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Natural products (NPs) are an indispensable source of drugs and they have a better coverage of the phar-
macological space than synthetic compounds, owing to their high structural diversity. The prediction of
their interaction profiles with druggable protein targets remains a major challenge in modern drug dis-
covery. Experimental (off-)target predictions of NPs are cost- and time-consuming, whereas computa-
tional methods, on the other hand, are much faster and cheaper. As a result, computational predictions
are preferentially used in the first instance for NP profiling, prior to experimental validations. This review
covers recent advances in computational approaches which have been developed to aid the annotation of
unknown drug-target interactions (DTIs), by focusing on three broad classes, namely: ligand-based,
target-based, and target—ligand-based (hybrid) approaches. Computational DTI prediction methods have
the potential to significantly advance the discovery and development of novel selective drugs exhibiting
minimal side effects. We highlight some inherent caveats of these methods which must be overcome to
enable them to realize their full potential, and a future outlook is given.
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1. Introduction

Since the earliest times, for the treatment of diseases, humans
have heavily depended on medicinal plants whose ‘‘active princi-
ples” are secondary metabolites termed natural products (NPs).
Precisely, NPs are ‘‘genetically encoded small molecules” originat-
ing frommicroorganisms, plants, or animals [1,2]. They have better
coverage of the biologically relevant chemical space (pharmacolog-
ical space) than synthetic molecules. It is estimated that about 60%
of all medicines approved in the last three decades are either NPs
or their semisynthetic derivatives [3–5]. Notable examples of
approved drugs of NP origin (Fig. 1) include: the antibiotic peni-
cillin G, isolated from the fungus Penicillium chrysogenum; the
antibiotic streptomycin, isolated from the bacterium Streptomyces
griseus; the anthelmintics avermectins (B1a and B1b), isolated from
the bacterium Streptomyces avermitilis, and the antimalarial arte-
misinin, isolated from the plant Artemisia annua. Their discoverers
received the Nobel Prize (in Physiology or Medicine) in 1945, 1952,
and 2015, respectively [6]. There is a huge number of secondary
metabolites annotated in focused chemical libraries such as
StreptomeDB 2.0 [7] and NANPDB [8], which have not yet been
investigated for their medicinal potential. Furthermore, for the vast
majority of NPs whose activities have been evaluated in bioassays,
their interaction profiles with drug targets (mostly proteins) are
still unknown.

The ‘‘magic bullet” concept formulated in 1900 by Paul Ehrlich,
is the foundation of single-target pharmacology. It states that a
compound will exhibit a given biological activity unless it binds
to a specific target [9,10]. This principle has been successfully
applied during the last century in the design of numerous
approved drugs. However, the development of specific binders is
a challenging task and many drugs have been withdrawn from
the market due to their undesirable side effects, resulting from
their target promiscuity. In recent years, there has been a quantum
leap from single-target pharmacology to multi-target pharmacol-
ogy (polypharmacology). With increasing knowledge about
drug—target interactions (DTIs), more effective drugs can be devel-
oped by specifically modulating multiple targets simultaneously
[11,12]. Polypharmacology can therefore be an asset in synergistic
therapy.
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Fig. 1. Structures of some notable
Generally, NPs have high structural diversity and complexity,
and very often exhibit target promiscuity. Bearing in mind that
high throughput in vitro/vivo experiments for studying the
polypharmacology of NPs are cost- and time-consuming, highly
efficient prospective in silico predictions could serve as promising,
rapid, and cost-effective strategies to decipher NP—target associa-
tions, prior to experimental validation [13,14]. The prediction of
ligand—receptor interactions, most commonly known as DTIs, is
carried out in several stages of the drug discovery and develop-
ment process, for on-target as well as off-target interactions. DTI
prediction, and thereby prediction of the mechanism of action,
can either be performed in a forward manner for virtual screening
to predict putative ligands of a given druggable target, or in a
reverse manner for target fishing to predict putative target pro-
teins of bioactive ligand(s) [15–17].

