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Abstract

The discovery that somatic cells are reprogrammable to pluripotency by ectopic expression of a small subset of
transcription factors has created great potential for the development of broadly applicable stem-cell-based therapies. One
of the concerns regarding the safe use of induced pluripotent stem cells (iPSCs) in therapeutic applications is loss of
genomic integrity, a hallmark of various human conditions and diseases, including cancer. Structural chromosome defects
such as short telomeres and double-strand breaks are known to limit reprogramming of somatic cells into iPSCs, but
whether defects that cause whole-chromosome instability (W-CIN) preclude reprogramming is unknown. Here we
demonstrate, using aneuploidy-prone mouse embryonic fibroblasts (MEFs) in which chromosome missegregation is driven
by BubR1 or RanBP2 insufficiency, that W-CIN is not a barrier to reprogramming. Unexpectedly, the two W-CIN defects had
contrasting effects on iPSC genomic integrity, with BubR1 hypomorphic MEFs almost exclusively yielding aneuploid iPSC
clones and RanBP2 hypomorphic MEFs karyotypically normal iPSC clones. Moreover, BubR1-insufficient iPSC clones were
karyotypically unstable, whereas RanBP2-insufficient iPSC clones were rather stable. These findings suggest that aneuploid
cells can be selected for or against during reprogramming depending on the W-CIN gene defect and present the novel
concept that somatic cell W-CIN can be concealed in the pluripotent state. Thus, karyotypic analysis of somatic cells of origin
in addition to iPSC lines is necessary for safe application of reprogramming technology.
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Introduction

The potential to restore pluripotency to mature somatic cells has

generated new prospects in the establishment of patient-specific

regenerative therapies and has also offered new options for more

advanced and specific modeling of human disease [1,2]. However,

several obstacles remain prior to the therapeutic application of

iPSCs, including the risk of introducing loss of genomic integrity

[3,4]. Recent studies revealed that somatic cell reprogramming

introduces changes at the nucleotide level. Both cell culture length

and conditions were identified as key determinants of this type of

genetic variation [5,6]. In contrast to changes at the nucleotide

level, reprogramming seems to be less permissive to certain types

of structural chromosome damage, such as short telomeres and

double strand DNA breaks [7]. Cells with these kinds of

aberrations are thought to be eliminated during the early stages

of reprogramming by induction of p53-dependent apoptosis [7].

Reprogrammed cells have successfully been generated from

somatic cells that undergo stable inheritance of an abnormal

number of chromosomes, such as Down syndrome. This implies

that aneuploidy (an abnormal number of chromosomes) is not a

barrier to reprogramming [8]. However, the extent to which

defects that promote the continuous reshuffling of whole

chromosomes during mitosis, a condition referred to as whole

chromosome instability (W-CIN) [9], interfere with efficient

reprogramming of somatic cells is unknown.

The molecular mechanisms that underlie chromosome segre-

gation and that safeguard the process are highly complex and

remain incompletely understood [10,11]. In budding yeast, over

one hundred genes are known to cause chromosomal instability

when defective, including genes implicated in chromosome

condensation, sister chromatid cohesion and decatenation, kinet-

ochore assembly and function, spindle formation, mitotic check-

point control and attachment error correction [12,13]. Many

more genes are expected to contribute to chromosomal stability in

mammals, although only a limited number have been identified to

date [9,14]. To begin to address the impact of numerical

chromosome instability, we examined the impact of two distinct

W-CIN gene defects on somatic cell reprogramming. The first

defect involves the BubR1 gene, which encodes a core component

of the mitotic checkpoint, an intricate surveillance mechanism that

acts to delay anaphase onset until all duplicated chromosomes are

properly attached to spindle microtubules and aligned in the

metaphase plate [15–18]. The role of BubR1 in the mitotic

checkpoint is to bind to and inhibit Cdc20, a key activator of the

anaphase-promoting complex/cyclosome (APC/C) that drives

cells into anaphase by targeting cyclin B1 and securin for

degradation by the proteasome [19,20]. In addition, BubR1
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functions at kinetochores to stabilize microtubule-chromosome

attachments [20,21]. While complete loss of BubR1 results in cell

death by mitotic catastrophe, cells with low amounts of BubR1 are

viable despite frequent chromosome missegregation and develop-

ment of near-diploid aneuploidies [22].

The second defect involves the RanBP2 gene, which encodes a

giant nuclear pore complex (NPC) protein with SUMO E3 ligase

activity [23]. At the onset of mitosis, when the nuclear envelope

disintegrates and NPCs disassemble, RanBP2 becomes an

important regulator of topoisomerase II alpha (hereafter referred

to as Top2a), an enzyme that decatenates the centromeric DNA

regions of duplicated chromosomes [24]. Accumulation of Top2a

at mitotic centromeres is dependent on sumoylation by RanBP2.

Complete inactivation of RanBP2 gene expression results in cell

death, but cells with low levels of RanBP2 survive and proliferate

normally despite incomplete DNA decatenation, frequent chro-

mosome missegregation and aneuploidization [24].

Here, we show that both W-CIN gene defects are compatible

with reprogramming. Unexpectedly, however, the two genetic

defects had contrasting effects on the genomic integrity of the

reprogrammed cells, with RanBP2-insufficient MEFs generating

karyotypically normal and chromosomally stable iPSCs and

BubR1-insufficient MEFs almost exclusively yielding aneuploid

and chromosomally unstable iPSC clones. These data indicate that

aneuploid cells can be selected for or against during reprogram-

ming depending on the genetic defect driving the chromosome

number instability. Furthermore, our data reveal that W-CIN that

exists at the somatic cell level can become dormant upon

reprogramming, indicating that testing of both iPSCs and the

iPSC-founding cells for chromosome number instability will be

necessary for the safe application of iPSC technology in

regenerative medicine.

