
membranes

Review

Insights into Advancements and Electrons Transfer
Mechanisms of Electrogens in Benthic Microbial
Fuel Cells

Mohammad Faisal Umar 1 , Syed Zaghum Abbas 2,* , Mohamad Nasir Mohamad Ibrahim 3 ,
Norli Ismail 1 and Mohd Rafatullah 1,*

1 Division of Environmental Technology, School of Industrial Technology, Universiti Sains Malaysia,
Penang 11800, Malaysia; faisalumar@student.usm.my (M.F.U.); norlii@usm.my (N.I.)

2 Biofuels Institute, School of Environment, Jiangsu University, Zhenjiang 212013, China
3 School of Chemical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; mnm@usm.my
* Correspondence: Zabbas@ujs.edu.cn (S.Z.A.); mohd_rafatullah@yahoo.co.in or mrafatullah@usm.my (M.R.);

Tel.: +60-4-6532111 (M.R.); Fax: +60-4-656375 (M.R.)

Received: 7 August 2020; Accepted: 19 August 2020; Published: 28 August 2020
����������
�������

Abstract: Benthic microbial fuel cells (BMFCs) are a kind of microbial fuel cell (MFC), distinguished by
the absence of a membrane. BMFCs are an ecofriendly technology with a prominent role in renewable
energy harvesting and the bioremediation of organic pollutants through electrogens. Electrogens act
as catalysts to increase the rate of reaction in the anodic chamber, acting in electrons transfer to the
cathode. This electron transfer towards the anode can either be direct or indirect using exoelectrogens
by oxidizing organic matter. The performance of a BMFC also varies with the types of substrates
used, which may be sugar molasses, sucrose, rice paddy, etc. This review presents insights into the
use of BMFCs for the bioremediation of pollutants and for renewable energy production via different
electron pathways.
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1. Introduction

Different environmental pollutants, such as organic- and inorganic-based contaminants, remain a
severe challenge to the sustainability of water resources [1,2]. This poses a serious threat to living
organisms, including human beings and marine organisms [3]. Due to the depletion of natural water
resources, there is an imbalance in the natural ecosystem, but simultaneously the commutability of
renewable pure water resources has been enhanced. There is a plethora of potential sources of pollution
in water bodies (e.g., oceans, lakes, rivers and reservoirs) stemming from human activity, and notably
the chemical and oil filtration industries. The chemical substances emitted from these industries contain
very harmful and potentially carcinogenic inorganic and organic pollutants [4]. These pollutants have
a severe impact on living organisms and pose a serious threat to the environment.

Several techniques exist for the treatment of wastewater prior to irrigation, such as lagoon
ponds, constructed wetlands, conventional wastewater treatment plants, membrane bioreactors and
membrane filtration. Although these techniques have been shown to be effective, disadvantages
remain, i.e., they require a large area for operation, along with high economic stability [5]. Recently,
a novel approach was introduced for the treatment of wastewater: the microbial fuel cell. Microbial fuel
cells (MFCs) are devices which utilize microbial activity to produce electricity from chemical energy
stored in an organic substrate. Thus, MFCs are a promising technique for wastewater bioremediation
and for generating electricity in an economical way.
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Organic pollutant compounds are oxidized by microorganisms and the transfer of electrons to
the anode of the MFC via exoelectrogens [6,7]. A new type of MFC, the benthic microbial fuel cell
(BMFC), was designed to generate electricity from organic matter present in wastewater. As a result,
like with MFCs, chemical energy is converted into electrical energy with exoelectrogens working as
a catalyst, i.e., electrons (e−) and protons (H+) are released. In this way, a potential difference exists
between the anode and cathode. Here, we present information regarding recent developments using
exoelectrogens on the anode by direct and indirect processes.

2. Benthic Microbial Fuel Cell (BMFC)

There is a need for sustainable and clean energy sources to meet growing energy demands.
In 2014, the global percentage of electricity generated via the consumption of fossil fuels was 66%;
however, only 11% of this was utilized together with renewable energy [8,9]. Organic substrates are
used as bio sediments, and they protect the microbial ecosystem in various regions and provide a
suitable environment for the bioremediation of accumulated pollutants via the electron donor–acceptor
mechanism [10]. Currently, physiochemical processes, such as dredging, ozonation and electrochemical
degradation, are used for the bioremediation of pollutants. These techniques are effective but require
a lot of energy and are costly, limiting their application. Usually, the accumulation of reductive
substances and the lack of electron acceptors are the main limitations for the remediation of sediment
under anaerobic conditions.

