J Bone Metab 2018;25(4):251-266
https://doi.org/10.11005/jbm.2018.25.4.251
pISSN 2287-6375 elSSN 2287-7029

Original Article

JBM

Causal Inference Network of Genes Related with
Bone Metastasis of Breast Cancer and Osteoblasts
Using Causal Bayesian Networks

Sung Bae Park’, Chun Kee Chung**, Efrain Gonzalez?, Changwon Yoo**

'Department of Neurosurgery, Seoul National University Boramae Medical Center, Seoul;
’Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Clinical Research Institute,

Seoul, Korea

*Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA

Corresponding author

Changwon Yoo

Department of Biostatistics, Robert Stempel
College of Public Health and Social Work,
Florida International University, 11200 SW 8th
Street AHC5, Miami, FL 33199, USA

Tel: +1-305-348-4906

Fax: +1-305-348-4901

E-mail: cyoo@fiu.edu

Chun Kee Chung

Department of Neurosurgery, Seoul National
University Hospital, 101 Daehak-ro, Jongno-gu,
Seoul 03080, Korea

Tel: +82-2-2072-2352

Fax: +82-2-744-8459

E-mail: chungc@snu.ac kr

Received: October 7, 2018
Revised: October 29, 2018
Accepted: November 2, 2018

No potential conflict of interest relevant to this
article was reported.

*Changwon Yoo and Chun Kee Chung contributed
equally to this work and should be considered co-
corresponding authors.

This study was supported by a grant from SNUH
research fund (03-2015-0180).

Copyright © 2018 The Korean Society for Bone and
Mineral Research

This is an Open Access article distributed under the terms
of the Creative Commons Attribution Non-Commercial Li-
cense (http://creativecommons.org/licenses/by-nc/4.0/)
which permits unrestricted non-commercial use, distribu-
tion, and reproduction in any medium, provided the original
work is properly cited.

Qrsemr

Background: The causal networks among genes that are commonly expressed in osteo-
blasts and during bone metastasis (BM) of breast cancer (BC) are not well understood.
Here, we developed a machine learning method to obtain a plausible causal network of
genes that are commonly expressed during BM and in osteoblasts in BC. Methods: We
selected BC genes that are commonly expressed during BM and in osteoblasts from the
Gene Expression Omnibus database. Bayesian Network Inference with Java Objects
(Banjo) was used to obtain the Bayesian network. Genes registered as BC related genes
were included as candidate genes in the implementation of Banjo. Next, we obtained
the Bayesian structure and assessed the prediction rate for BM, conditional indepen-
dence among nodes, and causality among nodes. Furthermore, we reported the maxi-
mum relative risks (RRs) of combined gene expression of the genes in the model. Re-
sults: We mechanistically identified 33 significantly related and plausibly involved genes
in the development of BC BM. Further model evaluations showed that 16 genes were
enough for a model to be statistically significant in terms of maximum likelihood of the
causal Bayesian networks (CBNs) and for correct prediction of BM of BC. Maximum RRs
of combined gene expression patterns showed that the expression levels of UBIAD1,
HEBP1, BTNL8, TSPO, PSAT1, and ZFP36L2 significantly affected development of BM from
BC. Conclusions: The CBN structure can be used as a reasonable inference network for
accurately predicting BM in BC.
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INTRODUCTION

Bone is a frequent site for primary tumor cells to spread and more than 600,000
people every year suffer from bone metastasis (BM) in the US.[1] Breast, prostate
and lung cancers commonly lead to BM and more than 70% of patients with breast
cancer (BC) and BM have a high rate of morbidity and mortality.[2-4] Patients with
BM may suffer from a variety of skeletal-related complications (SRCs) such as bone
pain, pathologic fractures, spinal cord compression, and difficulty to walk.[5] Ad-
ditionally, once a patient with BM experiences a first SRC, the likelihood of experi-
encing a second SRC is greatly increased.[5] Studies regarding normal physiology
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of bone metabolism, interactions between bone and ad-
vanced cancer, and genetics related with BM have been
performed in the laboratory.[6-8] In addition, surgeries, ra-
diation therapy and chemical therapy using target agents
are performed in the clinical field.[9,10] However, despite
the multidisciplinary approach, a large proportion of BM
remains incurable and treatment strategies for BM usually
have a palliative effect.[6] The decrease in effectiveness is
due to fact that the pathophysiology of BM from BC is a
multistep and complex process that consists of escapes of
tumor cell from primary site, a crosstalk between dissemi-
nated BC cells and bone-derived molecules, leading to bone
and reconstitution of secondary tumors at the bone.[11,12]
Although novel therapies which target the pathways in-
volved in BM are emerging, research which focuses on iden-
tifying key upstream regulators related with the molecular
signaling pathway of BM remains clinically relevant to the
prevention of BM.[11] Using statistical machine learning
methods can help us find key upstream regulators from a
causal network model inferred from clinical, genomic and
environmental data related with BM. In turn, this can im-
prove clinically preventive practices and reduce the adverse
effect related with target therapy of BM.

