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It is known that cancer onset and development arise from complex, multi-factorial

phenomena spanning from the molecular, functional, micro-environmental, and cellular

up to the tissular and organismal levels. Important advances have been made in the

systematic analysis of the molecular (mostly genomic and transcriptomic) within large

studies of high throughput data such as The Cancer Genome Atlas collaboration.

However, the role of the microbiome in the induction of biological changes needed

to reach these pathological states remains to be explored, largely because of scarce

experimental data. In recent work a non-standard bioinformatics strategy was used

to indirectly quantify microbial abundance from TCGA RNA-seq data, allowing the

evaluation of the microbiome in well-characterized cancer patients, thus opening the

way to studies incorporating the molecular and microbiome dimensions altogether. In

this work, we used such recently described approaches for the quantification of microbial

species alongside with gene expression. With this, we will reconstruct bipartite networks

linking microbial abundance and gene expression in the context of colon cancer, by

resorting to network reconstruction based on measures from information theory. The

rationale is that microbial communities may induce biological changes important for

the cancerous state. We analyzed changes in microbiome-gene interactions in the

context of early (stages I and II) and late (stages III and IV) colon cancer, studied

changes in network descriptors, and identify key discriminating features for early and

late stage colon cancer. We found that early stage bipartite network is associated with

the establishment of structural features in the tumor cells, whereas late stage is related to

more advance signaling and metabolic features. This functional divergence thus arise as

a consequence of changes in the organization of the corresponding gene-microorganism

co-expression networks.

Keywords: colorectal cancer, microbiome, tumor progression, probabilistic multilayer networks, information

theory

INTRODUCTION

Colon cancer is consistently ranked among the top five contributors to cancer deaths worldwide
(Bray et al., 2018). Its incidence and mortality are rapidly rising in developing countries, possibly
influenced by changes in lifestyle and socioeconomic conditions. It is expected that this trend will
actually further increase according to recent studies (Arnold et al., 2017).
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As with many other cancers, colon cancer is known to
have a genetic component as well as environmental factors
which further modulate or increase the risks. Its molecular
determinants include genomic, regulatory, and epigenomic
components (Raskov et al., 2020) whereas the environmental
component is also multifactorial, ranging from toxicological
exposure (Fernández-Martínez et al., 2020), physical activity
(Friedenreich et al., 2020), dietary habits and more. A more
recent factor that is an important research topic is the role that
microbiome interactions may be playing at the molecular and
patho-physiological levels.

Recent findings have pointed out to different, sometimes
disparate phenomena, such as the influence of bacterial protein
toxins (Fiorentini et al., 2020), altered microbiome composition
(Xu et al., 2020), and the non-rational use of antibiotics (Simin
et al., 2020). Among these, microbome-host interactions are
hypothesized to modulate and integrate these diverse signals
(Yang et al., 2020). For instance, experimental evidence has been
found for functional alterations mediated by microorganisms
involved in colon cancer progression (Yu et al., 2020). It
is currently accepted that these complex biomolecular and
organismal interactions can be better understood using a systems
biology approach (Peñalver Bernabé et al., 2018).

In the context of oncology, network biology has proven
to be a powerful tool for the integration of multiple high
throughput technologies (de Anda-Jáuregui and Hernández-
Lemus, 2020). Networks provide flexible frameworks to represent
the relevant physio-pathological interactions present in the
tumor environments. For instance, bipartite networks have been
used to represent gene expression control by micro-RNAs; a
strategy that allows not only to describe statistical associations,
but also to identify putative functional associations (de Anda-
Jáuregui et al., 2018, 2019).

In this work, we reconstructed bipartite networks that capture
the statistical dependence between microorganism abundance
and gene expression in early (stages I and II) and late (stages
III and IV) colon cancer, using data from The Cancer Genome
Atlas (TCGA). We analyze these networks to identify changes
in the relative relevance of microorganisms between these
conditions, in terms of their topological role in their respective
networks. We analyzed genes associated to the highest ranked
microorganisms in each network as a means to identify changes
in associated biological functions. This work hence aims to
provide novel insights into microorganism-mediated functional
alterations potentially involved in colon cancer progression.

MATERIALS AND METHODS

For this work, we collected gene expression data from TCGA,
along with microorganism quantification data that was generated
by Poore et al. (2020), for the same 269 samples. We classified
these samples into early (n= 150) and late (n= 119) colon cancer
based on tumor stages as provided by TCGA metadata.