In recent years, microbial fuel cells (MFC) have been considered as an alternative, cheap approach
to the bioremediation of toxic organic pollutants via power generation. Recently, BMFCs have attracted
the attention of many researchers due to their nonaggressive and easily controllable nature. BMFCs
consist of an anode, which is embedded in organic matter, and a cathode, which is placed in the
overlying water. The air diffuser provides a constant supply of oxygen which plays a vital role in the
transfer of electrons and protons from the anode to cathode via an external circuit, where electrons
react with oxygen and produce water [11,12].

Reimers et al. [13] were the first to employ BMFCs; their approach included a platinum mesh
for the anode and carbon fiber for the cathode. A unique feature of the BMFC is its membrane-less
assembly; this is possible thanks to the boundary organic substrate used as a substrate, which itself acts
as a pseudo membrane. Nowadays, many researchers are working on improving ecofriendly systems,
including BMFCs [14]. The prototype of a double chamber BMFC is shown in Figure 1.
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Figure 1. General prototype scheme of a benthic microbial fuel cell.

An air cathode in the overlaying water connected with a benthic-integrating anode is the most
common BMFC model. In a saline environment, conductivity is normally high, so the overpotential
limits the BMFC performance; this is not the case in freshwater [15]. Under the latter scenario,
the efficiency of the anode decreases because of anodic contamination, i.e., the accumulation of waste
substrate in the anodic region. BMFCs are usually restricted in terms of the proximity of the electrode
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by the naturally forming spatial separation of oxic and anoxic zones [16]. The tubular air cathode
designs along with the cathodic fabric assembly structure suggest that only low-cost fabric would
separate the electrodes. In this configuration, the cathode catalytic layer was exposed to air and
would allow a hydrogen oxidation reaction [17]. However, as this setup requires long tubes for air
exposure, the BMFC’s setup cannot operate in deep-water environment. If the BMFC can adapt the
cathode carbon cloth, then embedded cathode in the organic substrate can also be used optionally [2].
In the simple design of the BMFC, though, electrodes can be constructed from both graphite felt or
carbon cloth.

3. Degradation of Organic Matter by BMFC

Like bio-electrochemical systems, BMFCs too have been shown to boost the organic compounds
biodegradation, i.e., total petroleum hydrocarbons, total organic carbon, ignition loss and polycyclic
aromatic hydrocarbons present in the wastewater, as shown in Figure 2. BMFC takes some time
for the formation of a biofilm on the anode, which is the main requirement for the removal of the
organic contents [18,19]. The anodic biofilm consists of two types of bacteria, the fermentative bacteria
and the exoelectrogens. Fermentative bacteria are primarily involved in the complex organic matter
hydrolysis and transform the products of hydrolysis into ethanol, H2, volatile organic acids and CO2 by
acid-forming fermentation [20]. Ethanol, into which lactic acid can easily be converted, is volatile and
readily escapes, allowing the reaction to proceed easily. CO2 is the other product, but is weakly acidic
and even more volatile than ethanol. H2 is a substrate for methanogens and sulfate reducers, which
keep the concentration of hydrogen low and favor the production of such an energy-rich compound,
but hydrogen gas at a fairly high concentration can nevertheless be formed.
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The metabolites of fermentative bacteria used by electrogenic bacteria as substrates, which produce
electrons, CO2 and protons by oxidation, are shown in Equation (1). The protons are shifted to the
overlying cathodic water and transfer few electrons towards the anode, which can be seen in Equation
(2). These electrons are passed to the cathode through an external circuit and a redox reaction occurs
that generates protons and dissolves oxygen, as mentioned in Equation (3) [21]. The existence of
these electrodes has established a new microbial mechanism for metabolism, and to some degree it
alters anodic microbial communities too. Recently, it has been reported that BMFCs alone cannot
efficiently remove the organic pollutants. Wu et al. [18] reported that zero-valent iron (ZVI) has a
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high reducing ability (E0 = −0.44 V) and could react with the oxidizing contaminants. The hydroxyl
radical formed through this method is a very durable oxidative degradation of bio-refractory organics,
which allows for the common use of ZVI technology in the treatment of dyes, complexing agents,
chlorinated organic compounds and preservatives. ZVI can also alter the metabolic pathways and
redox capacity, regulate acidification and promote extracellular electron transfer. Estevezcanales
et al. [22] cultivated Geobacter sulfurreducense with an iron-free substratum and found an abruptly
reduced cytochrome c, which showed a limited capacity of outer membrane electrons transport.
However, using ZVI alone, the desired effect cannot be guaranteed, particularly the final removal of
certain refractory contaminants. The combined use of ZVI and BMFC technologies offers an enhanced
substitute approach for eliminating organic contaminants.