Application of machine learning methods have been
widely used to get the statistical relationship and causal
networks from large and complicated health data.[13,14]
As one of machine learning methods, causal Bayesian net-
works (CBN) have been used to learn causal network in-
ferred from known collected genomic data.[15,16] It has
been shown that the gene expression patterns could be
influenced by multistep complex processes from primary
site, through dissemination, into metastasis.[7,17] There-
fore, the relationships of 1 or 2 genes or molecules cannot
reflect how combination of many genes’ expressions chang-
es according to surrounding environment. We need to seek
for the relationships from interactions from network of
genes and further search for plausible causal interactions.
Although studies have presented the gene changes accord-
ing to BM of BC (BMBC), none of the studies developed re-
search to build an integrated causal network consisting of
gene signatures associated to BMBC.[17] The CBN analysis
of dataset of the expressed genes in BMBC can provide in-
sight into the causal relationship and upstream regulators
governing BMBC. There are 3 specific niches in homing of
tumor cells into bone: the endosteal niche, the haemato-
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poietic stem cell niche and the vascular niche.[18] The end-
osteal niche related with osteoblast has a key role in the
homing and adhesion of circulating tumor cells into bone
and the clinically relevant and important network related
with BM seems to be in the endosteal niche.[18,19] There-
fore, we conducted a CBN analysis of microarray data from
the Gene Expression Omnibus (GEO) to get a causal gene
expression network consisting of genes related with BMBC
and osteoblast for identifying the upstream regulators of
BMBC.

METHODS

After collecting gene expression data from GEO follow-
ing inclusion criteria, we cleaned, normalized, and discretized
the gene expression levels. Then, we selected candidate
genes from the list of genes that were common to the stud-
ies involving BMBC and osteoblast. In the next step, we
learned CBN structure by combining the gene expression
data with published literature and knowledge. We further
learned CBN parameters (conditional probabilities) and
evaluated the final model to see how well it fits the data
(maximum likelihood and conditional independencies),
compared it with current knowledge (published literature
articles) and how well it predicts future instances (receiver
operating characteristic [ROC] curve and relative risk [RR])
(Fig. 1).

We further describe each step that we summarized above
in more detail:

1. Collecting data from GEO

We have retrieved microarray datasets from the GEO da-
tabase of the National Center for Biotechnology Informa-
tion (NCBI) of National Institute of Health (https://www.
ncbi.nlm.nih.gov/geo/, GEO, NCBI accessed in November
2017).[20] We have used the following inclusion criteria: (1)
datasets with the GEO series (GSE) of BMBC, BC without
metastasis and osteoblast; (2) studies should be measur-
ing gene expression of human (homo sapiens); (3) studies
tissue extracted from metastatic bone and the cancerous
region of breast and experimental human cell lines or nor-
mal bone tissue for osteoblast; and (4) BC without metas-
tasis was diagnosed as breast ductal carcinoma without
metastasis when the tissues were extracted by biopsy or
surgery. As a result, there were seven studies that were iden-
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1. Data Collection from GEO
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2. Causal Bayesian Networks (CBNs) from Banjo < ~ -
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3. Further learning and Assessment of 3" CBN
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4. Future study for CBN with enhanced causal order of genes

Causal Network of Bone Metastasis and Osteoblast ||

1218 common genes from 7 studies

15t CBN (1219 nodes = 1218 gene nodes + disease node)

Published literature and Knowledge obtained
from Cytoscape and KEGG

2nd CBN (71 nodes = 70 gene nodes + disease node)

3 CBN (34 nodes) comprised of genes of 15t Markov
Blanket of 2" CBN using GeNle

Data learning

How much the 3 CBN structure can fit the current
data, explain the current knowledge, and predict future
instances.

Fig. 1. Outline of the study. GEQ, Gene Expression Omnibus; KEGG, Kyoto Encyclopedia of Genes and Genomes; CBN, causal Bayesian network.

tified for this study (ten GSEs and 48 GEO sample) (Table 1).

2. Data mining and selection of candidate genes
In this section, we describe how we prepared the datas-
ets that were collected from GEO and in the next section
we describe how we learn causal network of genes com-
monly expressed in BMBC and osteoblasts using CBN.

