carried
out with the MetaboAnalyst 4.0 online tool to ascertain the
between-group variance and grouping rationalization. Then,
we performed t test in the MetaboAnalyst 4.0 online tool for
Kgroup 1 and Kgroup 2 to identify the differential metabolites,
which were imported into The Human Metabolome Database

(HMDB) (https://hmdb.ca/) to conduct structural identification
and search for the differential lipid metabolites. Meanwhile,
Kyoto Encyclopedia of Genes and Genomes (KEGG)
functional pathway enrichment analysis for the structure-
identified differential lipid metabolites was performed based
on the MetaboAnalyst 4.0 online tool.

Multi-Lipid-Metabolite Prognostic
Signature Analysis
Integrating the levels of differential lipid metabolites and survival
data (survival status and survival time) of 236 CRC patients, we
performed univariate Cox regression analysis with “survival R
package” to acquire the survival-associated lipid metabolites (p <
0.05). Then, multivariate Cox regression analysis with “survival R
package” and “survminer R package” was performed on survival-
associated lipid metabolite matrix to obtain the multi-lipid
metabolite prognostic signature, whose calculation method was
listed along these lines: Lipid metabolite score (LMS) �
Σn
x�1Coefx p Levelx (The x represented each metabolite for

the establishment of the prognostic signature. Each coefficient,
which was calculated by the “survival R package”, was the fixed
constant corresponding to each metabolite.). Univariate and
multivariate independent prognostic analysis involved in
clinical characteristics (age, gender, histological type,
pathological stage, T staging, N staging, M staging) assessed
the prognostic feasibility of the prognostic signature.
Meanwhile, we plotted the composite nomogram mediated by
independent prognostic factors with “rms R package” to
methodically predict the CRC patients’ overall survival.
Moreover, clinical correlation analysis further revealed the
correlation between the lipid metabolites of the prognostic
signature and various clinical characteristics.

The Acquisition of
Glycerophospholipid-Metabolism-Related
Hub Genes by WGCNA
The raw CRC RNA expression matrices were obtained from the
TCGA database and GEO datasets (GSE17536, GSE38832, and
GSE103479). The TCGA Ensemble IDs of RNAs were
transformed into the corresponding official symbol IDs
retrieved from Ensemble database (https://asia.ensembl.org/
index.html). The standard of RNA expression data was
converted from FPKM to TPM. Meanwhile, the raw RNA
probes of GSE17536, GSE38832, and GSE103479 were
pinpointed their symbol IDs in the corresponding “GPL” file.
The batch effect was eliminated with “sva R package” software.
Differential expressed analysis was conducted for the TCGA gene
expression matrix with filter criteria FDR < 0.05, |logFC| > 0.2.
GSVA was used to determine the enrichment fractions of gene
sets (Hänzelmann et al., 2013). WGCNA was utilized to depict a
scale-free co-expression network, indicating that diverse genes
with similar expression patterns might have the co-regulation
functional pathway (Langfelder and Horvath, 2008). With
reference to the above the results of the KEGG functional
pathway enrichment analysis for the structure-identified
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differential lipid metabolites, we concluded that
glycerophospholipid metabolism was the pivotal metabolic
pathway enriching lipid metabolites. We calculated the TCGA
CRC patients’ glycerophospholipid metabolism enrichment
fraction of glycerophospholipid metabolism in the KEGG gene
set (c2.cp.kegg.v7.4.symbols.gmt) retrieved from the MSigDB
(http://www.gsea-msigdb.org/gsea/msigdb) with GSVA.
Differential expressed RNA matrix was conducted with
WGCNA to construct a co-expression network with the
“WGCNA R package” to identify the GMRHGs. In order to
enable the constructed co-expression network to be more
consistent with the characteristics of the scale-free network, R2

� 0.9 was set to determine the soft threshold. Meanwhile, the
adjacency matrix was transformed into the topological overlap
matrix (TOM) to reduce noise and spurious correlation. Based on
the dynamic tree, we distinguished the dynamic shearing module
with the minimum number of modular genes set to 30 and the
shearing height set to 0.25. The relationships between the module
eigengene (ME) gene sets and the clinical traits (age, gender and
pathological stage) as well as glycerophospholipid metabolism
were evaluated with gene significance (GS) and module
membership (MM).

Multi-GMRHG Prognostic Signature
CRC patients retrieved from the TCGA and GEO (GSE17536,
GSE103479 and GSE38832) were respectively categorized into
training and test groups. To minimize the impacts of emergencies
(such as acute cerebrovascular or cardiovascular disease, massive
hemorrhage, and pulmonary embolism, and so forth) on
predicting the survival outcome of CRC patients, we excluded
the CRC patients with overall survival less than 30 days.
Univariate Cox regression analysis and LASSO regression
analysis were performed on the training group (TCGA CRC
patients) to obtain prognosis-associated GMRHG. After the
optimization of LASSO regression analysis with the “glmnet R
package” software, we performed multivariate Cox regression
analysis on the prognosis-associated GMRHG expression matrix
to construct the multi-GMRHG prognostic signature. In the
prognostic signature, the glycerophospholipid metabolism
score (GMS) was calculated as follows: GMS �
Σn
i�1Coefi p Expi (“Expi” symbolized the expression of each

GMRHG in the prognostic. “Coefi” denoted the constant
corresponding to each GMRHG, and the constant derived
from the calculation with “survival R package”). The test
group gene expression matrix was substituted into the above
formula to obtain the GMS of each sample, which was used to
verify the prognostic significance of the prognostic signature.

Tumor Immune Infiltration and TME
Analysis
Tumor immune analysis was utilized to explore relationship
between the tumor immune infiltration and the prognostic
signature. Through the ssGSEA for the gene expression matrix
of TCGA patients in the high- and low-risk groups, single sample
gene set enrichment analysis (ssGSEA) (Barbie et al., 2009), a
single-sample function enrichment analysis for a particular gene

set, defined an enrichment score indicating the absolute
enrichment of the particular gene set in each sample. In this
study, we conducted ssGSEA with the “GSVA R package” to
calculate the relative abundances of tumor immunocytes and
immune functions of each TCGA CRC sample (Angelova et al.,
2015). Moreover, we performed the ESTIMATE algorithm to
calculate the Immune score and Stromal score to quantify the
immune and stromal components in tumor microenvironment
(TME), and the sum of both was ESTIMATE score, which was
utilized to evaluate the tumor infiltrations in TME. Tumor
Immune Dysfunction and Exclusion (TIDE) algorithm was
utilized to predict the anti-PD-1 and anti-CTLA4
immunotherapeutic response of CRC patients (Jiang et al.,
2018). With the TIDE score escalating, the probability of
immune escape escalated and the immunotherapeutic response
worsened.