In this review, we focus on the three current approaches dealing
with computational DTI prediction, namely ligand-based, target-
based, and target—ligand-based (hybrid) approaches (Fig. 2).
2. Computational methods for DTI prediction

2.1. Ligand-based approaches

These methods stem from the chemical similarity principle,
which states that similar molecules typically have similar physico-
chemical properties and bind to similar drug targets [18]. Based on
this principle, ligand-based similarity approaches predict DTIs via
comparison of query ligands to known active ligands of a specific
drug target. They are the methods of choice for drug targets whose
macromolecular structures have not yet been solved, such as
several G-protein-coupled receptors (GPCRs), transporters, or ion
channels [18,19]. Ligand-based similarity comparisons can be sub-
divided into pharmacophore modeling, chemical similarity search-
ing, and quantitative structure—activity relationship (QSAR).
2.1.1. Pharmacophore screening
Historically, the concept of pharmacophore was formulated by

Paul Ehrlich in 1909 [20,21]. According to IUPAC, a pharmacophore
is defined as ‘‘an ensemble of steric and electronic features that is
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Fig. 2. Overview of computational approaches for DTI prediction; L and T represent ligand (including NPs and synthetic drugs) and target, respectively.
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necessary to ensure the optimal supramolecular interactions with
a specific biological target and to trigger (or block) its biological
response” [22]. These pharmacophoric features include mainly aro-
matic, hydrophobic, charged ionizable and hydrogen bonding moi-
eties. Pharmacophore perception involves the overlap of energy
minimized conformations of a set of known active ligands and
the extraction of the recurrent pharmacophoric features in a single
model. Once a pharmacophore model has been generated, a query
can be done using database molecules in a forward manner in
search of novel putative hits, or in a reverse manner when a ligand
is compared with multiple pharmacophore models in search of
putative targets (parallel screening) [23].

Generally, the pharmacophore query is done by the overlay of
generated 3D conformers and tautomers of each database mole-
cule onto the pharmacophore model derived from bioactive
ligands to identify the maximal common subsets [24,25]. Alter-
natively, a bit-wise comparison of generated fingerprints of the
pharmacophore model and those of the database molecules is
made. Pharmacophoric fingerprints are bit strings encoding dis-
tances between sets of three (or four) pharmacophoric points
in a ligand structure, counted in bonds and distance-binning at
the 2D and 3D levels, respectively [25,26]. The fit between a
given query ligand and pharmacophore model can be measured
either by rmsd-based or overlay-based scoring functions. The
former scoring functions are superior in predicting the highest
number of hits for large chemical libraries, whereas the latter
have the advantage of producing the highest ratio of correct/
incorrect hits [27,28]. Some of the most popular programs used
for pharmacophore modeling/search are Pharmer [29], Discovery
Studio [30], LigandScout [31], Phase [32], Screen [33], and MOE
[34]. Pharmacophore web servers include ZINCPharmer [35],
PharmMapper [36], Pharmit [37], and CavityPlus [38]. Kirch-
weger et al. [39], used the pharmacophore program LigandScout
[31] to generate two ligand-based pharmacophore models from
known activators of the G protein-coupled bile acid receptor 1
(GPBAR1). These models were used to screen an NP library, lead-
ing to the identification of two NPs, farnesiferol B and microlo-
bidene, which were confirmed to activate GPBAR1 with
potencies similar to that of the endogenous ligand, lithocholic
acid (Fig. 3).