Interactions between each pair of measured microorganism
and gene were detected using mutual information (MI) as
a measure for statistical dependence. The highest ranked

FIGURE 1 | Network analysis pipeline.

interactions were kept in order to reconstruct bipartite networks
for each group. Downstream analyses included topological
characterization and functional enrichment analysis. In Figure 1,
we present a schematic representation of our analysis pipeline.

Gene Expression Data
We used data from TCGA, obtained through the Genome
Data Commons portal. We used level three pre-processed
gene expression data; the full analysis pipeline is documented
at https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/
Expression_mRNA_Pipeline/; briefly, RNA-seq data is aligned
using STAR (Dobin et al., 2012), and reads mapped to each gene
are counted using HT-SEQ (Anders et al., 2014); Read counts
are normalized using the Fragments per Kilobase of transcript
per Million mapped reads (FPKM) calculation, which divides
counts by the gene length and the total number of reads mapped
to protein-coding genes.

Frontiers in Genetics | www.frontiersin.org 2 February 2021 | Volume 12 | Article 617505

https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Uriarte-Navarrete et al. Co-expression Networks in Colon Cancer

Based on the available metadata, samples with tumor stages I
and II were grouped as early colon cancer, while samples with
tumor stages III and IV were grouped as late colon cancer.
Due to some samples being discarded from the microbiome
quantification pipeline by the original authors (Poore et al.,
2020, see next section), we ended up using 137 early stage and
64 late stage samples (see Supplementary File 1 for the TCGA
identificators of the used samples).

Microorganism Abundance Data
We used the public dataset generated in Poore et al. (2020)
as our source for microorganism abundance data. Briefly, in
said work the authors were able to quantify microorganism
abundance in TCGA tumor samples via a novel bioinformatics
approach. Briefly, They took raw whole genome sequencing
(WGS) data and analyzed the nearly 0.9% of total sequencing
reads were classified as non-human and assigned to bacteria,
archaea, or viruses at the genus level using Kraken (Wood and
Salzberg, 2014); which matches k-mers to taxa in a reference
database. Normalization was performed considering sample
number within a cancer type and sample type. To correct for
batch effects, discrete taxonomical counts are converted to log-
counts per million per sample using Voom (Law et al., 2014),
and a secondary supervised normalization was performed to
remove significant batch effects. Additionally, contamination
concerns were addressed using the Bayesian source tracking
model SourceTracker2 (Knights et al., 2011). Based on their
quantification, we crossed microorganism abundance and gene
expression data at the aliquot level, to ensure biological
comparability between the datasets.

Microbiome-Gene Co-expression
Quantification
Having matched gene expression and microorganism abundance
data organized into expression matrices, we calculated mutual
information for each pair of microorganism × gene. Mutual
information is the maximum likelihood information theoretic
measure of statistical dependence. Since it is capable to capture
non-linear relationships between features, it has been successfully
used for gene co-expression network reconstruction (de Anda-
Jáuregui et al., 2016; He et al., 2017). It has also been previously
used for bipartite network reconstruction of multiomic data
(de Anda-Jáuregui et al., 2018, 2019). In this work, we calculated
MI using the infotheo package in R.

OnceMI values were calculated, we selected those interactions
above the 99.5 quantile to be considered as links on a bipartite
network: B(microorganism, gene); A bipartite graph (or bigraph)
is a network whose nodes can be divided into two disjoint
sets U and V such that each link connects a U-node to a
V-node. Importantly, no links are found between two nodes
belonging to the same set (Barabási et al., 2016). For mutual
information calculation, data is discretized using the equal
frequency method (Meyer 2008), which assigns each observation
to one of N bins, with N being the number of observations.
The discretized vectors are then used as the input for proper
mutual information calculation, using an entropy estimation of

the empirical probability distribution. Both of these calculations
were performed using the infotheo package for R.

For completeness, the reconstructed networks contained all
measured microorganisms (N = 4, 450) and protein-coding
genes (N = 16, 593), even if they do not participate in any
link (that is, they have connectivity degree k = 0). The
threshold was selected based on previous analyses of multi-
omic bipartite networks (de Anda-Jáuregui et al., 2018, 2019);
we must acknowledge that by using this threshold we guarantee
fair comparisons between the reconstructed networks; however,
the structure and composition of these networks will not
be comparable to networks generated through other methods
(including the selection of a different threshold).