Results

W-CIN Is Not a Barrier for Cellular Reprogramming
We investigated the impact of W-CIN on cell reprogramming

using MEFs derived from BubR1 (BubR1H/H) and RanBP2

hypomorphic (RanBP2–/H) mutant mice [22,24]. Earlier work

demonstrated that BubR1H/H MEFs generate ,10% of normal

BubR1 protein levels and RanBP2–/H mice ,26% of normal

RanBP2 protein levels. We selected BubR1H/H and RanBP2–/H

MEFs for our studies because their aneuploidy rates are quite

similar, with BubR1H/H cultures having 36% aneuploid cells at

passage 5 (P5) [25] and RanBP2–/H cultures 33% [24]. Moreover,

entirely different mechanisms drive aneuploidization in BubR1H/H

and RanBP2–/H MEFs. Newly performed chromosome counts on

P5 wildtype, BubR1H/H and RanBP2–/H MEFs confirmed our

previously published aneuploidy rates for these genotypes

(Table 1). To induce reprogramming to pluripotency, Oct-3/4,

Sox2, and Klf4 expression constructs were introduced in P5

wildtype, BubR1H/H, and RanBP2–/H MEFs by retroviral trans-

duction. c-Myc was omitted because its overexpression has been

associated with aneuploidization [26]. Embryonic stem (ES) cell-

like colonies emerged around two weeks after transduction,

irrespective of genotype. The number of ES cell-like colonies

emerging from BubR1H/H or RanBP2–/H MEF lines were similar to

those originating from wildtype MEFs (Figure 1A). The finding

that ES-like colonies developed from BubR1H/H MEFs with

normal efficiency was somewhat unexpected because p19Arf,

p16Ink4a and p53 are elevated in P5 BubR1H/H MEFs [25,27] and

have previously been shown to impair reprogramming [7,28]. We

found that growth rates of P5 BubR1H/H MEFs were similar to

those of P5 wildtype and RanBP2–/H MEFs (Figure S1), implying

that the level of p19Arf, p16Ink4a and p53 engagement was too low

to have a substantial impact on global cell cycle progression.

Individual ES cell-like colonies were picked and clonally

expanded on monolayers of mitotically inactivated STO feeder

cells that exogenously express NEO and leukemia inhibitory factor

(LIF), referred to as SNL feeders [29]. The morphology and

growth rate of these cells was similar to that of murine ES cells

(ESCs) derived from 129Sv/E6C57BL/6 blastocysts, irrespective

of genotype (Figure 1B and 1C). We used immunofluorescence to

screen for the presence of ES cell-associated markers. Repro-

grammed cells derived from all three MEF genotypes consistently

expressed Oct3/4, Nanog, and SSEA1, with each marker

exhibiting the proper fluorescence intensity and subcellular

localization (Figure 1D). RT-PCR analysis confirmed that Oct4

and Nanog expression was elevated, together with several other ES

cell-associated marker genes (Figure 1E). Consistent with repro-

gramming [30,31], retroviral expression of Yamanaka factors was

silenced in iPSCs of all three genotypes (Figure 1E). Furthermore,

the puromycin resistance gene, which is co-expressed with

exogenous Oct-3/4, Sox2, and Klf4 from an IRES [1], was co-

silenced upon reprogramming as evidenced by prompt iPSC death

in the presence of puromycin (Figure 1F).

To further evaluate whether BubR1H/H and RanBP2–/H iPSC

clones were properly reprogrammed, we tested their developmen-

tal potential by several methods. First, we formed embryoid bodies

(EBs) by growing wildtype, BubR1H/H and RanBP2–/H iPSC clones

in suspension in ES medium lacking LIF (Figure 2A). EBs

harvested at day 5 and 10 expressed ectodermal (Pax3 and Mash1),

mesodermal (Tbx5 and Brachyury), and endodermal (AFP and

Foxa2) markers irrespective of genotype [32] (Figure 2B–2D),

indicating that all three germ layers were present. Second, when

injected subcutaneously into SCID mice, wildtype (n = 3),

BubR1H/H (n = 6) and RanBP2–/H iPSC clones (n = 5) produced

aggressively growing teratomas that contained tissue structures

representing all three embryonic germ layers (Figure 3A and 3B).

Third, when injected into blastocysts, wildtype (n = 3), BubR1H/H

(n = 3), and RanBP2–/H iPSC clones (n = 3) produced viable

chimeric animals, with the exception of one RanBP2–/H iPSC

Author Summary

iPSC technology has the potential to revolutionize stem-
cell based regenerative medicine and would also allow for
the production of patient-specific cells for disease model-
ing and drug discovery. One of the primary safety concerns
of iPSCs is genetic instability, which is associated with
cancer and various other diseases and includes abnormal-
ities in both chromosomal structure and number. Whereas
certain structural chromosome changes have been shown
to preclude somatic cell reprogramming, the effect of
whole-chromosome reshuffling on this process is com-
pletely unknown. Here we show that BubR1 and RanBP2
hypomorphic MEF lines, which are highly prone to
erroneous chromosome segregation due to mitotic
checkpoint and DNA decatenation failure, respectively,
reprogram to pluripotency with normal efficiency. How-
ever, while RanBP2 hypomorphic MEFs yielded karyotyp-
ically normal iPSC clones with generally low chromosomal
instability rates, BubR1 hypomorphic MEFs almost exclu-
sively yielded aneuploid iPSC clones with high instability
rates. These data provide important new insights into the
genomic integrity requirements during somatic cell repro-
gramming, and they establish that the safe application of
iPSC technology requires screening of both iPSCs and the
iPSC-founder cells for chromosome number instability.

Reprogramming Permits Whole-Chromosome Instability
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clone (Figure 3C). Failure to generate chimeras by this RanBP2–/H

iPSC clone was most likely due to the low number of pups born

rather than lack of pluripotency as it was capable of forming

teratomas in which cell types derived from the three germ layers

were detectable. Collectively, the above data suggest that MEFs

with W-CIN gene defects fully reprogram to iPSCs with similar

efficiency as wildtype MEFs.