1) Data cleaning, averaging, normalization and
discretization (CAND:i)

Because gene symbols in the GSEs (set of samples) are
written by gene Identifier (ID) not gene name, we changed
gene IDs in GSE into corresponding gene symbol in matched
GPL (technology platform of microarray analysis used in
study) (Cleaning). Then, if single gene had several raw ex-
pression values of gene, we transformed the raw values of
each gene into a mean value of the raw values (Averaging).
For meaningful comparison of gene expression level, the
relative data from individual studies should be transformed
into normalized data. We normalized the averaging data
into z-scores and performed the normalization task on study-
by-study basis (Normalization).[21] Bayesian Network In-
ference with Java Objects (Banjo) is one of computational
modeling tools based on data-driven method and Banjo
utilize Bayesian network frameworks to result in directed
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inference network.[2,22] Because Banjo implement Bay-
sian Dirichlet equivalence scoring metric of data consisting
of discrete variables, we transformed the normalized data
to discrete values (Discretization). For each gene, all expres-
sions z score values (z) were discretized as less than -1 (z<
-1), between -1 and 1 (-1<z<1), and over 1 (z>1) were
discretized as low, no change, and high, respectively. We
sequentially performed the same CANDi process per each
study.

2) Selection of candidate genes

We selected common genes there were all presented in
GSE of osteoblast, normal bone tissue and BMBC. Among
the common genes, if the genes simultaneously expressed
in BC without metastasis such as genes expressed in BC in-
situ, we excluded the genes in the study. As a result, ten
GSEs (5 for osteoblast and 5 for BMBC) from seven studies
and 1,218 genes were selected (Table 1). After collection of
all data in ten GSEs, we prepared a dataset (denote as D°)
that consists of variables that represent expression levels
(low, no change, and high) of 1,218 genes and a variable
called group that represents whether a subject has osteo-
blast or BM. In the final dataset D°, there were 48 subjects
(13 GSMs with osteoblast and 35 GSMs with BMv) (Table 1).
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Gene Information related with bone metastasis

metastases compared to other metastatic sites.

« MAF is a mediator of breast cancer bone metastasis (MAF
gene encodes MAF mediator)

- CLDN2 was significantly up-regulated (P<0.001) in liver
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GSE, Gene Expression Omnibus Series experiments; GSM, Gene Expression Omnibus Simple Omnibus Format in Text format Sample file.
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3. Learning CBN structure

The structure of CBN is directed acyclic graph (DAG) con-
sisting of nodes and intervening arrows.[13] The arrows in
DAG are interpreted in terms of probabilistic conditional
independence between nodes.[23] First degree Markov
Blanket (MB) of a variable X in CBN (denote as MB [X]) is
defined as set of variables that is the direct causes (parents)
of X and direct effects (children) of X and direct causes (par-
ents) of direct effects (children) of X (of course, X itself is ex-
cluded from MB [X]). Second degree MB of X, third degree
MB of X, etc., can be defined as MB (MB [X]), MB (MB [MB
(X)], etc., respectively.

An example CBN structure is shown in Figure 2. In that
structure, for example, the expression of NFKB2 influences
the likelihood of the presence of BM which influences on
expressions of MAP2K2 and TSO. In parallel, conditional in-
dependence between nodes shows as the probability about
expression of MAP2K2 or TSO is not influenced by NFKB2
given information of BM. Also in Figure 2, first degree MB
of MAP2K2, MB (MAP2K2), is {BM, TSO} and second degree
MB of MAP2K2, MB (MB [MAP2K2]), is {NFKB2, BM, TSO}.

We used Banjo,[24] a Bayesian network learning tool, to
learn 2 CBNs, i.e., a CBN with all 1,218 candidate genes from

Bone
metastasis

@o

Fig. 2. An example of causal Bayesian networks structure. The ex-
pression of NFKBZ influences the likelihood of the presence of bone
metastasis which influences on expressions of MAP2K2 and TSO. In
parallel, conditional independence between nodes shows as the
probability about expression of MAP2K2 or TSO is not influenced by
NFKBZ given information of bone metastasis. The first degree Mar-
kov Blanket (MB) of MAP2K2, MB(MAP2K2), is {Bone metastasis,
TS0} and second degree MB of MAP2K2, MB(MB[MAP2K?]), is {NFKB2,
Bone metastasis, TSO}.

http://e-jbm.org/ 255



| SungBae Park, et al.

all the studies and a CBN with 70 BC-Relevant Genes (BCRGs).

1) CBN with candidate genes

To learn the CBN with all 1,218 candidate genes from all
the studies, we ran 18 independent runs of Banjo (3 inde-
pendent 1 hr, 3 hr, 6 hr, 12 hr, 24 hr, and 36 hr runs; total of
246 hr runs) with the dataset D°and by limiting maximum
parents to be 5. Among 18 best log likelihood structures
that were reported by each independent Banjo run, we
chose the network with the highest log likelihood (denot-
ed as 5% note that 5° includes 1,219-1,218 variables, each
representing a gene expression and a variable named group,
representing whether a subject has osteoblast or BM).