Anode: (oxidation)
a(OP) + bH2O→ cCO2 + ne− + dH+ (1)

Cathode: (reduction)
eO2 + dH+ + ne− → bH2O (2)

Overall reaction: (redox reaction)

a(OP) + eO2 → cCO2 + bH2O (3)

a = number of organic pollutants (OP) molecules, b = number of water molecules, c = number of
carbon dioxide molecules, d = number of protons, e = number of oxygen molecules and n = number
of electrons.

The removal of organic contaminants from BMFC is the foremost priority for organic contents
remediation. Many hydrocarbons, such as those consisting of nitro and chlorine aromatic compounds,
can be employed as substrates in BMFC. For bioremediation, these compounds need bioreduction [23].
The amalgamation of bioremediation and the electrochemical system forms a synergistic connection
among electrodes and bacteria and enables the bioreduction of perchloroethane and polycyclic aromatic
hydrocarbons. The in-situ generation of oxygen and hydrogen can be employed for intermediates
reduction. The energy efficiency and removal of these organic compounds can be upgraded by direct
electron transfer to electrodes from exoelectrogens or the inclusion of dechlorinating species [24].
There is a proportional relationship among power production and the degradation of these organic
compounds. This closed-circuit BMFC creates the optimum environment for the degradation of organic
compounds. This system could have a negative impact on BMFC microbes if not used properly.
During the remediation of the organic compound in BMFC, some common issue are encountered,
such as cathodic pH becoming alkaline and anodic pH becoming acidic via water electrolysis [25].
Unequal nutrients distribution in the chamber, like nitrate and phosphate, accumulating in the cathode
chamber and ammonium accumulating in the anode chamber are other issues encountered during the
remediation. These issues not only effect the performance of BMFC but also the biological clogging.
These issue can be resolved by reversal of electrodes polarity and with proper water circulation.
The degradation of organic compounds is also influenced by the competitive reactions with nitrate and
sulphate [26].