Fig. 3. Representation of one of the generated pharmacophore hypotheses, aligned to lithocholic acid in 3D with exclusion volume spheres (A), without exclusion volumes
(B), and in 2D (C) [39]. The original figure was published under a Creative Commons License.
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Due to advances in techniques for macromolecular structure
determination, the paradigm has moved from ligand-centric to
receptor-centric pharmacophore modeling. Briefly, 3D pharma-
cophoric features here are established on the ligand within the
binding pocket of its co-crystallised protein [40–42]. During a
receptor-centric pharmacophoric query, excluded volume spheres,
corresponding to spatial positions occupied by the protein side
chains, are usually added as constraints. This is done in order to
ensure shape complementarity of the matches, meanwhile occa-
sioning unfavorable steric clashes for bogus hits. Three databases
exist which contain pharmacophore models extracted from PDB
protein—ligand complexes, namely PharmaDB [42], PharmTar-
getDB [36], and Inte:PharmacophoreDB [43]. These databases are
often used for target fishing of NPs, by implementation in a pharma-
cophore software. Rollinger et al. [44] used the latter database,
along with the software Discovery Studio [30], to identify putative
targets for 16 NPs isolated from themedicinal plant Ruta graveolens.
These NPs exhibited in vitro micromolar inhibitory concentrations
(IC50) to acetylcholinesterase, the human rhinovirus coat protein
and the cannabinoid receptor type-2, identified from target fishing.

2.1.2. Chemical similarity searching
In the late 1980s, chemical similarity screening (also called

nearest-neighbor searching or shape screening) was reported as
an alternative to pharmacophore modeling [45,46]. It involves
the use of a similarity metric to assess the global intermolecular
structural similarity between a query structure and each com-
pound in a database, with the most-similar structures (nearest-
neighbors) emerging as the top-ranked by the metric. The query
(reference) structure can either be a whole molecule or a substruc-
ture (e.g. a ‘‘privileged scaffold”). In this approach, the molecules
are structurally represented by 2D/3D molecular descriptors, prin-
cipally fingerprints which can be either circular-, topological-, or
substructure keys-based [26,47–49]. A molecular fingerprint is an
advanced form of the fundamental structural key. Unlike its pre-
cursor, the molecular fingerprint does not use predefined sets of
structural patterns, and consequently has in general a higher infor-
mation content and is less computationally expensive. However,
similarity indices are highly dependent on the subjected chemical
properties (such as the size of the molecule) or the relevance of
specific chemical features (such as charged groups). To circumvent
this drawback, the combination of different similarity indices was
successfully applied (similarity fusion). An alternative strategy is
the combination of several reference ligands as initial model for
similarity screenings (group fusion) [19,50,51]. This method
provides satisfactory predictions and is generally recommended
for nearest-neighbor searching when numerous known active
ligands are available [52]. For both approaches, it could be shown
that they were at least as effective as the best individual similarity
searches, and that the combination of fingerprints or multiple ref-
erence ligands could reduce substantial variations as compared to
conventional approaches of similarity-based screening.

Among the various existing similarity metrics, the Tanimoto
coefficient (Tc) has been established as the gold standard [53],

Tc ¼ c aþ b� cð Þ�1

where a, b, and c are the number of bits: in the fingerprints of mole-
cule A only, in the fingerprints of molecule B only, and common to
the fingerprints of both molecules, respectively. Tc values range
from 0 (complete dissimilarity) to 1 (identity). The higher the struc-
tural similarity between two molecules, the higher the probability
that they might have similar activities for a given target [54,55].
By virtue of its simplicity and speed, nearest-neighbor searching
is incorporated in almost every drug design software package, as
well as in online chemical databases. Different methods for encod-
ing fingerprints, such as ECFP (circular-based), FP2 (topological-
based), and MACCS (substructure-based), are in use. Several web
servers for ligand-based target fishing exist, such as SwissSimilarity
[56], SuperPred [57], TargetHunter [58], HybridSim-VS [59], PASS
[60], SEA search server [61], and USR-VS [62]. Xu et al. [63] identi-
fied muscarinic acetylcholine receptor 2, cannabinoid receptor 1,
cannabinoid receptor 2, and dopamine receptor 2 with TargetHun-
ter, as potential targets for salvinorin A, the major component of the
Mexican plant Salvia divinorum and a potent hallucinogen. These
targets were validated by means of both in vitro and in vivo assays.
Zatelli et al. [64] employed the similarity ensemble approach (SEA)
to rationalize the anti-inflammatory effect of miconidin acetate
(major metabolite of the Brazilian plant Eugenia hiemalis), whereby
it was compared to annotated similar molecule ensembles for a
given target from the ChEMBL16 binding database. The inflamma-
tion related protein 5-lipoxygenase, was the most promising
predicted target and its inhibition by miconidin acetate was vali-
dated in cell-based assays (Fig. 4).
2.1.3. Quantitative structure—activity relationship (QSAR)
Since its origin in the 1962 seminal paper of Hansch et al. [65],