Reprogramming Ability of Aneuploid Cells Is W-CIN
Gene–Dependent

Next, we performed chromosome counts on metaphase spreads

of independent RanBP2–/H and BubR1H/H iPSC clones to

determine whether there might be a bias against reprogramming

of aneuploid MEF cells and to compare W-CIN rates before and

after reprogramming. As shown in Table 2, all ten RanBP2–/H

Figure 1. MEFs with W-CIN gene mutations can be efficiently reprogrammed into iPSCs. (A) Average numbers of ES cell-like colonies
derived from MEFs with indicated genotypes (n = 3 independent MEF lines). Error bars represent SEM. (B) Light microscopy images of iPSC colonies
with indicated genotypes growing on SNL feeder layer. Scale bar represents 500 mm. (C) Growth curves of mESCs and iPSC clones derived from MEFs
of the indicated genotypes. We note that there were no significant differences in growth between individual iPSC lines of each genotype. Error bars
represent SD. (D) Immunostaining of wildtype, RanBP2–/H and BubR1H/H iPSC for ES cell markers. Representative images are shown. DNA of cells
stained for Oct3/4 and Nanog was visualized with Hoechst. Scale bar represents 200 mm. (E) RT-PCR analysis of retroviral transgene silencing and
endogenous pluripotency-associated gene induction. (F) Silencing of retroviral expression after direct reprogramming. BubR1H/H iPSCs die upon
addition of 4 mg/ml puromycin for 24 h. Scale bar represents 500 mm.
doi:10.1371/journal.pgen.1002913.g001
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iPSC clones examined predominantly consisted of cells with 40

chromosomes, indicating that they originated from karyotypically

normal MEF cells. In contrast, only one of 11 BubR1H/H iPSC

clones analyzed predominantly consisted of cells with 40

chromosomes, implying that 10 clones originated from aneuploid

BubR1H/H MEFs (Table 2). However, an alternative explanation

for the data would be that reprogramming is restricted to

karyotypically normal BubR1H/H MEFs but that massive aneu-

ploidization initiated after the completion of reprogramming

accounts for the genesis of iPSC clones where the predominant

population of cells has a chromosome number other than 40 (see

Figure S2). To explore the probability of this model, we selected

three independent BubR1H/H iPSC clones listed in Table 2 (each

having a majority population of cells with a different chromosome

number), prepared subclones from single cells and analyzed their

karyotypes. As shown in Table 3, in each instance, the majority of

the subclones maintained a karyotype that closely resembled that

of the parental line. Specifically, in most subclones the majority of

the cells had a chromosome number found in the majority cells of

the corresponding parental clone. These data argue against the

notion that severe aneuploidization at the early stages of clonal

expansion of reprogrammed cells accounts for prevalence of

aneuploid BubR1H/H iPSC clones, and are consistent with the idea

that aneuploid BubR1H/H MEFs reprogram more efficiently than

BubR1H/H MEFs with a normal karyotype. Wildtype MEFs, which

typically have aneuploidy rates of ,9% at P5 [22,24], showed a

moderate bias for reprogramming of aneuploid MEFs, with 23%

of iPSC clones analyzed originating from aneuploid MEF cells.

Thus, perhaps biased reprogramming of karyotypically abnormal

MEFs may not be restricted to BubR1H/H cells.

RanBP2–/H iPSC clones on average had a much lower

percentage of aneuploid cells (12%67%; Table 2) than

RanBP2–/H MEFs (33%62%; Table 1). This reveals that RanBP2

insufficiency has a differential impact on the accuracy of

chromosome segregation in pluripotent and differentiated cells,

indicating that certain W-CIN gene defects can be masked during

reprogramming. Redifferentiation of RanBP2–/H iPSC clones with

low rates of aneuploidy resulted in a dramatic increase in

aneuploidization (Figure 4A and 4B). In contrast, redifferentiation

of wildtype iPSC clones resulted only in very modest increases in

aneuploidy. These data argue against the possibility that

reprogramming of RanBP2–/H MEFs select for compensatory

genetic alterations that improve chromosome segregation fidelity

and further support the notion that chromosomal instability

associated with RanBP2 hypomorphism is masked at the

pluripotent state.

Reprogramming Reduces Dependence of Sister
Centromere Decatenation on RanBP2

Decatenation of centromeric DNA by Top2a is essential for

proper chromosome separation of sister chromatids [33]. Previ-

ously, we showed that targeting of Top2a to inner centromeres of

mitotic chromosomes is regulated by RanBP2-mediated sumoyla-

tion [24]. Based on these earlier findings, we proposed that the

marked decrease in aneuploidization upon reprogramming of

RanBP2–/H MEFs might be due to improved centromeric targeting

of Top2a. To explore this hypothesis, iPSC clones derived from

wildtype and RanBP2–/H MEFs were stained with antibodies

against Top2a and centromeres. As expected, nearly all wildtype

iPSCs accumulated Top2a to the inner centromeres at mitosis

onset (Figure 5A and 5B). Consistent with correction of W-CIN

upon reprogramming, RanBP2–/H iPSCs localized Top2a to the

inner centromeres with similar efficiency as iPSC derived from

wildtype MEFs [24].

It has been reported that a significant number of proteins

implicated in cell cycle regulation are upregulated in pluripotent

stem cells, including RanBP2 [34], which led us to speculate that

normalization of Top2a localization in RanBP2–/H iPSC cells

might be due to loss of RanBP2 hypomorphism during

reprogramming. To test this, we used western blot analysis to

compare RanBP2 protein levels in iPSCs derived from wildtype

and RanBP2–/H iPSC clones. We observed that RanBP2 levels

were indeed reduced in RanBP2–/H iPSCs (Figure 5C and Figure

S3) and that the level of reduction was similar to that documented

for RanBP2–/H MEFs [24]. Furthermore, Top2a levels were

normal in RanBP2–/H iPSCs, indicating that the mechanism of

correction of Top2a localization to inner centromeres does not

involve compensatory expression (Figure 5C). Furthermore, it has

been proposed that p53 safeguards against aneuploidy [35,36],

which led us to speculate that RanBP2 insufficiency might sensitize

reprogrammed cells to aneuploidy-induced p53 induction, thereby

allowing for more efficient elimination of aneuploid iPSCs from

RanBP2–/H iPSC cultures. We explored this potential mechanism

by measuring p53 levels in extracts prepared from RanBP2–/H and

Table 1. MEF aneuploidy rates prior to reprogramming.