4. Electron Transfer Mechanism by Electrogens

The electrons transmission mechanism is essential in order to acquire a flawless knowledge for the
application of BMFC at a large scale. In the anodic chamber of BMFC, organic substrates are reduced
by microbes and transfer electrons to anodes, from where the electrons move to the cathode through
external circuit to generate electricity [27]. Earlier, the microbes were exploited in the anodic chamber,
but recently microbes are also exploited as biocathodes in the cathodic region to assist electrons
transmission to the terminal electron acceptor (TEA) [28,29]. The power density, current density and
coulombic efficiency can be measured by electron transfer rate. If the electrons transfer rate is higher
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than the electrons passing through the external circuit, more coulombic efficiency, power density and
current density will be measured, leading to higher voltage production. The harvested bioenergy
produced by the electron transfer towards electrodes from the respiration chain of electrogens is known
as a new BMFC technology [30]. There are two means of electrons transfer in BMFC occupied by
microbes: (i) direct electron transfer (direct contact between the microbes and the electrode surface)
and (ii) indirect electron transfer (through the so-called electron mediators), as shown in Figure 3.
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Recently, the application of electro-autotrophs in the Bioelectrochemical Systems (BES) has attracted
the attention of researchers. The exoelectrogens use the electrodes or extracellular insoluble mineral as
terminal electron acceptor (TEA), while electro-autotrophs accept the electrons from electrodes or solid
compounds for CO2 reduction and produce multi-carbon compounds [31]. Gregory et al. first studied
the electro-autotrophy in the Geobacter, which is a model exoelectrogen [32]. Most exoelectrogens
are iron-oxidizing bacteria, which led to the hypothesis that dissimilatory iron-reducing bacteria can
only accept the electrons from a cathode. Indeed, Mariprofundus ferrooxydans PV-1, Acidithiobacillus
ferrooxidans and Rhodopseudomonas palustris have been selected as electro-autotrophs [33–35].
Furthermore, Methanobacterium archaeon strain IM1 and chemolithoautotrophic archea Methanococcus
maripaludis were purified for electromethanogenesis with an electron donor (metallic iron) [36].
Many acetogenic bacteria like Sporumosa acidovorans, Sporomusa silvacetica, Sporomusa sphaeroides,
Sporumosa malonica, Moorella thermoacetica, Sporomusa ovate, Clostridium aceticum and Clostridium
ljungdahlii can also accept electrons from the cathode and reduce CO2 to organic acids [37].
Some sulphate-reducing autotrophs are believed to accept the electrons from cathode and generate
hydrogen (H2) by reducing sulphate [38]. The cathodic electron consumption by bacteria causes
anaerobic microbial-induced corrosion (MIC). The electro-autotrophs generate the corrosive hydrogen
sulphide that results in chemically induced iron corrosion. The electro-autotrophs also stimulate the
induced electrochemical corrosion by using cathodic hydrogen, which is generated by iron–water
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contact [39]. The benthic microbial fuel cells (BMFCs) were constructed for anaerobic exoelectrogenic
enrichment, which separates the electrotrophic bacteria by opposing the anode to bio-cathode [40].
Recently, an MFC was developed initially with heterotrophic conditions that later alter with autotrophic
conditions. After five batches of cultivation, the nonelectrochemical bacteria is dispersed into the
liquid medium and only electro-autotrophs bacteria (Geobacter) were abundant in the MFC [41].
This electro-autotrophic process promotes the growth of exoelectrogens on the electrodes and
reduces the number of nonelectrobiochemical bacteria, which finally increases the MFC’s efficiency.
The electro-autotrophic enrichment of the bio-cathode offers a simplified approach to purify the
bio-chemical from various inoculum sources. Initially, bacteria are grown heterotrophically on fructose,
glycerol and glucose, followed by acclimation to the medium, and CO2 was provided as the sole
electron acceptor [42]. The conventional cathode causes corrosion, denaturation and toxicity of
material, but the bio-cathode is very cost-effective. The microbes must be chosen based on their
capability to shift from heterotrophic to autotrophic metabolism. This pathway may help us to
understand the metabolic pathways of different electron donors or acceptor microbes that have formed
on bio-cathodes [43]. For the production of valuable organic and fuel commodities, pure culture
was used because the diversified electro-autotrophs uptake the electrons from the negatively poised
cathode for CO2 reduction with heavier coulombic efficiencies. The mixed cultures primarily generate
the complex products and acetates, which maintains the microbial metabolism. The surfeit of products
was generated by employing a viable BES system with pure culture of Clostridium ljungdahlii. Overall,
though, very little research has been focused on the electro-autotrophs, particularly the electrons
transfer pathways from cathode to bacteria and their applications.