2) CBN with BCRGs

CluePedia, one of Cytoscape plugins, have been known
as a provider for pathways, processes or disease related
with gene, miRNA and protein in conjunction with ClueGo.
[25] Using ClueGo and CluePedia Cytoscape plugin, we
found 13 BCRGs (that represents genes having more close
association to disease and acceptable prior knowledge)
registered in kyoto encyclopedia of genes and genomes
(KEGG).[26] To further analyze possible interactions of 13
BCRGs and 57 genes from second degree MB of group node
in $°, we again ran Banjo with a new dataset (denote as
D*) that combines the expressions of these 70 genes (13
BCRGs and 57 genes from second degree MB). The condi-
tion of setting files for the second Banjo analysis was same
as previous condition except that we used D* with data of
71 variables extracted from data of 1,219 variables in D° (48
subjects). Among 18 best log likelihood structures that
were reported by each independent Banjo run, we chose
the network with the highest log likelihood (denoted as
$*; note that S* includes 71-70 variables, each represent-
ing a gene expression and a variable named group, repre-
senting whether a subject has osteoblast or BM).

4. Learning causal Bayesian parameters

In the network with the highest log likelihood in the sec-
ond Banjo analysis (5*), we represent first degree MB of
the group variable using Bayesian network graphical net-
work interface (GeNle; version 2.2.1; BayesFusion, Pittsburgh,
PA, USA) to learn parameters (probabilities). Learning the
parameters of the Bayesian structure was implemented
using the data set with the dataset that was extracted from
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the original dataset (48 observations). In addition, we in-
vestigated the relationships among nodes and the influ-
ence of status of BMBC on expressions of other genes in
the Bayesian structure which comprised of 34 nodes with-
in MB (group) of S* (denoted as S* note that S* includes
34-33 variables, each representing a gene expression and
a variable named group, representing whether a subject
has osteoblast or BM).

5.Validations

We further validated CBN structure S* by how well $* fits
the data (maximum likelihood and conditional indepen-
dencies), compared S$* with current knowledge (published
literature articles) and how well $* predicts future instanc-
es (ROC and RR). We searched for orders of variables with
best probabilistic score using Markov chain over Monte
Carlo (MCMC) simulation and compared the result with
the order of nodes in Bayesian structure (call this order
analysis).[27] The variables we used were direct cause (par-
ent) and direct effect (children) genes and disease node
that showed the strongest influence through conditional
independency test (we refer these variables as Validation
Variables and denote as V/*).[28] We performed order anal-
ysis with 3 independent 1 hour runs and we compare the
best order with $* and current knowledge. Also we investi-
gated degree of conditional independencies among vari-
ables in CBN structure S* and check how well conditional
independency relationships (d-separation and d-connec-
tivity [29]) among variables. We also evaluated CBN struc-
ture $* using leave one out cross test and the area under
ROC (AUROC) using GeNle. We obtained the prediction
rate of BMBC of CBN structure S* with the final dataset that
includes the same number of variables in $¥,i.e., 34-33 vari-
ables, each representing a gene expression and a variable
named group, representing whether a subject has osteo-
blast or BM, and 48 subjects. We calculate how much we
can expect BM with the final dataset of BM if we have the
information in Validation Variables V*. We investigated the
information of genes within in CBN structure $* whether
the structure reflected the current knowledge and previ-
ous studies using Cytoscape 3.6 [26] and searching articles
in PubMed in NCBI (www.ncbi.nIm.nih.gov/pubmed).

In final process of validation, we investigated all joint dis-
tributions of genes in Validation Variables V* given BMBC
and also how all possible combination of gene expression

https://doi.org/10.11005/jbm.2018.25.4.251
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patterns predict BMBC and evaluated the minimum com-
bination with maximum RR of combined gene expression
of the genes in the final model and significant genes. We
have used 12 genes in Validation Variables V* and used CBN
S*and calculated all 16,777,215 (=2 ()3 =(3+1)"*1=
42-1) different gene configurations g with the collected
dataset and using SMILE library (https://www.bayesfusion.
com/smile-engine) and C++ program and calculate the
following:
P(D|V=g)

where D represents a subject has BMBC and Vis any sub-
set of V*. Among the gene configurations g that predicts
BMBC with high or low probability (i.e., P(D|V=g)>0.99999
or P(D|V=¢)<1.0X10°).

To find the minimum set of combination of gene expres-
sion patterns that give us a maximum RR, we have calcu-
lated the following:

R = 4rgmax P(D|V =v)
V. PDIV=1v"

where, V represents any subset of V*, R represents a set

of the minimum number of genes that maximizes the RR

Causal Network of Bone Metastasis and Osteoblast ||

argmax ,
term, v = P(DIV=g) and v' = P(DIV = g).

Note that v and v’ represents 2 different gene expression
patterns among the genes in R that maximizes and mini-
mizes P(D|V) respectively. We report the top 4 RR that we
calculated from the dataset.

argmin

RESULTS

We report the 3 CBN structures, i.e., a CBN with candidate
genes (59, a CBN with BCRGs (S*), and a CBN as the first de-
gree MB of group variable in $*(5*) described in the meth-
od section. We also report results of their validations.