Somatic Mutation Landscape in the
Prognostic Signature
The somatic mutation data retrieved from the TCGA “Masked
Somatic Mutation” data type was summarized with the “maftools
R package” to depict the genetic mutational landscape of CRC
patients and of the characteristic genes of mismatch repair
(MMR) system, namely, MLH1, MSH2, MSH6, and PMS2.

Gene Set Enrichment Analysis for the
Prognostic Signature
GSEA, the connectivity analysis performed on the specific
functional phenotypes for the whole gene chip expression
profiling (Subramanian et al., 2005), was utilized to evaluate
the enrichment of the gene expression matrices of high- and
low-risk groups in the KEGG gene sets and hallmark gene set
(NOM p < 0.05, FDR q < 0.25), thereby hierarchically identifying
the specific biological function of CRC patients in high- and low-
risk groups.

RESULTS

Metabonomics Pattern Recognition
Analysis
Figure 1 shows the research idea of the study. Table 1 shows the
clinical statistics of CRC patients. Totally, we included 236 CRC
patients with their clinical characteristics, including age, gender,
histological type, pathological stage, T staging, N staging, and M
staging. Moreover, we performed PCA and PLSDA to investigate
the spatial distribution of metabolites in the subgroups (Kgroup 1
and Kgroup 2) completed with K-means unsupervised clustering
algorithm (Figure 2A and Supplementary Table S1). K-M
survival analysis (Figure 2B) indicated that the overall survival
of CRC patients in Kgroup 2 was higher than that in Kgroup 1
(p < 0.001). Figures 2C,D show the results of PCA for Kgroup 1
and Kgroup 2, indicating that there were significant individual
differences between two subgroups. Furthermore, in order to
eliminate random deviations and deviations within the group, we
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performed PLSDA for Kgroup 1 and Kgroup 2 to further validate
the individual differences between two subgroups (Figures 2E,F).

The Biological Functions of Differential
Metabolites
T test was employed to distinguish the differential 357 metabolites
(FDR< 0.05), which were then conducted identifications of specific
components on HMDB (https://hmdb.ca/). We confirmed 175
differential lipid metabolites (Supplementary Table S2), notably,
most of which were fatty acid and glycophospholipin such as
glycolipid products. KEGG pathway enrichment analysis on the
MetaboAnalyst 4.0 online tool for the 175 differential lipid
metabolites revealed that the differential lipid metabolites
uppermost enriched in the glycerophospholipid metabolism
(FDR � 0.0016, Impact � 0.403) (Figure 2G).

TheConstruction of the Six-LipidMetabolite
Prognostic Signature
Univariate Cox regression analysis conducted with the “survival R
package” was utilized to investigate the survival-associated lipid

metabolites (p < 0.05) and 14 survival-associated lipid metabolites
were confirmed (Table 2). Then, we performed multivariate Cox
regression analysis for the 14 survival-associated lipid metabolite
to establish the prognostic signature based on six lipid
metabolites (Table 3) including five high-risk lipid metabolites
(HR > 1) (Cer(d18:0/14:0), Ganglioside GT3(d18:0/18:1(9Z),
LysoPE(22:6(4Z,7Z,10Z,13Z,16Z, 19Z)/0:0), PA(20:3(5Z,8Z,
11Z)/24:1(15Z)), PS (20:4(5Z,8Z,11Z, 14Z)/14:1(9Z), and one
low-risk lipid metabolites (HR < 1) (Substance P). LMS �
0.233* LevelCer(d18:0/14:0) + 0.303 * LevelLysoPE[22:6(4Z, 7Z, 10Z,

13Z,16Z, 19Z)/0:0] + 0.298 * LevelPS (20:4(5Z, 8Z, 11Z, 14Z)/14:1(9Z)) +
0.968 * LevelPA [20:3(5Z, 8Z, 11Z)/24:1(15Z)] + 1.079 * LevelGanglioside
GT3[d18:0/18:1(9Z)] + (−0.179) * LevelSubstance P. Patients with an
LMS greater than or equal to the median LMS (0.875) were
categorized into the high-risk group, and those less than the
median LMS (0.875) were classified into the low-risk group. The
K-M survival curve (Figure 3A) for CRC patients in the high- and
low-risk groups illustrated that the overall survival of the CRC
patients in the low-risk group was higher than that in the high-
risk group with significant statistical difference (p � 0.000). As
shown in Figure 3B, the scatter plots showed that the overall
survival of CRC patients with higher LMS was lower than that of
those with lower LMS. The LMS curve (Figure 3C) showed the
distributions of CRC patients with the LMS increasing. The
heatmap (Figure 3D) showed the distributions and variations
of six metabolite levels based on the prognostic signature. With
the increase of LMS, the levels of five high-risk metabolites
increased, and the level of the low-risk metabolites showed a
decreasing trend. Furthermore, the AUCs of the ROC curves
(Figure 3E) to predict the patients’ one-, three-, and five-year
overall survival was 0.769, 0.711, and 0.723, respectively.
Combined with the LMS and clinical characteristics (age,
gender, pathological stage, histological type, T staging, N
staging, and M staging), univariate and multivariate
independent prognostic analyses (Figures 3F,G) were
conducted to examine the prognostic feasibility of the
prognostic signature, and the LMS could be an independent
prognostic factor to predict the patients’ prognosis. With the
integration of the prognostic signature and independent
prognostic factors (histological type (adenocarcinoma and

FIGURE 1 | The flow chart of the study.

TABLE 1 | The overview of JLUFH CRC patients’ clinical characteristics.

Characteristics Variates Amounts (Percentage%)

Age <�65 168 (71.19)
>65 68 (28.81)

Gender Female 106 (44.92)
Male 130 (55.08)

Histological type Adenocarcinoma 191 (80.93)
Mucinous adenocarcinoma 45 (19.07)

T staging T1-2 35 (14.83)
T3-4 201 (85.17)

N staging N0 124 (52.54)
N1-2 112 (47.46)

M staging M0 225 (95.34)
M1 11 (4.66)

Pathological stage Stage I–II 124 (52.54)
Stage III–IV 112 (47.46)
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mucinous adenocarcinoma), pathological stage, T staging), we
constructed the composite nomogram (Figure 3H) to
individually predict the CRC patients’ overall survival. The
sum of the corresponding scores of variates in the composite
nomogram identified the less than one-, three-, and five-year
overall survival probability. The one-, three-, and five-year

calibration curves also verified the promising fitting and
stability of the composite nomogram (Figure 3I). The one-,
three-, and five-year AUCs of ROCs based on the nomogram
was 0.815, 0.815, and 0.805, respectively, showing favorable
accuracy in predicting patients’ prognosis (Figure 3J). The
one-, three-, and five-year AUCs of multi-index ROC curves

FIGURE 2 | K-group1 and K-group2 are independent with each other. (A): K-means clustering heatmap of K-group1 and K-group2. (B): The K-M survival curves
indicated that the overall survival of JLUFH CRC patients in K-group 1 was lower than that in K-group2. (C,D): Two-dimensional and three-dimensional PCA plots for
K-group1 and K-group2. (E,F): Two-dimensional and three-dimensional PLSDA plots for K-group1 and K-group2. (G): The KEGG functional enrichment analysis for
differential lipid metabolites.
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(Figures 3K–M) verified the enhanced prognostic accuracy of the
composite nomogram.