MEF
genotype Line

Mitotic
cells
inspected

Percent
aneuploid
cells Karyotypes with the indicated chromosome number

35 36 37 38 39 40 41 42 43 44

Wildtype 1 50 12 1 1 1 1 44 2

2 50 10 1 2 45 2

3 50 8 1 46 2 1

BubR1H/H 1 50 38 1 3 1 5 31 1 4 3 1

2 50 40 3 2 3 3 30 3 4 1 1

3 50 36 4 3 1 2 32 4 2 2

RanBP2–/H 1 50 30 2 2 1 35 6 1 3

2 50 34 2 2 7 33 5 1

3 50 34 2 1 2 5 33 2 3 2

Chromosome counts were performed at P5.
doi:10.1371/journal.pgen.1002913.t001

Reprogramming Permits Whole-Chromosome Instability
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WT iPSC cultures, but no detectable differences in p53 levels were

observed between the two genotypes (Figure 5D). Taken together,

the above data indicate that pluripotent cells are less dependent on

RanBP2 for proper Top2a targeting to inner centromeres than

somatic cells.

Subcloning of iPSCs Can Improve Chromosome Number
Integrity

Our finding that cultures of wildtype iPSCs originating from

karyotypically normal MEF cells have aneuploidy rates of 12–36%

highlights that reprogramming is subject to substantial cell culture

induced aneuploidy (Table 2). High rates of chromosomal

instability pose a potential safety risk in regenerative therapies

based on iPSCs, since aneuploidization is potentially tumor

promoting [9,10,37]. Furthermore, because aneuploidy can alter

the metabolic and proliferative properties of cells [4,38,39],

aneuploidization of cultured iPSCs may impact the analysis of

studies using disease-specific iPSCs derived from patients. It is

Figure 2. iPSCs from W-CIN mutant MEFs differentiate into EBs
comprising of all embryonic germ layers. (A) Representative EBs
derived from mESCs and iPSC clones. (B–D) qRT-PCR analysis of EBs
derived from mESCs and iPSC clones for expression of the indicated
embryonic germ layer markers. Error bars represent SEM.
doi:10.1371/journal.pgen.1002913.g002

Figure 3. iPSCs derived from W-CIN MEFs form teratomas and
chimeric mice. (A) Analysis of teratomas derived from iPSC clones of
the indicated genotypes. mESCs were used as a control for teratoma
formation. (Top) Images of representative teratomas collected 21 days
after injection of iPSCs into SCID mice. (Bottom) Teratoma volume
plotted as a scatter plot with mean. We note that RanBP2–/H and
BubR1H/H MEFs failed to form teratomas. (B) Hematoxylin and eosin
staining of teratoma sections. Scale bar is 200 mm. (C) Aneuploid iPSCs
injected into BALB/c host blastocysts produce viable chimeric mice.
(Left) Summary of blastocyst injection results. Clone ID#s correspond to
iPSC clones listed in Table 2. Numbers in parenthesis indicate total
number of pups delivered. (Right) Images of chimeric animals produced
by blastocyst injection of iPSCs. The ages of the pups are indicated in
days.
doi:10.1371/journal.pgen.1002913.g003

Reprogramming Permits Whole-Chromosome Instability

PLOS Genetics | www.plosgenetics.org 5 August 2012 | Volume 8 | Issue 8 | e1002913



therefore important to identify methods for selection of pluripotent

cells with normal karyotypes and for maintenance of karyotypic

stability during cell culture. To test if aneuploidy rates of wildtype

iPSC clones can be decreased through subcloning, we generated

subclones from three independent wildtype iPSC cultures (clone

ID# 1, 2 and 3 in Table 2), which had aneuploidy rates of 12%,

12% and 14%, respectively. Subclones of each of these iPSC

clones were expanded and subjected to chromosome counts (at P3

after picking). Although none of the subclones analyzed consisted

of cells with only 40 chromosomes (Table 4), 8 out of 19 subclones

had at least two fold reduced aneuploidy rates compared to their

parental iPSC clones, with 2 subclones containing 2% aneuploidy

and four subclones containing 4% aneuploidy. Only three of the

subclones had substantially higher aneuploidy rates. When re-

examined after 6 additional passages, 3 of 4 subclones with an

improved karyotype showed persistence of the upgrade (Table 4).

Thus, although subcloning could not entirely eliminate aneuploi-

dy, it yielded several iPSC cultures with continued low rates of

karyotypic instability.