1. CBN with common genes of all studies

Among the 18 CBNs, the CBN with the best log likelihood
score reported by Banjo (i.e., log P(D° | $°)=-49,091.645
where 5°a CBN with 1,219 variables and D° is the dataset
with the same number of variables with 48 subjects) was
significantly better fitting the data than the second best
CBN (i.e., % )>99.999% where 5’ is the second best
CBN). S°includes 1,218 gene expression and a variable called

Fig. 3. Causal Bayesian network structure. Left figure shows the 1st causal Bayesian network structure with 1,219 node and complicated connec-
tion between them. Right figure show red colored group node and around connected genes. Group node represented osteoblast or bone metasta-

sis of breast cancer.

https://doi.org/10.11005/jbm.2018.25.4.251
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group (representing whether a subject has osteoblast or
BM) (Fig. 3). Among 1,219 variables, we selected 59 genes
within second degree MB of group (Fig. 4). In addition, Clue-
Pedia, one of Cytoscape plugins, identified 13 BCRGs that

/.’
-’

=

i

1st degree MB

\

2nd degree MB

JBM

had common pathways — mammalian target of rapamycin
signaling pathway, ErbB signaling pathway, signaling path-
ways regulating pluripotency of stem cell — in prostate can-
cers, thyroid cancer and non-small cell lung cancer (Fig. 5).

[[11]- 1%t degree MB
[
[1]"RBM39" "BTNL8" "TSPO"  "TNFRSF11B"
21
[1]"TNNC1" "TEP1" "UBIAD1" "RMND5B" "HEBP1"
(D))

[1] " TMPRSS3" "CCND1"
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2. CBN with BCRGs

Among the 18 CBNs, the CBN with the best log likelihood
score reported by Banjo (i.e, log P(D* | $*)=-2,613.829 where
S* a CBN with 71 variables and D* is the dataset with the
same number of variables with 48 subjects) was significant-
ly better fitting the data than the second best CBN (i.e.,
% >99.999% where S’ is the second best CBN)
(Fig. 6). The first degree MB of group variable was selected
from S* (we denoted this CBN with 34 variables as $*): 3
genes that were direct causes (parents) of group (NFKB2,
UBIAD1, and HEBP1), 12 genes that were direct effects
(children) of group (FZD1, MAP2K2, BTNL8, TSPO, HOXB2,
FOLH1, KIF11, SLC10A3, PSAT1, CACYBP, S100PBP, and ZF-
P36L2) and 20 genes that were direct causes (parents) of
direct effects (children) of group (BTNL8, TEP1, L1TD1, TSPO,
PSMB8, RPS6KB2, DLL3, TNFRSF11B, MAPK3, FASTKD3,
ZNF273, PPP2CA, AGA, IFI30, ZDHHC6, INPP1, YWHAB, EPS8,
RANBP6, and TATDN2).

/ ‘ET@*_'————_

Causal Network of Bone Metastasis and Osteoblast ||

3. Learning causal Bayesian parameters

Probabilities (parameters) of the CBN with 34 variables
that represents the first degree MB of group variable (5*) of
CBN with BCRGs (S*) was learned from a new dataset (de-
noted as D¥) with data of 34 variables extracted from data
of 71 variables in D* (48 subjects) (Fig. 7). The NFKB2 gene
in $* (direct cause [parent] of the group variable) was reg-
istered as BCRGs in the KEGG and NF-kB protein encoded
by the NFKB2 gene is known as transcription factor pro-
moting BC stem cell.[30] Among 12 direct effects (children)
genes of BMBC (group variable) in $* 5 genes (SLC10A3,
FZD1, BTNLS, KIF11, and CACYBP) were reported as the
genes having close association with chemotherapy resis-
tance.[31-35] In addition, KIF11, MAP2K2, PSAT1, TSPO, and
ZFP36L2 genes within direct effects (children) of BMBC
(group variable) were known as having relationship with
cancer progression and metastasis.[36-39]

According to parameters learned in $*, comparing a sub-
ject that has BMBC (group variable is in state 1, i.e., BM) with
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Fig. 6. Causal Bayesian network with breast cancer relevant genes. A node filled with red color represented group (osteoblast or bone metasta-
sis) node. The 13 nodes filled with green color represented breast cancer relevant genes.
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Fig. 8. Causal Bayesian network structures according to different conditions of group node. (A, B) Pictures show changes of gene expressions de-
pendent on 2 conditions as state 0 (probability of osteoblast occurrence)=100% and state 1 (probability of bone metastasis occurrence)= 100%,

respectively.
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a subject that has osteoblast, among 15 genes that showed
expression pattern change, FOLH1 and ZFP36L2 were the
most significantly changed genes (FOLH1 expression chang-
ed from no change [state 1] to low [state 0] and ZFP36L2
expression changed from high [state 2] to no change [state
11) (Fig. 8).