Identification of GMRHGs With WGCNA
In order to ensure the tumor-specific gene selection, we used
differential expressed gene matrix of TCGA CRC patients for
WGCNA. Integration of 4432 DEG expression data
(Supplementary Figure S1) and age, gender, and pathological
stage was used for the input files of WGCNA. Hierarchical
clustering (Figure 4A) and Pearson correlation analysis were
carried out to construct WGCNA network. Soft threshold β � 13
(Figure 4B) assessed the optimal power value adjacency matrix
transforming to TOM. Through the identification of dynamic tree
cutting modules and the merge of similar modules (Figure 4C), 8
gene modules (MEbrown, MEturquoise, MEmidnightblue,
MEyellow, MEmagenta, MEgreenyellow, MEpink, MEgrey)
were identified (Figure 4D), among which the MEbrown
module containing 342 DEGs was significantly correlated with
glycerophospholipid metabolism (Cor � 0.58, p � 4e-46)
(Supplementary Table S3). A total of 342 DEGs of MEbrown
module were deemed as the GMRHG for further analysis.

The Construction of the Five-GMRHG
Prognostic Signature
Supplementary Table S4 displayed the clinical statistics of 877
CRC patients retrieved from the TCGA and GEO datasets
(GSE17536, GSE38832, and GSE103479). Univariate Cox
regression analysis (Figure 5A), LASSO regression analysis

(Figures 5B,C), and multivariate Cox regression analysis
(Figure 5D) were performed on 342 GMRHGs expression
data to construct the five-GMRHG (ACOX1, ATOH1, CPT2,
PCSK5, and TINCR) prognostic signature. GMS � (−0.460) *
ExpACOX1 +(−0.184) * ExpATOH1 + (−0.362) * ExpCPT2 + 0.248 *
ExpPCSK5 + 0.463 * ExpTINCR. CRC patients with a GMS greater
than or equal to the median GMS (0.939) would be assigned into
the high-risk group, and those less than the median GMS would
be assigned into the low-risk group. K-M survival curve
(Figure 6A) for the training and test group (Figure 6E)
illustrated that there were significant differences of the overall
survival between low-risk group and high-risk group (p �
4.779e−05 and p � 4.305e−05). Scatter plots for the training
(Figure 6B) and test group (Figure 6F) indicated that the overall
survival of patients with higher GMS was lower than that of
patients with lower GMS. GMS curves for the training
(Figure 6C) and test group (Figure 6G) showed the
distributions of GMS, with the GMS increasing. The heatmaps
for the training (Figure 6D) and test group (Figure 6H) showed
the expression trends of five GMRHGs of the prognostic
signature. With the increase of GMRHG, the expression of
two high-risk GMRHGs (PCSK5 and TINCR) would be
increased, while the expression of three low-risk GMRHGs
(ATOH1 and ACOX1 and CPT2) would be decreased. The
one-, three-, and five-year AUCs of time-dependent ROCs in
the training (Figure 6I) and test group (Figure 6J) were 0.662,
0.716, 0.719 and 0.623, 0.660, 0.633, respectively. As shown in
Figures 6K, L, the results of univariate and multivariate
independent prognostic analysis indicated that GMS could be

TABLE 2 | Univariate Cox regression analysis for the differential lipid metabolites.

Name HMDB HR HR.95L HR.95H p-value

PA[16:0/14:1(9Z)] HMDB0114834 1.341 1.075 1.673 0.019
Substance P HMDB0001897 0.699 0.554 0.883 0.006
Tridecanoylglycine HMDB0013317 1.251 1.046 1.497 0.03
PA[14:1(9Z)/22:6(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)] HMDB0114809 0.75 0.591 0.951 0.036
PGP(a-13:0/a-13:0) HMDB0116512 1.352 1.116 1.637 0.005
PS(20:4(5Z, 8Z, 11Z, 4Z)/14:1(9Z)) HMDB0012430 1.589 1.332 1.894 0
PA(20:3(5Z, 8Z, 11Z)/24:1(15Z)) HMDB0115143 2.987 1.437 6.209 0.008
PS[18:0/20:4(8Z, 11Z, 14Z, 17Z)] HMDB0010165 1.194 1.048 1.361 0.016
PS[DiMe(9,3)/MonoMe(11,3)] HMDB0061584 0.726 0.579 0.909 0.012
Ganglioside GD2(d18:0/16:0) HMDB0011839 0.744 0.592 0.935 0.023
Ganglioside GT3(d18:0/18:1(9Z)) HMDB0012057 1.309 1.144 1.497 0
Cer(d18:0/14:0) HMDB0011759 1.32 1.087 1.603 0.011
LysoPC(18:0) HMDB0010384 1.166 1.03 1.321 0.032
LysoPE[22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0] HMDB0011526 1.168 1.051 1.296 0.008

TABLE 3 | Multivariate Cox regression analysis for the survival-associated lipid metabolites.