quantitative structure—activity relationship (QSAR) has been one
of the main computational methods applied in medicinal chem-
istry [66]. QSAR attempts to build mathematical models which
quantitatively correlate structural properties of substances and
their biological activities using statistical analysis such as multiple



Fig. 4. Target fishing of miconidin acetate with the SEA Search sever.
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linear regression (MLR), partial least-squares (PLS), k-nearest
neighbors (kNN), etc [67]. QSAR models can be used to optimize
existing leads or to predict DTIs for new compounds. As previously
mentioned, the fundamental idea underlying QSAR modeling is
that compounds sharing structural similarity should also share
similar biological activity [18]. Based on the descriptors represent-
ing properties of (or differences between) compounds, QSAR meth-
ods can be classified into classical QSAR (2D-QSAR), 3D-QSAR, and
higher dimensionalities (4D-7D QSAR) [68,69].

Classical QSAR correlates activity with 2D-structural patterns
and physicochemical properties of drugs such as pKa, logP, molec-
ular weight, and polarizability [70]. However, the specific DTI
depends on a shape complementarity between the ligand and the
ligand-binding pocket in the 3D arrangement. It is not surprising
that classical QSAR, considering neither the conformation nor the
chirality of drugs, suffers from limitations. As a natural extension
of classical QSAR, 3D-QSAR emerged for correlating steric and elec-
trostatic potential interaction energies with biological activities,
with CoMFA (comparative molecular field analysis) as the first suc-
cessful demonstration [71]. The contour maps from CoMFA show
key features and deeper insight into the mechanism of DTIs, which
make it a powerful 3D QSAR method applied successfully in many
cases. CoMSIA integrates electrostatic, steric, hydrophobic, hydro-
gen bond donor and acceptor effects [72]. However, in CoMFA
analysis a mutual alignment of all ‘bioactive’ conformations of
compounds is needed, which constitutes one of the most time-
consuming aspects of alignment-dependent 3D-QSAR [73]. Thus,
alignment-independent 3D QSAR methods have been developed
such as COMPASS [74], CoMMA [75], HQSAR [76], and GRIND
[77]. An advanced software tool implementing GRIND is Pentacle
from Molecular Discovery [78]. The Schrodinger software suite
offers AutoQSAR for 3D-QSAR modeling [79]. In order to refine
ligand-based 3D QSAR models, receptor-based 3D-QSAR emerged,
including COMBINE [80] and AFMoC [81].

QSAR techniques consider the interaction of a group of com-
pounds with only one single target. When trained on these com-
pounds, a QSAR model mostly has limited ability to extrapolate
into novel areas of chemical space (to identify new classes of
ligands or new binding modes of similar compounds outside the
training data). In order to build a statistically meaningful model,
QSAR requires enough data on a specific target, which is rarely
the case when predicting DTIs for a newly identified target [82].
However, it could be shown that QSARmethods can be successfully
Fig. 5. QSAR modeling workflow. Different sets of descriptors were generated with MOE,
software.
applied to identify natural products and related derivatives as
inhibitors for various targets, such as monoamine oxidase (MAO).
In this study, Helguera et al. [83] combined 0D, 1D and 2D
molecular descriptors including pure topological descriptors,
connectivity indices, walk and path counts, information indices,
or 2D-autocorrelations. Linear discriminant analysis (LDA) for
modeling, replacement method (RM) for feature selection and
Y-randomization test to ensure model robustness, were applied
for generating structurally diverse and statistically meaningful
QSAR models (Fig. 5). The combinatorial QSAR approach allowed
derivation of chemical features which are important for the
hMAO-B selectivity.