Discussion

Although the importance of iPSC technology for regenerative

therapies is broadly recognized, several hurdles to their clinical use

Table 2. W-CIN gene defects do not preclude somatic cell reprogramming.

iPSC
genotype

iPSC
clone
ID#

Mitotic
cells
inspected

Percent
aneuploid
cells

Percent
deviation Karyotypes with the indicated chromosome number

35 36 37 38 39 40 41 42 43 44 45

RanBP2–/H 1 50 4 4 1 1 48

2 50 6 6 2 47 1

3 50 8 8 1 2 46 1

4 50 8 8 1 1 46 1 1

5 50 10 10 2 45 3

6 50 10 10 4 45 1

7 50 12 12 1 1 2 44 2

8 50 16 16 2 1 2 42 2 1

9 50 18 18 1 5 41 3

10 50 28 28 1 3 1 7 36 2

BubR1H/H 1 100 53 53 1 3 2 7 19 47 20 1

2 50 76 42 1 1 12 29 6 1

3 50 90 48 1 5 26 16 2

4 50 78 76 1 2 2 11 12 8 10 3 1

5 50 92 46 1 1 1 1 4 3 27 11 1

6 50 96 58 1 1 2 2 17 21 5 1

7 50 82 66 4 1 1 9 13 17 5

8 50 94 60 3 9 20 11 5 2

9 50 98 60 1 2 1 4 15 20 3 4

10 50 96 68 1 2 1 2 8 12 16 7 1

11 50 98 48 1 2 1 1 4 4 8 26 3

Wildtype 1 50 12 12 1 1 2 44 1 1

2 50 12 12 1 3 44 2

3 50 14 14 1 3 43 3

4 50 16 16 1 1 4 42 1 1

5 50 18 18 1 1 41 7

6 50 20 20 2 2 5 40 1

7 50 20 20 1 2 6 40 1

8 50 28 28 1 1 4 4 36 4

9 50 34 34 1 33 15 1

10 50 36 36 1 1 1 2 7 32 3 1 2

11 50 90 16 2 42 5 1

12 50 92 18 1 1 1 4 41 2

13 50 98 16 1 1 3 42 2 1

Chromosome counts on iPSC clones with indicated genotypes. Percent deviation indicates the fraction of spreads with the chromosome number different from the
most frequent count.
doi:10.1371/journal.pgen.1002913.t002

Reprogramming Permits Whole-Chromosome Instability
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exist, including the potential of genomic instability. Here we have

examined the relationship between somatic cell reprogramming and

W-CIN, a type of genomic instability associated with cancer and

other human disorders. Our studies provide several important new

insights that should improve the efficacy of iPSC use in future

clinical applications. First, we demonstrate that W-CIN does not

pose a barrier to reprogramming. Second, we show that W-CIN

iPSCs are capable of differentiating into all three distinct germ layer

cell types. Third, we show that although MEFs with two distinct W-

CIN defects efficiently reprogram into iPSCs, they do so with highly

contrasting outcomes on chromosome number integrity and

stability (Figure 6): our data suggest that BubR1 hypomorphic

iPSC clones preferentially originate from aneuploid MEFs, while

RanBP2 hypomorphic iPSC clones preferentially stem from MEFs

with normal diploid chromosome numbers. Fourth, our data

uncovered the fascinating concept that a W-CIN gene defect

responsible for severe aneuploidization in somatic cells can become

dormant upon reprogramming. The particular W-CIN defect that

revealed this concept is RanBP2 hypomorphism. We ruled out that

a failure to maintain the RanBP2 hypomorphic status after

reprogramming is responsible for restoring high-fidelity chromo-

some segregation. One possibility is that SUMO E3 ligases other

than RanBP2, such as PIAS proteins, redundantly targeting Top2a

to inner centromeric regions of duplicated chromosomes [40–42].

An alternative explanation might be that Top2a accumulates to

inner centromeres in a SUMO independent fashion in pluripotent

Table 3. Karyotypes of subcloned BubR1 hypomorphic iPSCs reflect the parental kayotype profile.

Parental
BubR1H/H

iPSC clone
iPSC
ID#

Mitotic
cells
inspected

Percent
aneuploid
cells

Percent
deviation Karyotypes with the indicated chromosome number

35 36 37 38 39 40 41 42 43 44 45

Clone 1 Parental 100 53 53 1 3 2 7 19 47 20 1

Subclone 1 50 46 46 1 1 2 9 27 7 3

Subclone 2 50 44 44 2 1 1 4 6 28 6 1 1

Subclone 3 50 44 44 2 1 28 17 2

Subclone 4 50 40 40 5 5 5 30 4 1

Subclone 5 50 40 40 1 2 10 30 7

Subclone 6 50 34 34 2 2 8 33 3 2

Subclone 7 50 20 20 2 6 40 2

Subclone 8 50 88 46 3 2 1 2 3 6 27 6

Subclone 9 50 90 40 1 1 5 30 8 5

Subclone 10 50 80 32 1 1 2 10 34 2

Clone 5 Parental 50 92 46 1 1 1 1 4 3 27 11 1

Subclone 1 50 84 64 4 8 17 18 3

Subclone 2 50 100 46 11 27 12

Subclone 3 50 96 46 1 2 14 27 6

Subclone 4 50 96 42 1 1 1 2 5 29 9 2

Subclone 5 50 92 44 1 4 9 28 8

Subclone 6 50 96 40 1 2 2 8 30 6 1

Subclone 7 50 94 56 2 1 1 3 4 8 22 6 3

Subclone 8 50 98 52 1 1 2 9 24 13

Subclone 9 50 100 50 1 12 12 25

Subclone 10 50 100 36 1 14 32 3

Clone 11 Parental 50 98 48 1 2 1 1 4 4 8 26 3

Subclone 1 50 90 58 1 5 2 3 15 21 3

Subclone 2 50 96 46 1 1 2 5 3 11 27

Subclone 3 50 96 44 1 1 2 3 5 8 28 2

Subclone 4 50 98 50 1 2 2 1 5 3 6 25 5

Subclone 5 50 94 56 1 1 1 3 5 8 3 22 6

Subclone 6 50 98 46 1 1 1 1 1 6 27 11 1

Subclone 7 50 98 52 1 2 1 1 5 24 14 1 1

Subclone 8 50 100 34 2 2 8 33 4 1

Subclone 9 50 96 32 1 1 2 8 34 2 2

Subclone 10 50 94 56 1 1 3 1 1 5 16 22

Parental IPSC clone ID#s correspond to clones listed in Table 2. The most frequent count of each iPSC subclone is in bold typeface. Percent deviation indicates the
fraction of spreads with the chromosome number different from the most frequent count.
doi:10.1371/journal.pgen.1002913.t003
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cells. Regardless of the precise mechanism by which W-CIN can be

concealed in iPSCs, the phenomenon itself highlights that it will not

only be important to check iPSCs for aneuploidization but also the

somatic cells from which they originated.