Name Coef HR HR.95L HR.95H p value

Cer(d18:0/14:0) 0.23250734 1.2617597 1.027315 1.5497072 0.026629
LysoPE[22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0] 0.30315863 1.3541293 1.084041 1.6915098 0.0075644
PS[20:4(5Z,8Z,11Z,14Z)/14:1(9Z)] 0.2984225 1.3477311 1.0988127 1.653038 0.0041774
PA[20:3(5Z,8Z,11Z)/24:1(15Z)] 0.96788033 2.6323588 1.2307888 5.6299772 0.0125841
Ganglioside GT3[d18:0/18:1(9Z)] 1.07881366 2.9411882 1.7988826 4.8088675 1.70E-05
Substance P −0.1788966 0.8361924 0.6503613 1.0751218 0.1629861
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FIGURE 3 | The six-lipid-metabolite prognostic signature is the robust independent prognostic factor. (A): The K-M survival curves based on the six-lipid metabolite
prognostic signature. (B): The scatter plot showing the correlation between the JLUFH CRC patients’ survival status and LMS. (C): The dot plot representing the
distributions of JLUFH CRC patients’ LMS in the high- and low-risk groups. (D): The clustering heatmap exhibiting the level variation tendencies of the six lipid
metabolites of the prognostic signature in various clinical characteristics, K-groups (K-group1 and K-group2) and risk grouping (High- and low-risk groups). (E):
The one-, three-, and five-year ROC curves of the six-lipid-metabolite prognostic signature. (F,G): Univariate and multivariate independent prognostic analysis based on
the six-lipid-metabolite prognostic signature, demonstrating that pathological stage, histological type and LMS could be deemed as the independent prognostic factors.
(H): The composite nomogram consisted of independent prognostic factors. (I): The one-, three-, and five-year calibration curves of the composite nomogram. (J): The
one-, three-, and five-year ROC curves of the composite nomogram. (K–M): The one-, three-, and five-year multi-index ROC curves of the composite nomogram.
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deemed as independent prognostic factors. The time-dependent
ROC verified the preferable precision of the five-GMRHG
prognostic signature to predict CRC patients’ prognosis.

Clinical Correlation Analysis
We used the Chi-square test to compare the distributions of clinical
characteristics (age, gender, histological type, pathological stage, T
staging, N staging, M staging) based on JLUFH CRC patients and
TCGA CRC patients (age, gender, pathological stage, T staging, N
staging, M staging) in the high- and low-risk groups. For the JLUFH
CRC patients, we found that CRC patients with advanced
pathological stage (stage III and IV) and mucinous
adenocarcinomas were mainly distributed in the high-risk group
with significant statistical difference (p � 0.031 and p � 0.001)
(Figures 7A,B). For the TCGA CRC patients, we found that TCGA
CRC patients with advanced pathological stage (stageⅢ andⅣ) and
N staging (N1-2) were mostly distributed in the high-risk group
(Figures 7C,D). Clinical correlation analysis withWilcoxon ranking
test was utilized to further explore the intra-group differences of six-
lipid-metabolites level and five-GMRHG expression in clinical
characteristics based on the JLUFH CRC patients and the TCGA
CRC patients. “*”, “**”, and “***” respectively represented statistical
difference, highly statistical difference, and significant statistical
difference. It was found that the level of high-risk lipid
metabolite, PS [20:4 (5Z, 8Z, 11Z, 14Z)/14:1 (9Z)], was higher in

the JLUFH CRC patients in the advanced-pathological-stage group
(Figure 7E), and the levels of five high-risk lipid metabolites
(Cer(d18:0/14:0), Ganglioside GT3(d18:0/18:1(9Z), LysoPE[22: 6
(4Z, 7Z, 10Z, 13Z, 16Z, 19Z)/0: 0], PA[20:3 (5Z,8Z, 11Z)/24:1
(15Z)], PS[20:4 (5Z, 8Z, 11Z, 14Z)/14:1 (9Z)] in the mucinous-
adenocarcinoma group were significantly higher than those in the
adenocarcinoma group (Figure 7F). The expression of CPT2 was
higher in the TCGA CRC patients no more than 65 years old
compared with that in CRC patients greater than 65 years old
(Figure 7G). Furthermore, the expressions of ATOH1 and CPT2
presented statistical differences in terms of pathological stage. The
expression of ATOH1 and CPT2 was higher in stage Ⅰ and Ⅱ than
that in stage Ⅲ and Ⅳ (Figure 7H). In T staging, the expression of
PCSK5 in T3-4 was higher than that in T1-2 (Figure 7I). Moreover,
in N staging, with the increase of N staging, the expression of
ATOH1 and CPT2 displayed downward tendencies (Figure 7J). For
M staging, the expression of ATOH1 was higher in M0 than in M1
with statical differences (Figure 7K).

Characteristics of Tumor Immune
Infiltration and TME Based on the
Prognostic Signature
We calculated the relative abundances of 16 kinds of
immunocytes and 13 kinds of immune functions with the

FIGURE 4 | The identification of GMRHGs with WGCNA. (A): Hierarchical clustering dendrogram of TCGA CRC patients. (B): The selection of soft threshold. (C):
The dynamic tree cut dendrogram for TCGA CRC patients. (D): The correlation between gene module and clinical traits.
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“GSVA R package”. The box plot (Figures 8A,B) iconically
illustrated that the relative abundances of T_helper_cells, Tfh,
Th1_cells, TIL, CCR, check-point, HLA, inflammation-
promoting, T_cell_co-inhibition, T_cell_co-stimulation,
Type_Ⅰ_IFN_Response, and Type_Ⅱ_IFN_Response in the
high-risk group were higher than that in the low-risk group
with statistical differences (p < 0.05). Meanwhile, we applied
Spearman correlation analysis to further validate the linear
relationship between the prognostic signature and tumor
immune infiltration. As shown in Supplementary Figures
S2A–2L, the GMS was respectively positively correlated with
the relative abundances of T_helper_cells, Tfh, Th1_cells, TIL,
CCR, check-point, HLA, inflammation-promoting, T_cell_co-
inhibition, T_cell_co-stimulation, Type_Ⅰ_IFN_Response, and
Type_Ⅱ_IFN_Response. In this study, we further uncovered
the underlying correlations between the TME and tumor
immune infiltrations. Figure 8C shows that Immune score,
Stromal score, and ESTIMATE score were higher in the high-

risk group than that in the low-risk group with statistical
differences (p < 0.05). Supplementary Figures S2M–2O
demonstrated that GMS was respectively linearly positively
correlated with Stromal score, Immune score, and ESTIMATE
score. The heatmap (Figure 8D) systematically depicted the
distributional relationships between the Stromal score,
Immune score, ESTIMATE score, and the relative abundances
of tumor immunocytes and immune functions in the high- and
low-risk groups. The distributions of the Stromal score, Immune
score, and ESTIMATE score were collaborative with the
distributions of the relative abundances of T_helper_cells, Tfh,
Th1_cells, TIL, CCR, check-point, HLA, inflammation-
promoting, T_cell_co-inhibition, T_cell_co-stimulation,
Type_Ⅰ_IFN_Response, and Type_Ⅱ_IFN_Response in the
high- and low-risk groups. Moreover, as shown in the
Figure 8E, we found that the Stromal score, Immune score,
and ESTIMATE score were all statistically positively correlated
with the relative abundances of T_helper_cells, Tfh, Th1_cells,