4. Assessment and validations

We further evaluated prediction performance of the CBN
$* parameterized by D* with leave one out cross validation
test achieved 68.38% (1,116 correct predictions out of 34
X 48 cases). When we used only direct causes (parents) and
effects (children) of BMBC (group variable) in $* (i.e., 16 vari-
ables out of 34 variables) leave one out cross validation test
retried 82.16% (631 correct predictions out of 1648 cas-
es). AUROC predicting BMBC and osteoblast were 1 in $*
with the 16 variables (direct causes and effects of BMBC).
Also in the CBN $* parameterized by D¥, just using the 3 di-
rect causes of BMBC (group variable) the probability of a
subject having BM were over 90% (Table 2).

We have also calculated how likely any 2 variables are
conditional independent (note that we are calculating the
probabilities of conditional independencies, so the lower
the probability is the higher the chances the variables are
not independent) among the 16 variables (direct causes
and effects of BMBC [group variable]) and group variable.
[28] Calculated probabilities of conditional independence
showed that conditional independency relationships (d-
separation and d-connectivity [29]) among 16 variables
and group variable in the $* were agreeing with the struc-
ture of $* (Fig. 9). These probabilities of conditional inde-
pendence allowed us to further select 12 genes (Table 3)
that showed higher relationships with BMBC (group vari-
able). Figure 6 shows that except 1 gene, all 13 BCRGs are
connected to BMBC (group variable) in CBN with BCRGs.
Among the 12 genes, 6 genes (MAPK2, MAPK3, NFKB2,
FZD1, DLL3, and RPS6KB2) were variables in $*. We report
4 maximum RRs of combined gene expression patterns
(Table 3). Table 3 shows UBIAD1, HEBP1, BTNL8, TSPO, PSAT1
and ZFP36L2 genes consistently appears in the highest RRs
combined gene expression patterns. The difference of ex-
pression levels of ZFP36L2 was especially significant be-
cause its expression differed from low (represented as 0) to
high (represented as 2) in all combination patterns where-
as most of the other genes differed to only no change (rep-

https://doi.org/10.11005/jbm.2018.25.4.251

Causal Network of Bone Metastasis and Osteoblast ||

Table 2. The prediction rates given different conditions

Prediction Predic_tion _Prediction rates
Cases of osteoblast rates given 3 rates given 3 given 3 parent, 12
and bone metasta- parentand 12 child, and 18
Sis A child genes  co-parent genes
information . X . )
information information
Osteoblast 1 0.125 6.35E-05 8.29929E-08
Osteoblast 2 0.0555556  1.22E-08 7.8259E-15
Osteoblast 3 0.125 8.01E-06 5.33354E-09
Osteoblast 4 0.0138889  1.45E-06 2.1411E-10
Osteoblast b 0.34375 7.24E-06 6.81075E-12
Osteoblast 6 0.0555556  0.00358152 1.04724E-06
Osteoblast 7 0.125 0.008867 7.54625E-08
Osteoblast 8 0.0138889  0.0104353 0.000005475
Osteoblast 9 0.34375 0.00236364 1.13218E-05
Osteoblast 10 0.0138889  6.64E-06 1.65664E-08
Osteoblast 11 0.125 4. 40E-06 1.16112E-08
Osteoblast 12 0.0138889  6.50E-08 2.09571E-11
Osteoblast 13 0.0138889  2.26E-08 2.32857E-10
Bone metastasis 1 0.98 0.998629 1
Bone metastasis 2 0.944444 0.998264 0.999999
Bone metastasis 3 0.986111 0.999468 1
Bone metastasis 4 0.944444 1 1
Bone metastasisb  0.997778 1 1
Bone metastasis 6 0.944444 1 1
Bone metastasis 7 0.986111 0.999978 1
Bone metastasis 8 0.944444 0.999757 0.99999
Bone metastasis 9 0.997778 0.99999 0.999998
Bone metastasis 10 0.986111 1 1
Bone metastasis 11 0.98 0.999998 1
Bone metastasis 12 0.96875 1 1
Bone metastasis 13 0.997778 1 1
Bone metastasis 14 0.98 0.999993 1
Bone metastasis 15 0.997778 0.999999 1
Bone metastasis 16 0.997778 1 1
Bone metastasis 17 0.986111 0.999997 1
Bone metastasis 18 0.98 0.999988 1
Bone metastasis 19 0.997778 0.999974 0.999999
Bone metastasis 20 0.997778 0.999585 1
Bone metastasis 21 0.997778 0.999988 1
Bone metastasis 22 0.997778 0.99999 0.999995
Bone metastasis 23 0.944444 0.999435 1
Bone metastasis 24  0.986111 0.999997 1
Bone metastasis 25 0.997778 1 1
Bone metastasis 26 0.96875 0.994262 0.999555
Bone metastasis 27  0.875 0.996313 1
Bone metastasis 28 0.997778 1 1
Bone metastasis 29  0.997778 1 1
Bone metastasis 30 0.997778 0.999959 1
Bone metastasis 31 0.944444 0.999987 1
Bone metastasis 32 0.997778 0.999993 0.999999
Bone metastasis 33 0.875 0.999977 1
Bone metastasis 34 0.34375 0.999263 0.999964
Bone metastasis 35  0.96875 0.999941 1
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Fig. 9. Probability of conditional independence among nodes. Left picture show the causal Bayesian network structure with 16 nodes. The parent,
group, and co-parent nodes were filled with yellow, red, and blue colors, respectively. And right table shows the probabilities of conditional inde-

pendences dependent on different conditions.