Network Analyses
We characterized the topology of each of the generated using
a combination of the igraph (Csardi and Nepusz, 2006) in R
and networkx (Hagberg et al., 2008) in Python. Additionally,
we used Cytoscape (Shannon, 2003) to generate network
visualizations. In this work, we focused mainly on centrality
measures including degree, bipartite clustering coefficient, and
redundancy coefficients (Latapy et al., 2008). Comparisons
between appropriate distributions were evaluated using the
Kolmogorov-Smirnov test.

Functional Enrichment of High-Degree
Microorganism Gene Neighborhoods
We analyzed the neighborhoods of the highest ranked
microorganisms (based on their degree) to identify host
biological functions associated to these microorganisms. To
do so, we performed over-representation analysis (ORA) via
FDR-corrected hypergeometric tests for biological processes
and molecular functions (as annotated in the Gene Ontology
database) using the WebgestaltR (Liao et al., 2019) package.
Parameters for ORA considered the full genome as the reference
set, and a false discovery rate (FDR) threshold of 0.05. It should
be noted that the enrichment is performed over the set of genes
that conform the neighborhood of each microorganism; this
is to identify biological functions from the host that can be
associated to microorganisms through their co-expressed genes
(see Figure 2). We further used natural language processing
tools from the tm package in R (Meyer et al., 2008) to compare
identified functions and processes, by tokenizing their names
and descriptions and identifying the most mentioned keywords
or tokens.

RESULTS AND DISCUSSION

Microorganism-Gene Co-expression
Networks Are Topologically Similar in Early
and Late Colon Cancer
By studying bipartite networks, we wanted to know what are
some possible ways in which the presence of microorganisms
may affect the host’s response (as proxied by changes in gene
expression highly correlated with microbial abundance) and vice
versa. Clues to this may be provided by the microbe-gene links.
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FIGURE 2 | Enrichment of host biological functions associated to

microorganisms through their gene neighborhoods. Each microorganism has a

set of neighbor genes in the bipartite network. This gene set is tested against a

set of known biological functions (as annotated in the GO database) through

the hypergeometric test. Through these procedure, we can associate known

biological functions from the host to each of the measured microorganisms.

The reconstructed microorganism-gene co-expression networks
for the early and late stages of colon cancer exhibit a similar
global topology. They are both dominated by a giant connected
component that contains all detected links. This giant connected
component is composed of all measured microorganisms, and
over 80% of measured genes. It should be noted that in the
case of both genes and microorganisms, presence in the network
is not directly correlated by the abundance in the original
measurements, nor biased due to zero-inflation effects (see
Supplementary File 2). Figure 3 depicts these networks. Table 1
presents the global topological features of these networks.

The bipartite degree distributions of these networks (seen
in Figure 4) are quite similar between early and late stage.
In this context, it is more informative to assess the degree
distributions for each type of nodes (microorganisms and genes)
separately. In this regard, we observe that in both networks, genes
follow a heavy-tailed distribution (blue dots in Figure 4); that
is, most genes are connected to few microorganisms, whereas a
few genes are connected to many microorganisms. Meanwhile,
microorganism nodes (red dots in Figure 4) exhibit a different
pattern: a curve with no low-degree nodes; indicating that every
detected microorganism has putative effects on the expression of
a relatively large set of genes. In any case, the distributions for
both genes and microorganisms are similar between early and
late stages cancer networks.

We evaluated two other topological properties of the nodes in
these networks: the clustering and redundancy coefficients (see
Figure 5).

Network redundancy (sometimes called path degeneracy) is
related to howmany different paths or trajectories can be taken to
go from one node to another. Unlike trees or loosely connected
networks, complex networks (such as the ones discussed here)
are characterized by being highly redundant. This means that
there are multiple (sometimes many) different paths connecting
two given nodes. For probabilistic networks this implies that
the Markov blanket (the subset of the network with the useful
connectivity information) spans much of the network. This in
turn implies that to break up (percolate, in technical terms) the
network to pieces, one must remove a large number of links.
In the case of bipartite networks, the concept of redundancy
has to be adapted, since neighborhood overlaps correspond
to links obtained in several ways during projection which are
not distinguishable. Then redundancy is caused by nodes that
when removed from the bipartite graph, do not cause significant
changes in the projection (Latapy et al., 2008).

The clustering coefficient is a quantitative measure of the
tendency of nodes in a graph to cluster together. It is calculated
for a node (local clustering coefficient), as the ratio of the number
of “triangles” (technically “closed triplets”) formed by links
connected to this node, to all possible triangles that can be formed
with this node and its immediate neighbors. The global clustering
coefficient is a network quantity, which is indeed the average
of the local clustering coefficient of all the nodes in connected
components of the network. In the case of clustering coefficients
for bipartite networks, these measure the probability that given
four nodes with three links, they are actually all connected with
four links (all the possible links in a bipartite configuration of four
nodes) (Latapy et al., 2008).