FIGURE 5 | The construction of the five-GMRHG prognostic signature. (A): 18 prognosis-associated GMRHGs screened by univariate Cox regression analysis.
(B,C): The LASSO regression analysis for the prognosis-associated GMRHGs. (D): Five prognosis-associated GMRHGs screened by multivariate Cox regression
analysis.
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TIL, CCR, check-point, HLA, inflammation-promoting,
T_cell_co-inhibition, T_cell_co-stimulation,
Type_Ⅰ_IFN_Response, and Type_Ⅱ_IFN_Response in the
high- and low-risk groups. The results of the comparisons
between the expression of immune checkpoints in the high-
and low-risk groups indicated that the expression of CTLA4,
PDCD1, TIGIT, CD274, and HAVCR2 was higher in the high-
risk group than in the low-risk group (Figure 8F). Spearman
correlation analysis (Supplementary Figures S2P–2T) also
validated the positive linear correlations between the
expression of immune checkpoints and GMS. Furthermore,
immunotherapeutic response analysis conducted with the
TIDE algorithm was performed on the CRC patients in the
high- and low-risk groups. As shown in the Figure 8G, the
TIDE score in the low-risk group was lower than that in the high-
risk group, indicating that samples in the low-risk group were
more susceptive to anti-PD1 and anti-CTLA4 immunotherapy
compared with samples in the high-risk group. CRC patients with
lower TIDE scores were associated with favorable overall survival

compared with CRC patients with higher TIDE scores (p � 0.017)
(Figure 8H). Moreover, the results of stratified survival analysis
for CRC patients in the high- and low-risk groups showed that
CRC patients in the low-risk group with lower TIDE scores were
related with better performance of overall survival (Figure 8I).

Somatic Mutation and MSI Overview
Figures 9A,B display the top 30 genes with highest mutation
frequencies, among which TP53 showed the most significant
statistical difference between the high- and low-risk groups (66
vs. 49%, p < 0.001) (Figure 9C). In order to further investigate
the prognostic significance of the five-GMRHG prognostic
signature in the TP53 mutational status, we conducted a
hierarchical survival analysis for TP53-wild and TP53-
mutation CRC patients, and found that the overall survival
of TP53-mutation CRC patients in the high-risk group was
lower than that in the low-risk group with a significant
statistical difference (p � 0.001). Meanwhile, the overall
survival of TP53-wild CRC patients exhibited the similar

FIGURE 6 |CRC patients stratified according to the five-GMRHGprognostic signature. (A–D): The survival plots for the TCGACRC patients respectively illustrating
the overall survival difference, the distribution of GMS, the survival status of CRC patients, and the expression variations of five GMRHGs in the high- and low-risk groups.
(E)–(H): The survival plots for the GEO CRC patients (GSE17536, GSE38832 and GSE103479) respectively illustrating the overall survival difference, the distribution of
GMS, the survival status of CRC patients, and the expression variation of five GMRHGs in the high- and low-risk groups. (I,J): The one-, three-, and five-year ROC
curves of the five-GMRHG prognostic signature based on the training and test group. (K,L): The univariate and multivariate independent prognostic analysis.
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tendency to that of the overall survival of TP53-mutation CRC
patients in the high- and low-risk groups (Figure 9D).
Furthermore, we investigated the relationship between the
MMR system and five-GMRHG prognostic signature. As
shown in Figures 9E,F, MSH6 and MSH2 respectively
demonstrated the highest mutation frequency in the high-
and low-risk groups. Additionally, Pearson correlation
analysis for the four characteristic genes of MMR system
illustrated the underlying co-expression correlation among

them, where MSH6-MSH2 displayed most fervent positive
co-expression correlation (Figure 9G). The results of
Wilcoxon ranking test for the expression differences of
MSH6, MSH2, PMS2, and MLH1 indicated that the
expression of MLH1 in the low-risk group was higher than
that in the high-risk group (Figure 9H). The linear correlation
conducted with Spearman correlation analysis also verified the
negative relationship between the GMS and MLH1 expression
(R � −0.16, p � 2e-04) (Figure 9I).

FIGURE 7 | Clinical correlation analysis for the JLUFH and TCGA CRC patients. (A,B): The distributions of pathological stage and histological type of JLUFH CRC
patients in the high- and low-risk groups. (C,D): The distributions of pathological stage and N staging of JLUFH CRC patients in the high- and low-risk groups. (E,F): The
differences of the levels of six lipid metabolites in the JLUFH CRC patients with stage I and II, stage III and IV and adenocarcinoma, and mucinous adenocarcinoma.
(G–K): The differences of the levels of five GMRHGs in the TCGA CRC patients with various clinical characteristics (age, pathological stage, T staging, N staging,
and M staging).
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Gene Set Enrichment Analysis
Targeting to gene expression matrix in the high- and low-risk
groups, we performed GSEA to hierarchically reveal the
underlying biological function in the TCGA CRC patients. In
the results of the GSEA for the HALLMARK functional pathways
(Figure 10A), the gene expression matrix in the high-risk group
was mainly enriched in the frequently investigated cancer-related
pathways, such as epithelial-mesenchymal transition (NOM p �

0.002, FDR q � 0.076), angiogenesis (NOM p � 0.035, FDR q �
0.215), and KRAS signaling up (NOM p � 0.044, FDR q � 0.180),
while the gene expression matrix in the low-risk group was
mainly enriched in the metabolism-related pathways, namely,
oxidative phosphorylation (NOM p � 0.000, FDR q � 0.020) and
fatty acid metabolism (NOM p � 0.002, FDR q � 0.013). In the
results of the GSEA for the KEGG functional pathways
(Figure 10B), the gene expression matrix in the high-risk

FIGURE 8 | The correlation between the immune infiltrations and TME. (A,B): The differences of relative abundances of immune components in the high- and low-
risk groups. (C): The differences of Immune score, Stromal score and ESTIMATE score in the high- and low-risk groups. (D): The distributional correlation between the
immune components and TME scores. The red and green strips respectively represent the up-regulated and downregulated immune components. (E): The co-
expression relationship among the differential immune components (T_helper_cells, Tfh, Th1_cells, TIL, CCR, check-point, HLA, inflammation-promoting,
T_cell_co-inhibition, T_cell_co-stimulation, type_Ⅰ_IFN_Response, and type_Ⅱ_IFN_Response) and TME scores. (F): The expression differences of five immune
checkpoints (CTLA4, PDCD1, TIGIT, CD274, and HAVCR2) in the high- and low-risk groups. (G): The difference of TIDE score in the high- and low-risk groups. (H): The
K-M survival curves indicating the overall survival difference between the TCGA CRC patients with high-TIDE score and low-TIDE score. (I): The K-M survival curves
stratified by the five-GMRHG prognostic signature and TIDE score. The overall survival of TCGA CRC patients with Low-TIDE/High-Risk was lower than that with Low-
TIDE/Low-Risk with statistical differences (p � 0.003). The overall survival of TCGA CRC patients with Low-TIDE/Low-Risk was lower than that with High-TIDE/Low-risk
with statistical differences (p � 0.007). Moreover, there were no statistical differences of the overall survival between TCGA CRC patients with High-TIDE/High-Risk VS
TCGA CRC patients with Low-TIDE/High-Risk (p � 0.135) and TCGA CRC patients with High-TIDE/High-Risk VS TCGA CRC patients with High-TIDE/Low-Risk (p �
0.692).