The observation that aneuploid cells within BubR1 hypomor-

phic MEF cultures undergo preferential reprogramming is

puzzling given that BubR1 insufficiency engages the p16Ink4a-Rb

and p53-p19Arf pathways [43], both of which have been shown to

inhibit reprogramming [7,28]. Perhaps activation of these tumor

suppressor pathways is necessary but not sufficient for the

elimination of aneuploid MEFs during the early stages of

reprogramming. The observation that BubR1H/H aneuploid MEFs

preferentially dedifferentiate raises the possibility that BubR1

might be a key component of a surveillance pathway that prevents

aneuploid cells from reprogramming. Interestingly, in earlier

studies we have shown that BubR1 levels decrease with aging in

various mouse tissues [22,44,45]. This, together with the

observation that aneuploid MEFs with low amounts of BubR1

readily reprogram into chromosomally unstable iPSCs implies that

reprogramming of somatic cells from elderly individuals into

karyotypically normal and stable iPSCs may be particularly

challenging. It will be interesting to further explore this possibility

by testing whether restoration of high BubR1 levels in somatic cells

of older individuals would improve iPSC quality.

Mitosis is more prone to errors when cells divide in culture as

evidenced by the low rates of chromosome missegregation observed

in early passage MEFs from wildtype mice [26,46]. Although the

actual cause of such aneuploidies is unknown, it is generally believed

that they are induced by cell culture stress [47]. Karyotypically

normal mouse ESC lines used in gene targeting experiments are

known to acquire severe aneuploidy upon extensive in vitro passaging,

indicating that pluripotent cells are also susceptible to cell culture-

induced chromosome segregation errors [48]. Our finding that

aneuploid cells emerge in iPSC cultures originating from karyotyp-

ically normal wildtype MEFs (Table 1) confirms earlier indications

that reprogrammed cell lines, like ESC lines, are subject to cell culture

induced aneuploidization [49]. Since aneuploidy poses a risk for

negative side effects in therapeutic applications, it will be important to

devise strategies to avoid it. We find that aneuploidization rates of

iPSC clones derived from wildtype MEF cultures can be markedly

Figure 4. RanBP2 hypomorphic iPSCs reestablish W-CIN after redifferentiation. (A) Light microscopy images of cell cultures derived from
EBs with indicated genotypes. Scale bar represents 500 mm. (B) Chromosome counts on EB-derived cells paired with the karyotype of the parental
iPSC clone from Table 2.
doi:10.1371/journal.pgen.1002913.g004
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reduced through subcloning, implying that iPSC cultures contain

subsets of cells that are quite resistant to cell culture induced mitotic

stress. Thus subcloning might be a pragmatic method to produce

iPSC lines with high chromosome integrity.

Materials and Methods

Cell Culture
BubR1H/H and RanBP2–/H MEFs were previously established

[22,24]. These MEF lines had a C57BL/66129Sv/E mixed genetic

background. MEFs were grown in DMEM containing 10% FCS,

2 mM L-glutamine, 1 mM sodium pyruvate, 100 mM non-essential

amino acids, 55 mg/ml ß-mercaptoethanol, and 10 mg/ml genta-

mycin. IPSCs were generated and routinely cultured in ES cell

medium. This medium consisted of high-glucose DMEM supple-

mented with 15% FCS, 2 mM L-glutamine, 1 mM sodium

pyruvate, 100 mM non-essential amino acids, 55 mg/ml ß-mercap-

toethanol, 10 mg/ml gentamycin and 500 U/ml ESGRO LIF

(Millipore). SNL cells were obtained from Dr. Allen Bradley

[50,51]. These cells were mitotically inactivated by irradiation (3000

rads) and seeded on plates coated with 0.1% gelatin in PBS. ESCs

used in this study were TL1 cells obtained from Dr. Bridgid Hogan.

These cells were derived from a 129/Sv mouse blastocyst [52].

Generation of iPSCs
IPSCs were generated essentially as described in detail

elsewhere [53]. Briefly, using the pMXs-IP vectors (obtained via

Addgene), retroviruses expressing Oct3/4, Sox2 and Klf4 were

produced from Plat-E cells (Cell Biolabs) using Lipofectamine

2000 (Invitrogen). Supernatants were collected 48 h after trans-

fection, passed through 0.45 mm cellulose filter, and mixed 1:1:1

(v/v). Eight6105 fibroblasts were seeded onto 10-cm culture plates

Figure 5. RanBP2–/H iPSCs efficiently recruit Top2a to the inner centromeres. (A) Immunolocalization of Top2a in prometaphase of wildtype
and RanBP2–/H iPSCs. Centromeres are visualized with ACA antibody. DNA was stained with Hoechst. Scale bar represents 10 mm (20006
magnification) (B) Quantification of prometaphases with inner centromeric versus diffuse localization of Top2a. At least 50 prometaphases were
analyzed per genotype. Error bars represent SD. (C) Western blot analysis of iPSC extracts probed for RanBP2 and Top2a. Actin served as a loading
control. (D) Western blot analysis of iPSC extracts probed for RanBP2 and p53. Actin served as a loading control.
doi:10.1371/journal.pgen.1002913.g005
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and the next day infected with 10 ml of viral cocktail in the

presence of 4 mg/ml polybrene. Seventy-two h post-infection, the

medium was replaced with mouse ES cell medium and refreshed

every 1 to 2 days. Colonies were picked 16–26 days post-

transduction, trypsinized and seeded in 96 wells coated with

irradiated SNL cells. To compare the efficiency of iPSC

generation between wildtype and mutant MEFs, 3 lines of

wildtype, RanBP2–/H and BubR1H/H MEFs were transduced with

the same virus cocktail as described above. The number of ES cell-

like colonies was manually counted after 3 weeks. To subclone

iPSC clones, single cell suspensions were prepared. Two hundred

fifty, 500 and 1,000 iPSCs were seeded on 10-cm dishes with SNL

feeders. IPSC colonies were picked and clonally expanded.