In bipartite networks, these are measures of the contribution
of a given node to the connectivity of nodes of the opposite
type (Latapy et al., 2008). We observe that in the case of
microorganisms (red curves in Figure 5), these exhibit low
values: this indicates that there is no single microorganism
through which most genes could interact. Meanwhile, genes
(blue curves in Figure 5) exhibit higher values, meaning that
gene-mediated connections between microorganisms are, on
average, more likely to be redundant. Table 2 shows the statistical
differences between the evaluated distributions.

Despite these overall similarities, networks for early and
late colon cancer exhibit notable differences in terms of
their connections. Although the composition of the GCC is
fundamentally similar in terms of the microorganisms and genes
found in it, the way in which this are connected is completely
dissimilar, with a Jaccard similarity for edges of only 0.28%.

This differences in connectivity in turn explain the different
degree ranking of both microorganisms and genes. The ranked
list of microorganisms and genes show poor correlation between
the early and late stages (Spearman ρ of 0.015 formicroorganisms
and 0.269 for genes). Due to these differences, the highest
ranked microorganisms are (a) different in the early and late
stages of colon cancer and (b) have a different set of associated
genes. With this in mind, we explored how these facts change
the set of host biological functions associated to the most
connected microorganisms.
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FIGURE 3 | Microorganism-gene co-expression networks for early (A) and late (B) colon cancer. In this visualizations, microorganisms are colored purple and genes

are colored blue. Nodes with degree k = 0 are removed for visualization purposes, highlighting that in both networks, connected nodes form a single giant

component. (C,D) Show a subset of the early (C) or late (D) networks, highlighting the most connected microorganisms.

TABLE 1 | General network descriptors.

Early Late

Genes (k > 0) 16,593 17,535

Microorganisms (k > 0) 1,464

Edges 143,320 143,321

Giant connected component? Yes

GCC** size 18,057 18,999

GCC** node similarity* 91.79%

Edge similarity* 0.28%

*Similarity expressed as percentualized Jaccard index.

**GCC, giant connected component.

Regarding microorganisms, Tables 3, 4 present the top 10
highly connected microorganism (at the genus level) in the gene
microorganism bipartite networks for early and late stage colon
cancer, respectively.

By examining Tables 3, 4, it may be surprising that most
of the microbial species themselves have not been reported to
be related with the onset and development of colon cancer.
This of course may be explained by the fact that systematic

high-throughput studies of the relationship between cancer and
microbial dysbiosis are indeed still being developed. So the
absence of evidence may not (yet) be taken as evidence of
absence. However, in the next subsection we will see how,
even though the organisms themselves may not sound that
familiar, the statistically dependent gene neighborhoods of such
microorganisms will recapitulate relevant functional features
known in the biology of colon cancer.

Host Biological Functions Associated to
Highly Connected Microorganisms Change
With Colon Cancer Progression
We set to identify functions that could be linked to
microorganisms detected in the early and late stage tumors.
Since there is no annotation of human biological functions
associated to microorganisms, we performed ORA on the gene
neighborhoods of the top 10 highest ranked microorganisms
by degree, searching for enrichment of biological processes and
molecular functions annotated in Gene Ontology.

Enrichment Results for Biological Processes

The biological processes branch of the Gene Ontology is devoted
to biologically relevant functional processes, some of these
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FIGURE 4 | Degree distributions for the early and late colon cancer networks. Values for microorganisms are shown in red, and values for genes are shown in blue.

Notice how genes exhibit a heavy-tailed distribution, whereas a different behavior is observed for microorganisms in both networks.

FIGURE 5 | Density plots for redundancy (top) and clustering (bottom) coefficients. We can see how microorganisms (red lines) are significantly less redundant and

clustered than genes within these networks.

have clearly understood biomolecular mechanisms and some
others are yet to be fully dissected. However, they allow for an
advancement in our understanding of the molecular and cellular
physiology behind gene and protein interactions.

Statistically enriched biological processes may represent
functional processes in which the host-microbiome interactions
are manifested. As we will see, some of these actually correspond
to well-known hallmarks of cancer.
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TABLE 2 | Distribution comparison (Kolmogorov-Smirnov test).

p-value, KS-test Redundancy Clustering coefficient

Microorganisms 6.037e-05 0.01244

Genes 0.01017 0.01838

TABLE 3 | Early colon cancer: top 10 highest ranked microorganism by degree.