Table 3. Minimum combinations with maximum relative risks of combined gene expression patterns

Gene expression patterns Probability ~ Relative risk

BMBCI[1] | NFKB2[1], UBIAD1[1], HEBP1[1], FZD1[1], BTNL8[1], MAP2K2[0], TSPO[1], KIF11[1], SLC10A3[1], PSAT1[1], 1 74014862.80
ZFP36L2[0]

BMBC[1] | NFKB2(1], UBIAD1[0], HEBP1[2], FZD1[1], BTNL8[2], MAP2K?2[0], TSPO[0], KIF11[2], SLC10A3[2], PSAT1[0], 1.35108e-10
ZFP36L2[2]

BMBCI[1] | NFKB2[1], UBIAD1[1], HEBP1[1], FZD1[1], BTNL8[1], MAP2K2[0], TSPO[1], KIF11[1], PSAT1[1], CACYBP[1], 1 58169972.66
ZFP36L2[0]

BMBC[1] | NFKB2[1], UBIAD1[0], HEBP1[2], FZD1[1], BTNL8[2], MAP2K2[0], TSPO[2], KIF11[2], PSAT1[1], CACYBP[2], 1.7191e0-8
ZFP36L2[2]

BMBCI[1] | NFKB2[1], UBIAD1[1], HEBP1[1], FZD1[1], BTNL8[1], MAP2K2[0], TSPO[1], SLC10A3[1], PSAT1[1], CACYBP[1], 1 35717729.92
ZFP36L2[0]

BMBC[1] | NFKB2[1], UBIAD1[0], HEBP1[2], FZD1[1], BTNL8[2], MAP2K?2[0], TSPO[0], SLC10A3[2], PSAT1[1], CACYBP[2], 2.79973e-08
ZFP36L2[2]

BMBCI[1] | NFKB2[1], UBIAD1[1], HEBP1[1], BTNL8 [1], MAP2K2[0], TSPO[1], KIF11[1], SLCT0A3[1], PSAT1[1], CACYBP[1], 1 19295520.54
ZFP36L2[0]

BMBC[1] | NFKB2[1], UBIAD1[0], HEBP1[2], BTNL8 [2], MAP2K?2[0], TSPO[0], KIF11[2], SLC10A3[2], PSAT1(1], CACYBP[2], 5.18255¢-08

ZFP36L2[2]

[0], low; [1], no change; [2], high.

resented as 1).

Searching through variable orders in the CBN (if variable
Ais (indirect) cause of variable B, then A is said to be in the
higher order of B) has been suggested to be a different way
of searching for best fitting CBN.[27] Using the 16 variables
(direct causes and effects of BMBC [group variable]) the or-
der with the best score was in the following order (higher
to lower): NFKB2, HEBP1, group, FOLH1, ZFP36L2, HOXB2,
PSAT1, TSPO, CACYBP, MAP2K2, UBIAD1, BTNLS, KIF11, S100-
PBP, and FZD1. Two direct cause (parent) genes (NFKB2
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and HEBP1) of group variable in S* (Fig. 6) consistently ap-
peared in the higher order than group variable. However,
UBIAD1 gene that was the direct cause (parent) of group
variable in S*, appeared in the lower order than group vari-
able. The genes with the highest change in probability to
be expressed high (State 2) given the fact that a subject
has BMBC (FOLH1 and ZFP36L2), appeared right next to
group variable in the order. The best CBN structure that
was identified by the order analysis was significantly better
in terms of log likelihood, however, the conditional inde-
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pendencies of the 16 variables (direct causes and effects of
BMBC [group variable]) were consistent with S*,

DISCUSSION

We have built a causal inference statistical model using a
machine learning tool, i.e., CBN, from GEO gene expression
data of osteoblast and BMBC. While building the causal in-
ference statistical model, we have also incorporated medi-
cal and biological prior knowledge such as clinical medical
practice and information of BCRGs registered in KEGG. We
also validated the causal inference statistical model using
data, statistical tools, and current knowledge.