Growth Rate Analyses
Growth curves of MEFs were generated using 3 independent

MEFs lines for each of the indicated genotypes. P4 MEFs were

recovered from frozen stocks. The next day (day 0), 1.56104

MEFs were seeded into 35-mm dishes (in duplicate). Cell counts

were performed 24 h after seeding and at 24-h intervals thereafter,

for up to 4 days. The average number of cells per each time point

was calculated by averaging the average of the duplicates for each

of the 3 independent MEF lines. Log cell numbers were calculated

by dividing the average number of cells counted on each of the

days by the number of cells seeded. To determine the growth rates

of iPSCs, 3 wildtype, 3 BubR1H/H and 3 RanBP2–/H iPSC clones

were seeded in duplicate at 16105 cells per well of a 6-well plate

density. Every 3 days, we trypsinized the cultures, counted the

number of cells, and reseeded 16105 cells. This process was

repeated 9 times. For each iPSC line, the average between

duplicates was calculated. The growth curves for each genotype

were plotted as the average of the three corresponding cell lines.

The cumulative cell numbers are indicated on the Y-axis on a

logarithmic scale.

Testing for Complete Reprogramming to Pluripotency
Retroviral silencing. iPSCs were grown in the presence of

4 mg/ml puromycin. After 24 h, cells were examined for viability

using an inverted microscope.

ES markers (RT–PCR). For ES cell and iPSC clones, feeder

cells were removed from culture by incubating the mixed cell

suspension in gelatin-coated dishes for 30 min. RNA was isolated

from cells using Trizol (Invitrogen). Reverse transcription was

performed using Superscript III and the random hexamer primer

(Invitrogen). PCR was performed using Platinum taq (Invitrogen).

The forward primers for exogenous Oct4, Sox2 and Klf4 and the

primer sets for endogenous Oct4, Sox2, Klf4, Nanog, Rex1, Esg1

and G3pdh were described previously [54]. The reverse primer for

exogenous Oct4, Sox2, and Klf4 was 59-ATATCAAGCTTATC-

GAGCGGC-39.

Table 4. Subcloning can reduce aneuploidy rates of iPSC clones.

Parental
iPS clone

iPSC
ID#

Mitotic
cells
inspected

Percent
aneuploid
cells Karyotypes with the indicated chromosome number

36 37 38 39 40 41 42 43 44

Wildtype 1 Parental 50 12 1 1 2 44 1 1

Subclone 1 50 6 3 47

Subclone 2 50 10 1 45 4

Subclone 3 50 10 3 45 1 1

Subclone 4 50 14 1 43 4 1 1

Subclone 5 50 28 2 1 1 2 36 6 1 1

Wildtype 2 Parental 50 12 1 3 44 2

Subclone 1 50 2 (4) (2) 49 (48) 1

Subclone 2 50 2 (4) (1) 49 (48) 1 (1)

Subclone 3 50 4 (14) (2) (5) 48 (43) 2

Subclone 4 50 4 (2) 1 48 (49) 1 (1)

Subclone 5 50 4 2 48

Subclone 6 50 4 1 1 48

Subclone 7 50 8 1 2 46 1

Subclone 8 50 12 1 44 5

Subclone 9 50 30 1 5 35 9

Wildtype 3 Parental 50 14 1 3 43 3

Subclone 1 50 6 3 47

Subclone 2 50 8 3 46 1

Subclone 3 50 12 1 1 44 3 1

Subclone 4 50 14 4 43 3

Subclone 5 50 92 4 46

Chromosome counts on wildtype iPSC subclones. Parental IPSC clone ID#s correspond to clones listed in Table 2. The subclones that had at least two fold reduced
aneuploidy rates compared to their parental iPSC clones are in italic typeface. Subclone 2-1, 2-2, 2-3, and 2-4 were re-examined after 19 days in culture and the
karyotype is shown in parenthesis.
doi:10.1371/journal.pgen.1002913.t004
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Differentiation markers (qRT–PCR). mESCs or iPSC

clones were differentiated by culturing in suspension at 26106

cells/ml in ES medium without LIF. EBs were collected after 5 and

10 days for RNA isolation. Preparation of cDNA was done as above.

Real-time PCR was performed using SYBR green master mix

(Invitrogen) with 95uC for 5 min, 40 cycles at 95uC for 15 sec, 60uC
for 30 sec, 72uC for 30 sec, followed by a dissociation cycle. Fold

changes in gene expression in EBs (day 5 and day 10) vs. iPSCs (day

0) were calculated based on the 22DDCT method and normalized to

GAPDH. The primers used were described previously [32].

Teratoma formation. iPSCs growing on SNL feeders in one

well of a 6-well plate were trypsinized, washed once with ES

medium, and suspended in ES medium at 46106 cells per ml.

26106 cells were injected into the subcutaneous tissue above the

rear haunch of 5 to 8 week old C.B-17 SCID males (Taconic

#CB17SC-M) using a 23GX1 needle. Twenty one days post

injection, teratomas were dissected, photographed, measured

using a digital caliper (World Precision Instruments, Inc.

#501601), fixed in 10% formalin for 20 h and processed for

paraffin embedding. Sections were prepared and routinely stained

with hematoxylin and eosin and scored for the presence of tissues

derived from all three germ layers as previously described [8]. As

controls we used mESCs (TL1), wildtype and BubR1H/H MEFs,

and ES medium alone. The tumor volume values were plotted

using Prism 4.0a for Mac. Pictures were acquired using an

Olympus AX70 microscope with Olympus DP71 color camera,

UPlanFl 206/0.50 Olympus objective and DP Controller

3.1.1.267 software.