Genus Connectivity degree

Ilumatobacter 394

Rhodospirillum 348

Nitrosospira 340

Pontibacter 323

Shinella 311

Phaseolibacter 272

Vogesella 268

Azospirillum 267

Rubrivivax 265

Thermodesulfovibrio 253

TABLE 4 | Late colon cancer: top 10 highest ranked microorganism by degree.

Genus Connectivity degree

Desulfurella 480

Nitriliruptor 432

Jeotgalicoccus 373

Actinocatenispora 369

Cryocola 360

Dactylosporangium 351

Pelomonas 344

Rhodovulum 328

Zymomonas 314

Methylomonas 314

In Figures 6, 7, we present the results of these enrichment
analyses as a heatmap. Notice that even if we performed the
analyses for the 10 highest ranked microorganisms, only five
genus were significantly associated to functions through their
gene neighborhoods in each network.

Notably, higher enrichment values (in terms of FDR) are
found in the early stage (Figure 6) than in the late stage
(Figure 7). The interpretation is that biological functions are
perhaps better mapped to the gene neighborhoods in the early
colon cancer network—possibly indicating a more coordinated
response to these microorganisms.

We identified only two biological processes appearing both
in the early and late networks. These are protein-containing
complex localization and nuclear transport. To better understand
the functional differences identified, we tokenized the names of
the detected biological processes and compared them between
the early and late networks.

In Figure 8, we compare and contrast the terms associated
to these biological processes. We observe in the early stages
concepts associated to tumorigenesis such as proliferation,
biogenesis, and (cell) cycle; as well as nucleic acids. Meanwhile,
in the late stages, we observe terms that could be associated to
late-stage cancer such as migration and angiogenesis. Concepts
shared between both stages include regulation, muscle, and
protein. For the full set of enrichment results, please refer to
Supplementary File 3.

Enrichment Results for Molecular Functions

By recognizing that our understanding of the way microbiome-
host interactions may be playing a role on the onset and
development of cancer-associated biological processes is still
quite incipient, we decided to also examine the molecular
functions dimension of the Gene Ontology. This is so since
molecular function refers to specific chemical and biochemical
interactions of a more general nature that may be related to one,
or more commonly to a large set of biological processes.

The rationale is that molecular species related to the entangled
multi-microbial metabolism are possible interacting with the
molecules involved in human (and in particular tumor and tumor
micro-environment) cells.

Figures 9, 10 present the molecular function enrichment
analysis for the early and late colon cancer networks. As
in the case of biological processes, molecular functions are
enriched on different microbial genus in the early and late stage
networks. It is worth noticing that the more significant physico-
chemical functions in the early stage correspond to structural
features (particularly enriched for the gene-neighborhood of the
Nitrosospira genus, see Figure 9) whereas the more enriched
molecular functions in the late stage network corresponds to
actin binding for genes in the network vicinity of the Pelomonas
genus (Figure 10).

We can also notice in Figure 10 that other microbial genuses’
gene neighborhoods are highly enriched for molecular functions,
such is the case of Jeotgallicoccus for actin binding, and to several
types of oxido-reductase, as well as cytochrome-oxidase activity;
and the case of Nitriliruptor for GTP-ase and nucleotide binding,
and Desulphurella for ubiquitin and thyroid receptor activity.

As in the case of the Biological Processes enrichment analysis,
Figure 11 presents the results of natural language processing
and tokenization of terms resulting in the statistically significant
enrichment GO-categories. As it was mentioned, early stage
molecular functions are somehow related to structural cellular
features, whereas late stage are related to cellular metabolism
and transport processes, being binding phenomena the common
function at the intersection of both stage networks. For the full
set of enrichment results, please refer to Supplementary File 3.

DISCUSSION

Topology of the Microbiome-Gene
Co-expression Networks
Complex networks are characterized by their composition and
global topological structure, that is by what are their elements
and how are these connected in the networks. As presented
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FIGURE 6 | Functional enrichment of highly connected microorganisms in the early colon cancer network—biological processes.

in Figures 2–4 and Table 1 in results, the global topological
structures of early and late stage colorectal cancer bipartite
networks are indeed quite similar. Approximately equal sizes
in terms of number of nodes and edges. Similar size of their
giant connected components and even a very high value of node
similarity in their GCCs. However, as it can be seen in Table 1 the
edge similarity (a quantity proportional to the number of shared
edges between the two networks) is actually extremely small
(0.28%). This means that even if the elementary components of
the networks (i.e., the genes and microorganisms) are almost the

same and the global network features are so similar, the actual
networks are indeed quite different, something unsurprising
given that they represent two different biological scenarios.