4.1. Direct Electron Transfer

Electrons should interact between the outer membrane of the microbes and the electrode.
The biofilm or electrically conductive nanowires (pili and flagella) were found over the surface of the
anode formed by electrogens [44]. The transmission of electrons takes place by direct interaction without
any external mediator through an external membrane’s cytochromes, nanowires and electron transport
proteins in exchange with the microbial membranes. The external membrane’s cytochromes are
bonded with nanowires and allow electrogens to use an electrode as an electron acceptor. Furthermore,
the direct electron transfer mechanism fully depends on the electron transport proteins, and they play
a crucial role in electron transfer from cytoplasm to mitochondrial membrane. The drawback of this
mechanism is the very poor electron transfer rate, because the active sites of electron transmission are
deeply embedded within the proteins [45]. Recently, many electrochemical bacteria like Shewanella
and Geobacter nanowires have been folded for better electrons transmission [46,47]. For effective
and fast electron transfer (coulombic efficiency), the nanowires form an electroactive layer instead
of a normal single layer. Geobacter species are diverse in their current production ability; Geobacter
hydrogenophilus and Geobacter metallireducens produced higher current densities (0.2 mAcm−2) than
Geobacter bremensis, Geobacter chapellei, Geobacter humireducens, Geobacter uraniireducen and Geobacter
bemidjiensis, which produced much lower current densities (0.05 mAcm−2) [48]. Some electrogesns
reported direct electron transfer to electrodes, such as Geobacter sulfurreducens [49], Rhodopseudomonas
palustris [50], Anaeromyxobacter dehalogenansc [51], Geobacter lovleyi [52], Pseudomonas aeruginosa [53],
Thermincola potens [54], Shewanella oneidensis [55], Geothrix fermentans [56], Thermincola carboxydophila [57],
Shewanella putrefaciens [58], and Escherichia coli [59].

Much less is known about direct electron transfer pathways in the electro-autotrophic bacteria.
From the experiments, it is confirmed that the Fe species uptake the electrons secreted by the
cathodic biofilm. It is also ventured that c-type cytochromes, which are crucial constituents of Fe
extracellular electron uptake, also play a vital part in the electron transmission from cathode to
electro-autotrophs [60]. In the light of this hypothesis, the metaproteomics and metagenomics of
the diversified microbial community inhibit the self-regenerating biocathode’s effect whereby CO2 is
reduced via c-type cytochromes directly acquiring electrons from the Chromatiaceae family and other
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proteins related with Fe(II) oxidation [61]. The Fe(0)-corroding sulphate reducing microbes (SRM)
could also uptake the electrons [62], and this discovery paved the way for scientists to use these
microbes in biocathodic BES employments. So, this negative metabolic character can be turned into a
sustainable positive biotechnological solution. Up to now, though, only some pure SRM cultures are
used as electro-autotrophs. The cathodic biofilm of Desulfovibrio desulfuricans ATCC 27774 exhibited
electro-autotrophic characteristics at an employed cathodic potential (Ecath) of −0.169 V vs. SHE.
After 20 days, lactate was supplemented as the carbon source, not CO2, and a stable negative current
was measured [63]. Consequently, other species (Desulfovibrio caledoniensis and Desulfovibrio paquesii)
of the genus Desulfovibrio were used for H2 and cathodic current generation, employing lactate or
bicarbonate as the carbon source and Ecath that enabled abiotic H2 evolution [64].

The pure cultures of Desulfovibrio piger and Desulfosporosinus orientis displayed the electro-
autotrophic properties at Ecath = −0.31 V vs. SHE, which has a higher positive potential than the neutral
redox potential of H2 evolution (E0′

H+/H2 = −0.41 V vs. SHE) and gaseous CO2 supplemented as an
inorganic source [65]. Desulfovibrio piger (SRM Deltaproteobacterium) is a H2-oxidizing, Gram-negative,
nonspore-forming electro-autotroph. It could oxidize organic matter, like lactate, pyruvate ethanol
and, partly, acetate. Before this, its autotrophic metabolism effect on CO2, was not reported for other
Desulfovibrio species. Desulfosporosinus orientis (SRM class Clostridia) is an acetogenic, capable of
executing anaerobic sulfate respiration, and is a spore-forming electro-autotroph. The broad range of
energy sources, such as pyruvate, ethanol, formate, methanol, H2, Fatty acids, lactate CO and CO2,
can be used by D. orientis [66]. It can use various TEAs, such as sulphite, sulphate, sulphur dioxide
and thiosulfate [67].

In BES, for the first time Desulfopila corrodens strain IS4 was identified as an Fe(0)-corroding SRM [38].
By using an electron donor (metallic iron), this Deltaproteobacterium (Gram-negative) was quarantined
from marine sediment. This strain performs very fast hydrogen generation and sulphate reduction by
consuming iron as an energy source as compared to orthodox hydrogen-foraging Desulfovibrio species.
In BES, by using CO2 as the growth substrate at Ecath = −0.4 V vs. SHE, direct electron uptake was
accomplished [38]. Currently, Desulfobacterium autotrophicum HRM2 (sulphate reducing bacteria) is
being reported as an electro-autotroph at Ecath = −0.5 V vs. SHE. This Deltaproteobacterium, secluded
from marine mud, is a fully SRM oxidizer having both directional pathways (Wood-Ljungdahl) and
relating to the c-Cyt rich group [68]. D. autotrophicum HRM2 showed a high coulombic efficiency
(83 ± 6%) and a capacity for acetate bio-electro synthesis [69].