2.2. Target-based approaches

Molecular docking and the aforementioned receptor-centric
pharmacophore modeling are the two existing computational
approaches for target-based (structure-based) DTI prediction, and
are generally used in conjunction. Central to these methods is
the 3D structure of the target protein, determined experimentally
by X-ray crystallography, nuclear magnetic resonance (NMR) spec-
troscopy, or cryo-electron microscopy (cryo-EM) [84–86]. Alterna-
tively, comparative (homology) modeling can be used to predict an
unknown protein structure, based on the solved 3D structure of a
template protein sharing high sequence similarity with the protein
of interest [87].

2.2.1. Molecular docking
Docking predicts the binding mode (pose) of a ligand towards a

target protein’s binding site forming a stable (non-)covalent com-
plex, by evaluating and ranking the predicted binding affinities of
various poses. During the pose identification phase of a docking
simulation, the flexibility of the ligand is accounted as part of the
molecular recognition process, whereas that of the protein is nor-
mally neglected (rigid receptor docking) [84]. Three types of scor-
ing functions have traditionally been used to measure the binding
affinities of the docking poses, namely: force fields, empirical, and
knowledge-based scoring functions. Their inability to correctly
rank the binding poses, partially due to the unaccounted solvation
effect and protein flexibility, impede on their predictive reliability
[88–91]. Consensus scoring, involving the combination of two or
more scoring functions, has been shown to produce more reliable
ranking of docking poses [92,93]. Also, machine learning scoring
functions based on protein—ligand interactions data available in
chemical databases, have emerged as promising surrogates of the
classical scoring functions [94–96]. Furthermore, the binding
affinities of top-ranked docking poses can be more accurately pre-
dicted via end-point free energy calculations such as molecular
mechanics Poisson-Boltzmann or generalized Born surface area
(MM/PBSA and MM/GBSA), combined with molecular dynamics
(MD) simulations [97–99]. It is worth mentioning that, while
induced-fit docking considers both ligand and protein flexibility,
its high computational cost greatly penalises the number of evalu-
ated ligands and docking poses [100].
DRAGON, and MODESLAB software. LDA and RM are implemented in the STATISTICA
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The on- and off-target effects of several clinically approved
drugs have been successfully predicted with the help of docking
programs such as Gold [101], Glide [102], FlexX [103], Autodock
[104], and DOCK [105], or web servers such as TarFisDock [106],
INVDOCK [107] and idTarget [108] among others. Recently, Yang
et al. [109] performed docking studies with the program Glide
[102] to elucidate the stereoselective complementarity of
(20S)-ginsenoside Rh2 over its 20R-epimer (constituents of gin-
seng), to the platelet P2Y12 receptor, which could be explained
by their simulated binding modes, displaying disparate hydrogen
bonding interactions with key residues such Asp266, Tyr105 and
Glu188. In a view to rationalise the anti-tumor activity of
epigallocatechin-3-gallate (EGCG), the major component of green
tea, Wang et al. [110] constructed a dataset of tumor-related pro-
teins and performed a reverse docking using the program Auto-
dock Vina [111]. The authors established that EGCG anti-tumor
mechanism may implicate 33 proteins (4 of which were previously
unreported) via 12 signaling transduction pathways (Fig. 6). The
inhibition of the 4 unreported proteins by EGCG was confirmed
by means of in vitro enzymatic activity assay.
2.3. Target—ligand-based approaches

As an extension of QSAR (ligand-based), computational
chemogenomic approaches and proteochemometric modeling
(PCM) constitute the two computational approaches for target—
ligand-based (hybrid) DTI prediction, which integrate both the
Fig. 6. Workflow of EGCG anti-tumour mechanism prediction, starting from reverse
docking [110]. The original figure was published under a Creative Commons
License.
chemical information of the compounds as well as the genomic
space of target proteins in a single machine learning model. In
chemogenomics, active compounds are applied as chemical probes
to characterize the function of a specific protein. The modulation of
the protein by the active compound induces a specific phenotype.
If the phenotype can be related to a therapeutic mechanism, the
protein comes into question as a drug target (reverse chemoge-
nomics). If a molecule induces a specific phenotype but the target
is not yet known, the main challenge lies in the development of
methods for target identification (forward chemogenomics) [112].