Also noteworthy is the fact that by examining Figure 4 we
could notice that the two different types of nodes (genes and
microorganisms) present striking differences in their degree
connectivity probability distributions (blue dots representing
genes and red dots microorganisms) and that the same patterns
is observed for early and late stage colorectal cancer. The degree
distributions for genes present long-tailed distributions that
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FIGURE 7 | Functional enrichment of highly connected microorganisms in the late colon cancer network—biological processes.

have been thoroughly characterized in complex biomolecular
networks. In those long-tailed distributions one can notice how
most genes have a relatively low number of connections whereas
a few hub genes are densely connected in the networks.

Microorganisms, on the other hand present a rather different
degree distribution scenario. In both networks, microorganisms
show a more symmetric short-tailed distribution in which
a most microorganisms are highly connected and present
narrower variability in their connectivity degree. This difference
perhaps represent that microbial communities somehow serve

as integrating entities in the bipartite network. This, in turn,
may be related with the low redundancy coefficients displayed by
microorganisms in both networks as it can be seen in Figure 5

(top row). Low redundancy of the specific microbial agents may
prove later to have relevance for the design of microbiome-
driven therapeutic strategies, though it is still very early to further
speculate on this.

One relevant and complementary aspect to consider on the
role that gene-microbial interactionsmay play can be glimpsed by
looking at the probability density distributions for the clustering
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FIGURE 8 | Venn diagram of top 20 most mentioned concepts in biological

processes associated to early and late colon cancer.

coefficient (Figure 5 bottom row). We can see that in both
networks (early and late stage) microorganisms present low
values of clustering coefficient, whereas for genes there are wider
probability distributions. Microorganisms are highly connected
but not so-clustered. This in turn contributes to their being less
redundant. This also may imply that the gene-microbiome co-
expression program in the cancer networks is shaped by the full
set of gene-microbial interactions and is not dominated by a
few central players. This fact has been already discussed in the
literature: physio-pathological phenomena related to microbial
activity is, in general, influenced by microbiome dysbiosis rather
than by the activity of a single or a few microorganisms.

Changes in Network Composition and
Relative Importance
The latter points led us to discuss on how, even if the whole
set of microorganisms is present in both, early and late stage
colorectal cancer networks, their connectivity and importance in
information processing within the networks vastly differ.

Consider Tables 3, 4, for instance. There, we can see that
the top 10 highly ranked microorganisms (that is, those
with higher statistical dependencies and connectivity in the
gene-microbial co-expression networks) are quite different.
Indeed, no microorganism is present simultaneously at the
top 10 of both networks, even at the, somewhat general,
genus level presented here. This points out to a possible
reprogramming of the gene-microbiome regulatory structure
associated with the phenotypic differences between early and late
stage colorectal cancer.

Regarding the highest ranked microorganisms associated to
early stage colon cancer (Table 3), we have found that, in
the case of Rhodospirillum, for instance, it is known to be
able to produce molecules such as L-asparaginase which is a
regulator of telomerase activity that has been found able to act
on human cancer and immune cells (Zhdanov et al., 2017a,b;
Plyasova et al., 2020). Nitrosospira is associated with processes

related to ammonia oxidation (Kowalchuk and Stephen, 2001)
in connection with colon cancer (Bingham et al., 1996; Bruce
et al., 2000; Davis and Milner, 2009; O’keefe, 2016). Pontibacter
has been found enriched in patients with gastric cancer and
correlated with TNM severity (Dong et al., 2019).

In the case of Shinella, significant abundance has been found
in mucosal associated microbiota in patients with severe irritable
bowel syndrome (Li et al., 2018), and also is known to be
involved in the production of N-nitrosonornicotine, a strong
(group 1) carcinogen (Qiu et al., 2016). Vogesella dysbiosis has
been recently found associated with gastric cancer (Coker et al.,
2018; Rajilic-Stojanovic et al., 2020), as well as with changes in the
endometrial microbiota associated with inflammatory cytokines
in endometrial cancer (Lu et al., 2020), and with esophageal
squamous cell carcinoma (Lv et al., 2020).

As regards to Rubrivivax, it is able to produce a molecule
rubrivivaxin that is a cytotoxic agent and a COX-1 inhibitor
(Kumavath et al., 2011). As is known COX-1 and COX-2
are relevant players in human colorectal cancer (Sano et al.,
1995; Sinicrope and Gill, 2004; Pannunzio and Coluccia, 2018).
Rubrivivax dysbiosis has also been found present in connection
to lung cancer (Greathouse et al., 2018).