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 9 | Article 81195713

Sun et al. Multi-Omics Prognostic Signature

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


group was mainly enriched in ECM receptor interaction (NOM
p � 0.008, FDR q � 0.233), complement and coagulation cascades
(NOM p � 0.010, FDR q � 0.239), and gap junction (NOM p �
0.047, FDR q � 0.243), while the gene expression matrix in the
low-risk group was mainly enriched in 33 KEGG functional
pathways, among which four of the top five pathways with the
highest NES value adhering to the filtering standard (NOM p <
0.05, FDR q < 0.25) were mostly metabolism-related pathways
(fatty acid metabolism (NOM p � 0.000, FDR q � 0.000),
butanoate metabolism (NOM p � 0.000, FDR q � 0.000),
valine leucine and isoleucine degradation (NOM p � 0.000,
FDR q � 0.001), and citrate cycle (TCA cycle) (NOM p �
0.000, FDR q � 0.002). We also noted that in the analysis of
HALLMARK and KEGG, the gene expression matrix in the low-
risk group was both enriched in fatty acid metabolism and
peroxisome, indicating that the CRC patients in the low-risk
group might benefit from intervention against the fatty acid
metabolism and peroxisome (HALLMARK: NOM p � 0.002,
FDR q � 0.013; KEGG: NOM p � 0.002, FDR q � 0.002).

DISCUSSION

There are growing number of evidences indicated that an
anomaly of lipid metabolism level contributes to the

malignancy progression. As the result of the high proliferative
activities, tumor cells are inclined to obtain the lipids with de novo
synthesis, which gives rise to abnormal levels of lipase and signal
transduction factors (Bao et al., 2016; Ru et al., 2017). Therefore,
analyzing the differences in expression patterns of lipid metabolic
mediators between normal samples and tumor samples would be
conducive to determine the specific biological markers for the
tumor diagnosis (Day et al., 2013).

In this study, 175 differential lipid metabolites were subjected
to univariate and multivariate Cox regression analysis and we
identified six lipid metabolites of the prognostic signature,
including five high-risk lipid metabolites, namely, Cer(d18:0/
14:0), LysoPE[22:6(4Z,7Z,10Z,13Z,16Z, 19Z)/0:0], PS [20:
4(5Z,8Z,11Z, 14Z)/14:1(9Z)], PA[20:3(5Z,8Z, 11Z)/24:1(15Z)],
and Ganglioside GT3[d18:0/18:1(9Z)], and one low-risk lipid
metabolites (Substance P). Ceramide (Cer), one of the central
active components of sphingolipid, is mainly composed of
sphingoid long-chain base (LCB) and amide-linked to a fatty
acyl chain (Ogretmen, 2018). Cer could be synthesized from
serine and palmitate with de novo synthesis, and it could induce
the apoptosis of cancer cells (Kramer et al., 2015) and protect
cancer cells from apoptosis (Mesicek et al., 2010). Judith et al.
found that the overexpression of CerS2 increased production of
C(24:0) ceramide, which could protect cells from apoptosis
induced by ionizing radiation (IR), and C(16:0) ceramide

FIGURE 9 | The landscape of somatic mutation and four characteristic genes of MMR system. (A,B): The waterfall demonstrating the top 30 genes with highest
mutation frequencies. (C): The bar plot indicating that the mutational frequencies of TP53 in the high-risk group were higher than that in the low-risk group. (D): The K-M
survival curves stratified by the five-GMRHG prognostic signature and TP53mutational status (TP53 wild and TP53mutation). The overall survival of TCGACRC patients
with TP53 Mutation/High-risk was lower than that with TP53 mutation/Low-risk with statistical differences (p � 0.001). The overall survival of TCGA CRC patients
with TP53Wild/High-risk was lower than that with TP53Wild/Low-risk with statistical differences (p � 0.007). Moreover, there were no statistical differences of the overall
survival between the TCGA CRC patients in the high- or low-risk group with different mutation status (TP53 Mutation/High-risk VS TP53Wild/High-risk: p � 0.974; TP53
Mutation/Low-risk VS TP53Wild/Low-risk: p � 0.687). (E,F): The waterfall demonstrating themutational frequencies of MSH6, MLH1, PMS2, andMSH2 in the high- and
low-risk high group. (G): The co-expression correlations among MSH6, MLH1, PMS2, and MSH2. (H): The expression difference of MLH1 in the high- and low-risk
groups. (I): The positive liner correlation between the expression of MLH1 and the GMS.
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produced by the overexpression of CERS5 and CERS6, which
contributed to IR-mediated apoptosis in HeLa cells(31). In this
study, we found that Cer(d18:0/14:0) was a high-risk factor to
predict the prognosis of CRC, also indirectly proving the role of
Cer(d18:0/14:0) in the progression of CRC. LysoPE is the
hemolytic metabolic product of phosphatidylethanolamine
(Park et al., 2013). It has been shown that LysoPE was
involved in intercellular signal transduction through G protein
coupled receptor (GPCR) (Park et al., 2013). The level of LysoPE
in colon cancer tissue is significantly higher than that in normal
colon epithelium (Hofmanová et al., 2021). This study further
found that the level of LysoPE in mucinous adenocarcinoma was
higher than that in adenocarcinoma at the serum level, which

indirectly confirmed that LysoPE, as a high-risk factor, could
predict the prognosis of CRC patients. Phosphatidylserine (PS),
the only kind of phospholipid that could regulate the functional
state of critical proteins in cell membrane, distributed on the
vesicle membrane and participated in the process of related
diseases (Skotland et al., 2019; Wodlej et al., 2019). Ran et al.
emphasized that the exposure of PS in tumor cells was induced by
oxidative stress and cytokines, and the exposed PS binding to
immune cells regulated the immune infiltrations and biological
process of tumor cells (Ran and Thorpe, 2002). Previous studies
have shown that fatty acid chain elongation, one of the
characteristics of malignant tumors, was represented by PS in
prostate cancer (Butler et al., 2021). In CRC, Jiřina et al. utilized