4.2. Indirect Electron Transfer

Indirect electron transfer does not require direct physical interaction between the microbes and
electrons acceptors. The small molecules and soluble mediator are involved in the inducement of this
electron’s transfer mechanism. In this mechanism, the electrons mediator enters into the microbes,
where the electrons are extracted by a metabolic reaction of electrogens, and finally these electrons
are transferred to an anode [70]. Initially, at the first BMFC operative phase, the presence of electron
mediators was considered as important. The electron mediators auxiliary in the BMFC anodic chamber
are produced by electrogens. Several types of species had been investigated, as the synthesis of
self-mediators known as endo-electrogens mediators, such as phenazine and pyocyanin, could be
secreted by Shewanella and Pseudomonas species [71]. The potential differences between several electron
mediators and redox proteins were reported in many studies, which significantly affects the electron
transfer efficiency of different species [72]. However, the tendency of electrons transfer is affected
by different chemical compounds known as exoelectricigens mediators, such as anthracenedione,
thionine, neutral red, humic acid, riboflavin and methylene blue [73–75]; both exo-electrogens and
endo-electrogens are shown in Table 1. These electrogens are exploited to transfer the electrons from
inside of the cell towards the electrode, and different microbes have a different capability to transfer
electrons from cell to electrode.
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Table 1. Performance of BMFC configuration through exoelectrogens and endoelectrogens with respect to power density.

Microorganisms External Mediator Power Density
(mW m−2)

Configurations Type of Electrons
Transfer Mechanisms References

Exoelectrogens microorganisms
Shewanella oneidensis strain 14063 1–amino–2–Napthol >40 Single chamber Direct transfer [76]
Shewanella oneidensis Anthraquinone–2,6–disulfonate (AQDS) 24 Double chamber Direct transfer [77]
Klebsiella pneumoniae HNQ as mediator biomineralized manganese as electron acceptor _ _ Direct transfer [78]
Pseudomonas species phenazine–1–carboxamide _ _ Indirect transfer [79]
Pseudomonas aeruginosa phenazine compounds 3322 ± 38 Single chamber Direct transfer [80]
Cellulomonas fimi anthraquinone–2,6–disulfonate 38.7 Double chamber Direct transfer [81]
Lactococcus lactis Riboflavin, flavins _ Double chamber Direct transfer [82]
Geobacter sulfurreducens c–Cytochrome z, type IV pili 3147 Double chamber Direct transfer [83]
Shewanella oneidensis DsP10 Anthraquinone–2,6–disulfonate (AQDS) 5000 Double chamber Direct transfer [77]
Rhodopseudomonas palustris DX-1 c–Type cytochromes 2720 Single chamber Indirect transfer [49]
Desulfovibrio desulfuricans ATTC c–Type cytochromes 1580 Single chamber Indirect transfer [84]
Geobacter metallireducens c–Type cytochromes, OmcE and OmcB 450 Single chamber Indirect transfer [85]
Desulfuromonas acetoxidans c–Type cytochromes 2000 _ Indirect transfer [13]
Klebsiella pneumonia 2,6–Di–tert–butyl–p–benzoquinone 199 _ _ [86]
Desulfovibrio alaskensis Transmembrane complexes, tetraheme cytochrome C3 _ _ _ [87]
Pseudomonas aeruginosa Phenazine–1–carboxamide, pyocyanin 4300 _ _ [88]
Thermincola ferriacetica Anthraquinone–2,6–disulfonate 12,000 Single chamber _ [89]
Shewanella putrefaciens c–Type cytochromes including OmcA, MtrC, FAD transporter 492 Double chamber Indirect transfer [90]
Dechlorospirillum anomalous strain WD Anthraquinone–2,6–disulfonate hydrogen 30 _ Direct transfer [91]
Geobacter lovleyi Methyl viologen 480 _ Indirect transfer [92]
Chlorella vulgaris Methyl viologen, methylene blue 30 Single chamber Indirect transfer [91]
Pseudomonas sp. Methylene blue 979 Single chamber Indirect transfer [93]
Endoelectrogens microorganism
Rhodoferax ferrireducens _ 158 Double chamber Direct transfer [94]
Klebsiela pneumoniae strain L17 _ 34.77 Double chamber Direct transfer [95]
Nocardiopsis sp. KNU (strain), Streptomyces enissocaesilis
KNU (K strains) _ 162