Thermodesulfovibrio has been recently discussed to play a
role in the modulation of FOXP3 and IL-17 involved in immune
tolerance in colon cancer (Bergsten et al., 2020). Sulfate reducing
bacteria, also including Desulphurella are known to be associated
with the pathogenesis of colorectal cancer (Kováč et al., 2017;
Suri et al., 2019). Nitriliruptor has been reported to be involved
colorectal cancer (Marzban et al., 2020), its dysbiosis has been
mentioned also in connection to renal carcinomas (Wang et al.,
2020) and severe cases of irritable bowel syndrome (Zhuang et al.,
2018).

In connection with microorganisms associated with late
stage colon cancer (Table 4), Jeotgalicoccus abundance has been
found to be abnormal in the urinary microbiome in connection
with bladder cancer (Hussein et al., 2021). It also has been
included in a metagenomic panel screening for the diagnosis of
ovarian cancer (Kim et al., 2020) and associated with antibiotic
perturbation leading to accelerated tumor growth in breast
cancer (Kirkup et al., 2019). Interestingly, Cryocola has been
found to be increasingly abundant after H. pylori eradication in
gastric cancer cells (Figueiredo and Castaño-Rodríguez, 2020)
which may point out to second order competition effects.
Dactylosporangium produces molecules such as macrolides that
disrupt the mitochondrial membrane potentials in colorectal
cancer cells HCT116 and HT29 (Tan et al., 2018) and belong to
a class of microorganisms that are being considered as source of
bioactive metabolites with pharmaceutical interest (Rangseekaew
and Pathom-Aree, 2019).

In the case of Pelomonas, it has been recognized as involved
in the onset of multifocal atrophic gastritis with intestinal
metaplasia, a likely pre-malignant gastric lesion (Yang et al.,
2016). It is also abundant in the tumor microenvironment of up
to fifty percent of colorectal tumors in one study (Pierce et al.,
2018). Pelomonas also has been found as one of the disrupted
genera associated with bladder cancer (Liu et al., 2019; Mansour
et al., 2020).
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FIGURE 9 | Functional enrichment of highly connected microorganisms in the early colon cancer network—molecular functions.

Zymomonas have been recognized to play several roles in
cancer. Zymomonas’ levan is involved in MMP-9 activation
and extracellular matrix remodeling and inflammation (Sturzoiu
et al., 2011) and also to induce changes in oxidative states leading
to antiproliferative and proapoptotic effects in MCF7 breast
cancer cells (Queiroz et al., 2017). Similarly, Methylomonas have
been found to be involved in the production of toxin genes that
are functional drivers in human colorectal cancer (Dutilh et al.,
2013) and in the production of azurin, a known cytotoxic factor
regulating cell death (Chakrabarty et al., 2008).

It should be noticed, however, that confirmation studies,
in particular functional intervention assays, are needed to
establish more clearly the actual role of microbiome dysbiosis
in connection with the onset and development of human
malignancies in general and specially colon cancer.

Biological Functionality Associated to the
Microbiome Changes With Progression
The concerted study of gene-microbial interactions is still at
its infancy. It results challenging thus to ascertain or even
hypothesize on the role that microbial communities play in

the already complex and incomplete panorama of biomolecular
interactions inside human cells and tissues. In order to advance,
if just a little, in our understanding of how microorganisms
and their joint metabolic fluxes and ecological interactions
influence the molecular and cellular composition and functions,
we have resorted to analyse the gene-microorganism co-expression
networks. By looking at the knownmolecular players (genes) that
present strong statistical dependencies with specific microbial
species we may start by assigning those (via guilt-by-association
schemes) a putative functional role in human (in this case,
tumor) biology.

Gene enrichment analysis was used to indirectly probe
associations with the microbiome by looking at the gene-
neighborhood of highly connected microorganisms in early and
late stage colorectal cancer bipartite networks. Gene Ontology
Biological Processes (BP) andMolecular Function (MF) branches
were considered as target databases for the statistical over-
representation enrichment analysis as presented in Figures 6, 7
for BP, and Figures 9, 10 for MF in early/late colorectal tumor
networks, respectively.