2.3.1. Chemogenomic machine—learning approaches
With increasing knowledge about DTIs, machine learning (ML)

methods are becoming increasingly popular and can extend and
complement classical rule-based approaches such as network-
and graph-based methods [113,114]. These MLmethods for predic-
tion of drug targets are normally supervised or semi-supervised,
which requires a set of input variables or feature vectors (such as
chemical fingerprints or physicochemical properties) and protein
descriptors (such as amino acid composition, dipeptide composi-
tion, sequence order, etc.). The supervised ML algorithms for DTI
predictions are trained on datasets that include labeled data con-
taining information about the type of interaction and thus guide
the algorithm to learn which features are important for DTIs. Con-
sequently, known DTIs are a valuable resource for the development
of ML prediction methods. For example, the latest release of Drug-
Bank includes DTIs of about 12,000 drug entries including 2500
approved small molecule drugs and nearly 6000 experimental
drugs [115]. Databases such as ChEMBL [116], PubChem Bioassay
[117], and BindingDB [118] provide information about thousands
of experimentally validated drug—target data pairs.

The majority of similarity-based ML are based on the guilt-by-
association (GBA) principle, which states that similar proteins
may be targeted by the same drug or vice-versa [119]. Although
it cannot be generalized, genes with related functions often share
common properties or physical interactions in gene networks
[120]. Traditionally, the nearest profile method (NN) and the
weighted profile method were widely utilized to predict new drugs
or targets using chemical and interaction information about known
compounds and targets [121,122]. In recent years, several new and
optimized similarity-based methods have been published. Rodri-
gues et al. developed a random forest regression based DTI predic-
tion workflow named DEcRyPT (Drug–Target Relationship
Predictor) and it was successfully used to identify b-lapachone as
an allosteric modulator of 5-lipoxygenase [123]. Semi-supervised
machine learning algorithms, on the other hand, are trained on a
combination of labeled and unlabeled data. Xia et al. utilized a
manifold regularization semi-supervised learning method for pre-
dicting the DTIs from heterogeneous biological data sources [124]
Schneider and co-workers developed SPiDER (self-organizing
map-based prediction of drug equivalence relationships) utilizing
the concept of unsupervised self-organizing map (SOM) algorithm
applied in combination with pharmacophore feature representa-
tions for macromolecular target prediction. This software tool
has been utilized in de-orphaning several natural products
[125,126]. In a further development TIGER (Target Inference
GEneratoR) was created, which utilizes a combination of multiple
SOMs and was validated for the target prediction of numerous nat-
ural products [127,128].

2.3.2. Proteochemometric modeling
In contrast to chemogenomic machine—learning methods,

proteochemometric modeling (PCM) allows both inter- and
extrapolation to (novel) compounds and (novel) targets and can
fulfill the need in hit identification of orphan targets [129–131].
PCM modeling requires three essential elements: descriptors



Fig. 7. Application of PCM to identify inhibitors of SGLT1 [147]. The original figure was published under a Creative Commons License.
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(including target descriptors, ligand descriptors and additional
cross-term descriptors describing information on ligand-target
interaction), bioactivity data as well as appropriate modeling tech-
niques linking the descriptors to the activity data. Ligand descrip-
tors used in PCM include binary descriptors, physicochemical
descriptors, 2D topological descriptors, 2D circular fingerprints
and alignment based 3D descriptors. Physicochemical numerical
(real-valued) descriptors are better interpretable than binary
descriptors [132]. 3D descriptors require alignments of compounds
in their active conformation in 3D space, which is error prone and
may introduce noise into the data [133].