145 Double chamber Direct transfer [96]

Rhodoferax ferrireducens _ _ Double chamber Direct transfer [97]
Escherichia coli
strain K-12 _ 215 Single chamber _ [98]

Shewanella oneidensis _ _ Single chamber _ [99]
Pseudomonas aeruginosa _ 136 ± 87 Single chamber _ [100]
Cellulomonas fimi _ 0.74 ± 0.07 Single chamber Indirect transfer [101]
Leptothrix discophora SP-6 _ 70 _ Indirect transfer [102]
Acinetobacter calcoaceticus _ 110 _ Indirect transfer [50]
Escherichia coli _ 3390 _ [103]
Winogradskyella poriferorum _ 40 _ Indirect transfer [104]
Pseudomonas fluorescens _ 210 Double chamber Direct transfer [105]
Citrobacter sp. _ 205 Double chamber Indirect transfer [106]
Lysinibacillus sphaericus _ 850 Double chamber Direct transfer [107]
Dechloromonas sp. _ 300 Double chamber Indirect transfer [108]
Arthrospira maxima _ 100 Double chamber Direct transfer [109]
Coriolus versicolor _ 3200 Single chamber Indirect transfer [110]
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Very little is known about the electron uptake by acetogens from the cathode. Currently, by using
a genetic system, it is being confirmed that Clostridium ljungdahlii (Gram-positive) exhibits protons
pumps that cause proton motive force, which is necessary for its growth with CO2 as a carbon
source [111]. This gives clues about the energy conservation mechanism in the electro-autotrophic
acetogens. In Clostridium ljungdahlii, the electron uptake mechanism is differently predicted, because
it cannot synthesize quinones or c-type cytochromes [112]. By using genetic toolbox, the properties
and electron uptake pathways of Clostridium ljungdahlii could be clearer, and also give information
about the electron uptake pathways of many Gram-positive bacteria. The genomic sequence of
acetogenic Sporomusa ovata (Gram-negative) is available now. Genes coding for type IV pili and c-type
cytochromes are present in the genomic sequence, which are the two main parts of the extracellular
electron transfer mechanism [113]. The c-type cytochromes are a precarious factor for the extracellular
electron transfer mechanism in both electrotrophs and electrogenic types. In Geobacter spp., pili type IV
are long strings that exhibit the metal-like conduction of long-range electron transfer. The gene coding
for Ubiquinone also present in the genome of Sporomusa ovate is also crucial for the electron transfer
pathway [114]. Sporomusa ovate has many extracellular electron transfer components, which proves
that the electron uptake mechanisms of Sporomusa ovata are similar to those of other electrotrophic
and electrigenic bacteria. Sporomusa sphaeroides-related acetogens showed direct electron transfer
mechanisms. This showed that Gram-negative acetogens could use this strategy of electron transfer in
different environments [115].

5. Performance of BMFC Affected by Organic Substrate

In BMFC, the chemical reaction is replaced by a microbial reaction where the organic substrates are
utilized as fuel for feeding the microbes and generating renewable energy. All these microorganisms that
grow are nourished by varieties of substrates, which include simple carbohydrates or polysaccharides,
amino acids, organic acids, cellulose and lignocellulose [95]. Marine sediments and aqueous ones
were also employed in BMFC as a substrate [116]. The substrate not only facilitates the microbes in
producing the biofilm on the surface of the anode, but is also designed to increase the performance of
the BMFC by producing higher coulombic efficiency and power density [117]. Moreover, the diverse
substrate processes fully depend on the biodegradability factor. The power density of BMFC is directly
proportional to the quantity of organic contents in the organic substrate and the biodegradation by
electrogens of the microorganism [118]. The mechanism of organic substrate degradation through
electrogens using BMFC is shown in Figure 4.
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Hassan et al. [119] studied the different organic substrates (glucose, fructose and sucrose) used
in BMFC. Wang et.al. [120] developed a BMFC to generate a power density of about 12.7 mW/m2