Using cell line or animal model of BMBC, IL-6, TGF-(3, and
TFF genes were over-expressed.[30,40-43] The recent arti-
cle presented that 15 genes (APOPEC3B, ATL2, BBS1, C6orf61,
C60rf167, MMS22L, KCNS1, MFAP3L, NIP7, NUP155, PALM2,
PH-4, PGD5, SFT2D2, and STEAP3) were associated with the
development of BMBC among patients.[43] Among 3 nich-
es associated with BM, we considered the endosteal niche
related with osteoblast as the critical key.[18] Therefore, we
evaluated the causal network with the genes present in
both BMBC and osteoblast, but excluded all of the genes
present in the primary BC data set. Because of that, most
signature genes, which reported in previous studies with
BMBC, were not included in our study. We found 3 plausi-
ble upstream genes (NFKB2, UBIAD1, HEBP1) and 12 plau-
sible downstream genes that had direct connection to
BMBC. These 15 genes may be a good starting point to bet-
ter understand the pathophysiology of BMBC. In turn, this
will enable us to make efficient diagnosis and effective treat-
ments of BMBC for patients who have primary BC without
BM. Also, the plausible upstream genes could be powerful
candidates for target therapy of BMBC. NFKB2, one of the
plausible upstream genes, encode NF-kB protein that is a
transcription factor known as a regulator of the immune
system and promotes epithelial-to-mesenchymal transi-
tion and the metastasis of BC.[30,44,45] Although the pro-
tein encoded by UBIAD1 gene was reported as bladder tu-
mor suppressor protein, there was no report about its role
in tumor development or the progression of HEBP1.[46]
The UBIAD1 gene had 3 direct cause (parent) genes in S*,
i.e.,, DVL1, INPP1, and MAPK3. DVL1 and INPP1 are regis-
tered as BCRGs in KEGG (Fig. 6). In addition, UBIAD1 gene
is one of the genes that are reported in minimum combi-
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nation of gene expression patterns that show maximum
RR in this study. Therefore, although a study for the direct
effect of HEBP1 gene on BMBC will be needed, however, it
is plausible that the UBIAD1 may have an effect on BMBC
through influences of other genes such as DVL1 and MAPK3.

We mentioned some genes related with chemotherapy
resistance and cancer progression in the Results section.
The CBN models that we learnt in this study can explain
how the genes interact to develop BMBC (group variable
that represent either a subject has osteoblast or BM), drug
resistance, cancer progression and metastasis as published
in earlier studies.[31-39] The role of those genes can be in-
vestigated as diagnostic candidates of BMBC in a future
study. FOLH1 and ZFP36L2 had the remarkable changes of
status in gene expression according to a subject with BMBC
or osteoblast. Previous studies presented that the variants
of proteins encoded by FOLH1and ZFP36L2 genes were
potential contributors of risk toward breast, pancreas and
prostate cancers.[39,47] In the CBN structures presented in
this study, the significant changes of FLOH1 AND ZFP36L2
according to state of group (BM or osteoblast) may suggest
that the genes can be considered as candidates of diagnos-
tic biomarker in BMBC. There were several limitations in
the present study. Although the CBN in this study provided
meaningful genes for BMBC and showed plausible causal
structure among genes through machine learning tech-
niques, the sample size were limited of only 48 human
subjects and lacking the control subjects with neither of
osteoblast or BM. Therefore, several signature genes relat-
ed BM as CXCL12 and tumor necrosis factor-related apop-
tosis-inducing ligand, presented in the previous study us-
ing GSE 14017 and GSE 14018, were not selected in the fi-
nal structure of the present study.[48] Despite having ob-
tained excellent results on the validation tests, we should
increase the number of human samples to get a point esti-
mate closer to the mean value of the population. In paral-
lel, we plan a future study to obtain orders of variables with
probabilistic score using a new variable order search code
that is currently being tested in Dr. Yoo's lab. Datasets used
in this study that were downloaded from microarray GEO
public repository had several limitations that are worth
mentioning for proper interpretation of the results report-
ed in this study: (1) there were gender ambiguity of donor
osteoblast cell and normal bone tissue (thirteen subjects)
making the result limited in generalizing among the wom-
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en; (2) microarray data does not provide genomic sequenc-
es, resulting in unknown genomic variation information of
subjects. Also, because the physiological osteoblasts and
the osteoblasts in metastatic microenvironment are differ-
ent, the responses in cancer metastasis may not be similar.
Therefore, we should use the biologic data of the osteo-
blasts in metastatic site in the future study. However, we
believe that the CBN in this study give us several leads for
animal follow up studies or other human studies. Also we
are planning to collect different types of gene expression
data, e.g., RNA-sequencing, for validation and extension of
the current causal inference statistical model that we have
developed.

The CBN composed with 16 variables(3 direct causes and
12 direct effects of BMBC [group variable]) and seems to be
a reasonable causal inference network with a high predic-
tion rate. The direct cause and effect genes of BMBC may
be useful candidates for early diagnosis and target therapy
of BMBC. Among those genes, ZFP36L2 may be a mean-
ingful candidate for a predictor of BMBC. In addition, CBN
analysis may provide us with a more comprehensive un-
derstanding of the pathophysiology of BM.
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