As compared to ligands, protein targets are in general larger and
need also other descriptor sets. A reduction to a selection of resi-
dues (e.g. the binding sites) depends on the availability of related
crystal structures. Information derived from sequence can be used
to calculate similarity between various entities, such as binding
pockets, physicochemical properties, topological properties, or 3D
electrostatic potentials [134,135]. Protein descriptors can be also
generated based on the availability of specific residues, substruc-
tures, or domains. It was shown that a related feature-based
semi-binary protein descriptors could outperform sequential
descriptors [136]. Cross-term descriptors derived from the multi-
plication of ligand and protein descriptors (MLPD) were used in
early PCM modeling research [137–140]. Although it can describe
the two entities simultaneously, its significance is not easy to eval-
uate [141]. Later, cross-terms not generated by multiplication were
developed. A new type of cross-term descriptors introduced in
PCM is protein—lligand interaction fingerprint (PLIF), which has
been shown that it can outperform the MLPD-based descriptors
[142]. Machine learning and data processing techniques imple-
mented in PCM include support vector machines (SVM), random
forest (RF), gaussian processes (GP), principal component analysis
(PCA) [143,144].

Since PCM considers related targets in addition to multiple
ligands, it is able to quantify the similarity between different bind-
ing sites, such as the subpockets of a given protein target. PCM can
provide advantages in identification for novel allosteric inhibitors,
which show advantages in treatment by not disrupting essential
physiological process completely [145]. Similarly, considering the
induced-fit interaction between drugs and targets, PCM allows dis-
tinction between different protein conformations and binding
modes. When these related targets refer to similar targets from dif-
ferent species, PCMmodeling is able to extrapolate bioactivity data
between species and provide intra-species selectivity [146]. Burg-
graaff et al. [147] recently applied PCM in identification of inhibi-
tors for sodium-dependent glucose co-transporter 1 (SGLT1), by
implementation of ligand- and protein-based information into
random forest models. The authors used an in-house collection of
natural products and synthetic compounds. 30 out of 77 identified
compounds were validated in vitro, showing submicromolar activ-
ities (Fig. 7).
3. Summary and outlook

This review presents the current advances and challenges of the
state-of-the-art approaches in tackling DTI prediction in small
molecule drug discovery from a computational point of view, with
a special focus on NPs, which have been and will continue to be an
indispensable source of drugs. Although, the rate of approved new
molecular entities (NMEs) of NP origin has recently dropped, there
is still a largely untapped reservoir of hitherto NPs that could fill
the gap.

Computational DTI prediction speeds up as well as reduce the
cost of the rather expensive drug discovery and development pro-
cess. The various in silico approaches for DTI prediction have their
specific field of applicability. The method of choice in each drug
discovery campaign will depend on the type of target protein
under consideration, the availability of the protein’s macromolecu-
lar structure, the number of known active ligands and the avail-
ability of annotated DTIs in databases. The main caveat of ligand-
based pharmacophore screening and similarity searching is the
decrease in their predictive reliability when there is a low number
of (or zero) known active ligands for a target of interest. In addi-
tion, there exist activity cliffs: molecules with high structural sim-
ilarity but dissimilar biological activities for the same target.
Regarding target-based approaches, the absence of the 3D macro-
molecular structure of the target protein, the lack of good scoring
functions and the high computational costs, are the main draw-
backs. As for ligand—ltarget-based approaches which mostly rely
on machine learning algorithms, the quality of the curated drug-
target annotations stored in chemogenomic databases is a matter
of great concern. Also, there is a risk of chance correlation or over-
fitting because of the large number of descriptors. The hierarchical
combination of several DTI prediction approaches has shown to
provide superior predictions as opposed to the use of a single
approach. These computational methods are still to reveal their full
potential, where the completion of the Human Genome Project
(HGP), improvements in cryo-EM for protein macromolecular
structure determination and dynamics, advances in scoring algo-
rithms and computing power, could be potential game changers.
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