Chimera formation. Wildtype, BubR1H/H and RanBP2–/H

iPSC clones growing on SNL feeders were trypsinized and injected

into BALB/c host blastocysts (Harlan) using standard procedures.

In Vitro Differentiation of iPSCs
Wildtype and RanBP2–/H iPSC cultures were trypsinized,

collected in 8 ml ES cell medium and plated onto a gelatin-

coated 10-cm dish for 1 h to allow SNL feeders to attach. The

supernatant was then collected, pelleted and resuspended in ES

cell medium without LIF. 26106 cells in 10 ml medium were

transferred to a Petri dish to induce EB formation. The medium

was changed every 2 days by collecting the suspension in 15 ml

falcon tube, leaving the cells to settle at the bottom, then replacing

the supernatant with fresh medium. After 8 days, EBs were

collected and seeded onto gelatin-coated 10-cm culture dish for

outgrowth of differentiated cells. Karyotyping was performed 5

days thereafter.

Indirect Immunofluorescence and Western Blotting
For immunofluorescence, iPSCs were seeded on 0.1% gelatin-

coated glass slides. After 24–48 h, the cells were fixed in 4%

paraformaldehyde for 10 min at room temperature, washed 36
with PBS and permeabilized/blocked for 15 min in PBS

containing 0.1% Triton X-100 and 5% FCS. The cells were then

incubated with primary antibodies against OCT3/4 (1:50, mouse

monoclonal, sc-5279, Santa Cruz Biotechnology), NANOG

(1:100, rabbit polyclonal, A300-398A, Bethyl Laboratories Inc.),

and SSEA1 (1:100, mouse monoclonal, Developmental Studies

Figure 6. Model illustrating the contrasting effects of W-CIN gene defects on iPSC genomic integrity. RanBP2 hypomorphic iPSCs
originate from MEFs with normal chromosome numbers and exhibit a high degree of chromosome number stability. BubR1 hypomorphism results in
selective reprogramming of aneuploid cells and yields chromosomally unstable iPSCs. iPSC cultures established from wildtype MEFs typically contain
relatively small subpopulations of cells with abnormal chromosome numbers.
doi:10.1371/journal.pgen.1002913.g006
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Hybridoma Bank) for 1 h in PBS containing 0.1% Triton X-100

and 5% FCS. The cells were washed 36with PBS and incubated

with the appropriate AlexaFluor-conjugated secondary antibodies

(Invitrogen). After Hoechst staining, the cells were mounted in

Vectashield mounting medium (Vector Labs). For Top2a staining,

the cells were treated with 0.1 mM monastrol (Biomol, GR322-

0025) for 3 h before fixation and the staining was performed as

previously described [24]. Western blotting for RanBP2 and

BubR1 was performed as previously described [24,55]. Antibodies

from TopoGEN (#2010-1A) and Santa Cruz (SC-6243) were used

to detect Top2a and p53, respectively. The antibody against p16

was as previously described [25,27].

Chromosome Counting
iPSC clones (or subclones) growing on SNL feeders were

incubated for 4 h with 0.8 mg/ml KaryoMax Colcemid (Invitro-

gen). The cells were then harvested, incubated in 0.075 M KCl

solution for 12 min at 37uC and fixed in 3:1 methanol to acetic

acid (v/v) solution. After two washes with fixative, the iPSC

suspension was dropped onto glass slides and dried on wet paper

towels. The slides were stained with KaryoMAX Giemsa staining

solution (Invitrogen) according to the manufacture’s instructions.

Chromosome numbers of 50 or 100 metaphase spreads were

counted for each iPSC line.

Supporting Information

Figure S1 Analysis of cell cycle inhibition before and after

reprogramming. (A) Growth curves of P5 MEFs. Curves were

generated from three independent clones per genotype seeded in

duplicates. Error bars represent SD. (B) Western blot analysis of

wildtype and BubR1H/H iPSC extracts probed for p53 and p16.

Actin served as a loading control.

(TIF)

Figure S2 Potential models for selective reprogramming of

aneuploid BubR1H/H MEFs. We observed that .90% BubR1H/H

iPSC clones have a majority population consisting of a

chromosome number other than 40 even though only 38% of

MEFs were aneuploid at the onset of reprogramming. Two

possible mechanisms, designated A and B, might explain this

observation. According to mechanism A (highlighted in black

font), the chromosome number of the founding MEF cell at the

onset of reprogramming represents the chromosome number of

the majority population of the iPSC clone. This mechanism would

indicate a bias for reprogramming of karyotypically abnormal

BubR1H/H MEF cells. According to mechanism B (highlighted in

red font), the chromosome number of the founding MEF cell does

not represent the chromosome number of the majority population

of the iPSC clone due to a sharp increase in aneuploidization rates

when cells reach the reprogrammed state. This mechanism would

even be consistent with a bias against reprogramming of

karyotypically abnormal MEF cells. If mechanism B holds true,

one would expect to see no correlation between the spectrum of

chromosome losses and gains of a parental iPSC clone and its

single cell-derived subclones.

(TIF)

Figure S3 Measurement of the degree of RanBP2 insufficiency

in RanBP2–/H iPSC clones. (A) Western blot analysis of serially

diluted RanBP2+/+ iPSC cell lysates for RanBP2 and actin. (B) The

average RanBP2 signal intensity of 3 independent RanBP2+/+

iPSC clones plotted against percentage of lysate volume loaded

using the indicated equation. (C) Relative RanBP2 protein amount

in RanBP2–/H iPSC clones. Lysates from the indicated RanBP2–/H

iPSCs clones and from wildtype iPSC clones were subjected to

western blot against RanBP2 and actin. Using Image J, the

RanBP2 signal was calculated, normalized to background,

normalized to actin, and then averaged between duplicates. The

value for each RanBP2–/H iPSCs clone was then normalized to

wildtype. The relative RanBP2 protein amount (%) was then

calculated with the graph and equation in (B).

(TIF)
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