FIGURE 10 | The GSEA for the TCGA CRC patients in the high- and low-risk groups. (A,B): The multi-GSEA plots depicting the hallmark and KEGG functional
pathways enriched in the gene matrices of TCGA CRC patients in the high- and low-risk groups. The curves above the X-axis represented the functional pathways
enriched in the gene matrices of TCGA CRC patients in the high-risk group. Correspondingly, the curves below the X-axis represented the functional pathways enriched
in the gene matrices of TCGA CRC patients in the low-risk group.
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LC-MS to determine phospholipid components, including
phosphatidylserine as the biological markers to distinguish
normal colorectal epithelial cells from CRC cells. The clinical
correlation analysis also suggested that the level of PS was higher
in the advanced pathological stage (stageⅢ-Ⅳ) and themucinous
adenocarcinoma, which further demonstrated that PS was a high-
risk factor affecting the prognosis of patients with colorectal
cancer. Phosphatidic acid (PA) was found to be a high-risk
factor in this study. Although it is a type of membrane
phospholipid with a simple structure and it accounted for a
minority of membrane lipid components, it exists in the cell
membrane of almost all cells (Young et al., 2010; Kulig et al.,
2019). Previous studies have shown that PA is mostly correlated
with apoptosis regulatory signals that promote the proliferation
of tumor cells. Zhao et al. proposed that the combination of PA
and tBid would enhance lysosomal membrane permeabilization
(LMP), thus triggering the apoptotic signaling (Zhao et al., 2012).
Moreover, Taga et al. found that PA stimulated the mTORC1
signaling pathway to protect human neuroblastoma cells against
apoptosis induced by oxygen stress (Taga et al., 2011). The latest
study further confirmed that PA has been proven to be one of the
key lipid signals mediating the activation of classic cancer
signaling pathway-Hippo pathway (Han et al., 2018).
Ganglioside GT3 is a kind of ganglioside mainly composed of
glycosphingolipids and sialic acids linking to sugar chain
(Labrada et al., 2018). It is a type of component concentrating
on the lipid raft in the plasma membrane (Campos et al., 2021).
The main difference among more than 60 known gangliosides
depends on the locations and numbers of NANA residues (Fuse
et al., 1982). Previous studies have shown that ganglioside GD2/3
(Yoshida et al., 2001) and GM3 (Hayashi et al., 2013) played
important roles in tumor cell invasions and metastasis, but the
role of ganglioside GT3 in malignancies including CRC has not
been clearly elaborated. This study found that ganglioside GT3
was a high-risk factor for predicting the prognosis of CRC, and it
might also provide inspiration for the role of ganglioside GT3 in
CRC. SP is a member of tachykinin peptide family. It is located in
the central nervous system and other several peripheral tissues,
including the entire length of the gastrointestinal and colorectal
tract. The biological effect of SP is mediated by three different G
protein coupled receptors (GPCR), which were neurokinin (NK)-
1, 2 and 3, respectively. SP had high affinity for NK-1 receptor
(NK-1R) and low affinity for NK-2 and 3 receptors (Muñoz and
Coveñas, 2020). Reubi et al. found that the levels of SP and NK1R
in CRC tissue were higher than those in normal tissue (Lorestani
et al., 2020). The SP content in proximal vein of CRC tissue was
three to five times higher than that in distal vein of CRC tissue,
suggesting that the distribution and regulation mechanism of SP
in vascular bed are closely related to the mechanism of CRC
metastasis (Reubi et al., 1996). The clinical correlation analysis of
this study revealed that the level of SP in adenocarcinoma was
higher than that in mucinous adenocarcinoma. SP as a low-risk
factor to predict the prognosis of CRC patients might be related
with this. Moreover, we utilized the independent prognostic
factors to plot a nomogram to systematically evaluate the
overall survival of CRC patients. The calibration curve and
ROC curve indicated that the nomogram had favorable clinical

application and accuracy in predicting the prognosis of CRC
patients. Furthermore, through functional enrichment analysis,
we found that 175 kinds of differential lipid metabolites were
significantly enriched in glycerophospholipid metabolism with
statistical significance (FDR � 0.0016, Impact � 0.403).
Glycerophospholipids, the most abundant membrane lipids,
are composed of glycerol backbone, two fatty acid chains, and
a polar head group, which mainly produces phospholipid
substances in human cells, such as phosphatidylserine (PS),
phosphatidylcholine (PC), phosphatidylethanolamine (PE),
phosphatidylglycerol (PG), and phosphatidylinositol (PI).
However, for now, there is no systematic exposition on the
guiding role of glycerophospholipid metabolism in the
prognosis of CRC patients. Herein, we have elaborately
expounded the prognostic and molecular biological functions
of glycerophospholipid metabolism from the transcriptomic
level. Integrated with the prognostic information of 877 CRC
patients, we developed the five-GMRHG (ACOX1, ATOH1,
CPT2, PCSK5, and TINCR) prognostic signature to conduct
stratified prognostic analysis for CRC patients. Of the five
GMRHGs, PCSK5 and TINCR were high-risk GMRHGs and
ACOX1, ATOH1, and CPT2 were low-risk GMRHGs. ACOX1,
as a key enzyme involved in fatty acid oxidation (FAO) pathway,
has been proved to be downregulated by p38MAPK/PPARα
signaling pathway regulated by CD147 (a transmembrane
protein regulated by lipid metabolism), thus inhibiting fatty
acid-β oxidation (Li et al., 2015). Sun et al. have also found
that ACOX1 overexpression weakened the enhancement of miR-
15b-5p overexpression on the migration and invasion of CRC
cells, and SIRT1/miR-15b5p/ACOX1 axis played an important
role in the metastasis of CRC (Sun et al., 2017). ATOH1 is a
member of the basic helix-loop-helix (BHLH) family of
transcription factors (Zheng et al., 2011). Previous studies
have shown that ATOH1 played an important role in the
differentiation of intestinal secretory cells. Shroyer et al. found
the loss of intestinal Paneth, goblet cells, and intestinal endocrine
cells in adult rats after knocking down ATOH1 (Shroyer et al.,
2007). Recent studies have shown that the overexpression of
ATOH1 promoted functional intestinal stem cells to differentiate
into secretory cells, and its expression was regulated by LKB1
(Gao et al., 2020). In the clinical correlation analysis, CPT2
exhibited higher expression levels in the early pathological
stage and N staging, which could support the role of CPT2 as
a low-risk GMRHG for CRC. PCSK5 is a type of proprotein
convertase that can affect the metastatic property of CRC by
participating in the production of adhesionmolecules and growth
factors (Bontemps et al., 2007). It has been proven that
abnormally upregulated expression of PCSK5 indicates
increased metastatic potential of CRC (Scamuffa et al., 2008).
TINCR is a key lncRNA involved in the stability of mRNA which
is responsible for the maintenance of epidermal tissue
differentiation (Kretz et al., 2013). Yu et al. reported that
TINCR expression level could be independently prognostic for
CRC, and its abnormally upregulated expression was associated
with more adverse outcomes. In the meantime, they also found
that in vitro knockout of TINCR contributed to significantly
decreased levels of cancer cell proliferation, while the
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overexpression of TINCR was conducive to cancer progression
with the involvement of miR-7-5p and PI3K/Akt/mTOR
signaling (Yu et al., 2019). In the present study, CRC patients
were grouped by the median GMS was proven to be significant in
prognostic prediction with K-M survival analysis, independent
prognostic analysis, and time-dependent ROC curves.
Additionally, GSEA pathway analysis was performed and
revealed much more highly activated pathways involved in
epithelial-mesenchymal transition (EMT), angiogenesis, and
KRAS signaling up in the high-risk group. It is known that
EMT is active in the presence of most tumors, especially
epithelial tumors. It is characterized by the gradual loss of
epithelial properties while gaining mesenchymal properties as
the tumor progresses (Grünert et al., 2003; Dongre andWeinberg,
2019), and it has been proven to have a close relationship with the
distant metastasis of CRC (Lambert et al., 2017). Early in the
1970s, Folkman et al. reported that the occurrence and
progression of tumors were accompanied by active
angiogenesis (Folkman, 1971). Vascular endothelial growth
factor (VEGF) is a typical gene involved in angiogenesis.
Ferrara et al. revealed that suppression of VEGF expression
could decrease vascular density and block tumor progression
(Kim et al., 1993). Application of first-line anti-vascular agent
Bevacizumab was conducive to largely prolonging the
progression-free survival (PFS) of patients with metastatic
CRC (Cunningham et al., 2013). Aashiq et al. found that PI3K
signaling was crucial in tumor progression by mediating lipid
metabolism and glycolysis. They reported that blockade of the
PI3K signaling suppressed CRC cell migration and invasion
following reductions in metabolic flux and tumor angiogenesis
(Hussain et al., 2016). EMT and angiogenesis are tightly
correlated in oncogenesis and metastasis (Sánchez-García,
2009), while the crosstalk between VEGF and Notch, an
epidermal cell proliferation suppressor, under hypoxic stimuli
can augment the EMT in cancer cells (Holderfield and Hughes,
2008). Here, EMT and angiogenesis were active in the high-risk
group, indicative that the two biological functions might be much
more significant in tumor progression of the high-risk patients.