As presented in results, we were able to find functional
differences between the early and late stage gene-microbiome
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FIGURE 10 | Functional enrichment of highly connected microorganisms in the late colon cancer network—molecular functions.

co-expression programmes. A number of statistical significant
processes and molecular functions are presented in the heatmaps
in Figures 5, 6, 8, 9. To present a summary of these findings,
we used natural language processing tools on tokenized
versions of the enrichment tables. Figures 8, 11 present Venn
diagrams depicting highly mentioned tokens. We can see
that in the case of BP (Figure 8), early stage networks are
enriched for terms related to proliferation and cell growth,
including structural elements and synthesis of biomaterials,
whereas late stage is characterized by terms related to signaling

and transport processes. Biochemical and physical regulation
mechanisms are present in processes at the intersection of
both networks.

Following a similar approach, tokens related to molecular
functions associated with early and late stage colorectal cancer
are presented in Figure 11. As in the case of biological processes,
molecular functions associated with early tumors are related with
structural features, late stage contains terms related to signaling
andmetabolic interactions, whereas the only molecular functions
at the intersection of stages are related to binding.
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FIGURE 11 | Venn diagram of top 20 most mentioned concepts in molecular

functions associated to early and late colon cancer.

By integrating these results some preliminary ideas may
be drawn: first of all, it is becoming possible to analyse
(albeit still in a somehow rudimentary way) the combined
effect that the microbiome plays in conjunction with human
tumor cells in the onset, establishment and development of
colorectal cancer. These initial analyses, reveal differences in
the functional features of the gene-microbiome bipartite co-
expression networks, as inferred from probabilistic modeling
of high-throughput genomic and transcriptomic experiments
in large datasets. These differences, when supplemented with
statistical enrichment analyses point out to a plausible scenario
in which early stage colon cancer presents features related to
the establishment of distinctive physical structures in the cells,
that start to couple with biomolecular interactions at the cellular
level, whereas advanced stages present an image of more complex
signaling and metabolic processes occurring as the tumor keeps
evolving to more advanced, malignant stages.

Scope and Limitations
In this work we identify changes in the co-expression/co-
presence network connectivity found between colon cancer
microbiome and its gene expression as the disease progresses.
This type of studies are admittedly at their preliminary stages,
but the integrative view they aim to provide seems promissory
toward a better understanding of complex disease phenotypes.
It is relevant, however, to acknowledge some limitations and
assumptions of our current approach, in order to properly
contextualize our findings and convey a balanced message.

One worth-mentioning constraint that may restrict the scope
of our assertions is the following: Our work is based on
experimental data coming from the TCGA colon cancer cohort.
The volume of this cohort, as well as the availability of proper,
well-curated, clinical metadata, makes it suitable for our (high-
throughput, probabilistic-based) analyses. Furthermore, the open
microbiome quantification strategy and the resulting data from
Poore et al. (2020) allowed for a (relatively) high-confident

network reconstruction. This is, however, the only cohort for
which such suitable data is available, thus limiting our ability
to replicate our findings in an independent cohort. While the
sample size is adequate for probabilistic network reconstruction
purposes, it can only capture as much of the microbiome
heterogeneity as what was captured by the original authors. On
a related topic, since access to the TCGA raw data required
for the microbiome quantification data described in Poore et al.
(2020) is controlled, we must rely on the quantification strategy
as performed by the original authors—which is in turn influenced
by sequencing depth and wet-lab procedure constraints from the
original work.

Aside from these specific issues, some additional, general
limitations should also be mentioned: although the methods used
both in our work and in Poore et al. (2020) and even those in the
TCGA original approach are all in the state of the art, there are
still challenges. Even though the TCGA data has both, excellent
depth and high quality sequencing, it was not intended as a
metagenomic sequencing assay. Also, even the best metagenomic
approaches rely on currently incomplete annotations. Pre-
processing stages to consider multi-omic approaches, including
metagenomic data are being developed so, these may not be as
optimized and standardized as it will be desirable.

In spite of these clear limitations, we are convinced of the value
of approaches such as the one presented here to start trying to
answer these questions from an integrative data-centered view.

CONCLUSIONS

The progression of colon cancer involves changes in the
interactions between cancer tissue and microbiome. In this
work, we integrated microbiome quantification data with
gene expression data using network models. These models
describe the aforementioned changes in this interactions. We
found that indeed, the set of microorganisms with a higher
connectivity with host genes changes from the early to the
late stages of colon cancer. Furthermore, reorganization is
accompanied by changes in the associated set of biological
functions, showing physiological adaptations associated to
the tumor-microbiome relationships. To better understand
and validate this findings, future experimental work is
needed to properly characterize the mechanisms through
which the microbiome may be mediating the observed
tumor adaptations.
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