Further, the characteristics depicting TME and somatic
mutation map were hierarchically viewed for the CRC
patients. It was revealed that aDCs, CD8+_T_cells,
macrophages, T_helper_cells, Tfh, Th1_cells, TIL, CCR, check-
point, HLA, inflammation-promoting, T_cell_co-inhibition, and
T_cell_co-stimulation exhibited higher levels in the high-risk
group versus the low-risk group with statistical differences.
Meanwhile, it indirectly demonstrated that CRC patients in
the high-risk had higher immune activities. Moreover, in the
previous research on melanoma, it was found that the immune
escape was realized based on T cells in the TME. Specifically,
T cells target to recognize tumor antigen followed by upregulating
PD-1 and expressing IFN-γ which can contribute to expressing
PD-L1 by immune and tumor cells. In that setting, the expressed
PD-L1 will bind to PD-1 to block T cell surveillance, ultimately
leading to immune escape (Taube et al., 2012). Here, the high-risk
group had an increase in the expression of IFN-γ, PD-1, and PD-
L1 as analyzed by the TIDE algorithm, and it was more likely to
experience immune escape. Similar processes could also occur in

CRC. Somatic mutational analysis showed that mutations in
APC, TP53, TTN, KRAS, and SYNE were highly frequent in
both high- and low-risk groups. In most cases, biallelic
inactivation of APC is the culprit for CRC occurrence and it
plays a key role in tumor progression to adenomas by activating
responsible pathways (Fennell et al., 2020). It is reported that
CRC progression is largely associated with the mutations in
KRAS and TP53 genes (Eklöf et al., 2013; Fennell et al., 2020).
KRAS encodes K-Ras protein, which belongs to the Ras-Raf-
MEK-ERK signaling pathway, thought to be responsible for CRC
growth and proliferation (Eklöf et al., 2013). TP53 is a tumor
suppressor that is abnormally mutated to CRC progression.
Additionally, TP53 mutations can be independently prognostic
for the outcome of CRC, predicting more adverse outcomes as
well as more significant resistance to chemotherapeutics (Li et al.,
2019). We here noted that the mutation frequency of TP53 in
high-risk group was much higher versus that of the low-risk
group, which was statistically significant. In the K-M survival
analysis, CRC patients in the high-risk had a shorter survival
under the same TP53 mutation frequency. This suggests that the
GMS-based grouping method is superior to the conventional
TP53-directed method for predicting the overall survival of CRC
patients. MMR includes MLH1, MSH2, MSH6, and PMS2.
Mutations or modifications (such as methylation) of their
upstream genes responsible for protein synthesis can lead to
defects of the MMR genes. In that circumstance, the replication
errors in MS areas fail to get corrected, leading to error
accumulation and the subsequent occurrence of MSI (Sahin
et al., 2019). It has been reported that MSI affects
approximately 15–20% of CRC patients and is of vital
significance in CRC initiation and development (Richman,
2015; Sahin et al., 2019). In this study, the MMR gene
mutation frequency was 19% in the high-risk group, compared
to 15% in the low-risk group, which is consistent with the
previous finding. Among the four MMR genes, MLH1 was
proven to be abnormally silenced in CRC, and the silencing or
mutation of MLH1 might be crucial in tumor progression (Ma
et al., 2016; Han et al., 2020). Moreover, MLH1 downregulation is
associated with poor outcome of CRC and can be independently
prognostic for PFS (Han et al., 2020). Further differential
expression and Spearman correlational analysis revealed that
MLH1 exhibited higher expression in the low-risk group
relative to the high-risk group. This supported the low
expression of MLH1 in the high-risk group and its prognostic
significance for poor outcome of CRC.

In summary, we systematically investigated the role of lipid
metabolism in monitoring the prognosis of CRC patients with
metabonomics and transcriptomic methods, and constructed a
composite nomogram individually predicting the overall survival
of CRC patients based on the independent prognostic factors (six-
lipid-metabolite prognostic signature, pathological stage,
histological type, and T staging). The five-GMRHG prognostic
signature can not only be used to predict the prognosis of CRC
patients, but also shed light on the CRC patients’ current immune
infiltration status, somatic mutational landscape, and potential
biological functions, and provided inspiration for individualized
treatment of CRC patients in the future.
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