using an electron-mediating agent at pH 4, with the help of acidophilic bacterium, Acidiphilium
cryptum, utilizing glucose as the organic substrate. The pure bacterial strain Brevibacillus borstelensis
STRI1 produced a power density of about 188.5 mW/m2 by using sugarcane molasses as the organic
substrate [119]. The rice straw was also used as an organic substrate to generate a power density of
about 293.33 ± 7.89 mW/m2 [121]. The existing literature reveals the different kinds of organic waste
being used as organic substrates, with their corresponding capacities for power density generation by
electrogens, as shown in Table 2.

Table 2. Different substrates used in the BMFCs with corresponding power densities.

Waste Substrate Electircigens Power Density
(mW/m2) Configurations Type of Electrons

Transfer Mechanisms References

Glucose Acidiphilium cryptum 12.7 Single chamber Direct transfer [120]
Cellulose Enterobacter cloacae 5.4 ± 0.3 Double chamber Direct transfer [122]

Lactate Shewanella oneidensis
MR-1 0.3 × 10−2 Single chamber Indirect transfer [123]

Lactate Geobacter sulfurreducens 52 ± 4.7 - Indirect transfer [124]
Glucose Escherichia coli 228 - Indirect transfer [125]
Malt extract Enterobacter cloacae 9.3 - Indirect transfer [126]

Cellulose G. sulfurreducens and C.
cellulolyticum 83 Single chamber Indirect transfer [127]

Wheat straw Acidithiobacillus caldus 123 Single chamber - [128]
Molasses B. borstelensis STRI1 185.5 Single chamber - [119]
Sophorolipid with glucose
and PBS Pseudomonas aeruginosa 15.29 Single chamber - [129]

Glucose, fructose, and
sucrose Saccharomyces cerevisiae 72.77 Single chamber - [130]

Glucose in synthetic
wastewater _ 1313 Double chamber Direct transfer [131]

xylose Geobacter sulfurreducens
Escherichia coli, 590 Double chamber Direct transfer [132]

Synthetic wastewater
α–Proteobacteria,
β–Proteobacteria,
γ–Proteobacteria

70 Double chamber - [133]

Sodium Fumarate Geobacter sulfurreducens _ Single chamber - [134]

Glucuronic acid Rhodococcus sp. and
Paracoccus sp. 2770 Double chamber - [135]

Xylose Clostridium spp. and
Comamonas spp. 1241 _ Direct transfer [136]

Acetate _ 1430 _ [137]

Ethanol
Proteobacterium sp.,
Azoarcus sp. and
Desulfuromonas sp.

40 _ Indirect transfer [138]

Synthetic wastewater with
molasses and urea _ 2.9 Single chamber [139]

Cysteine Shewanella affinis 39 _ _ [140]

Starch Clostridium butyricum or
Clostridium beijerinckii _ _ _ [141]

Dye-containing wastewater
in microbial desalination

Bacillus subtilis,
Aeromonas hydrophila
subsp. hydrophila

2.86 _ _ [142]

Rice straw Cellulose-degrading
bacteria 146 _ _ [121]

Coconut husk retting Ochrobactrum sp. 362 Double chamber Indirect transfer [143]
Agriculture wastewater Shewanella oneidensis 13 Double chamber Indirect transfer [144]
Rice paddy Geobacteraceae _ Double chamber Indirect transfer [145]
Chitin Bacillus circulans 1.742 Double chamber Indirect transfer [146]

In the BMFC, various kinds of substrates could be employed; these substrates can be starch,
petroleum-based compounds, cysteine, glucose, dairy-based, acetate, molasses, glutamic acid,
food-based wastewater, river water and vegetable-based. The substrate selection is based on their
biodegradability behaviors. The power production by BMFC depends upon the degradation rate by the
bacteria and the quantity of organic contents in the substrates [147]. In BMFCs, there is a continuous
generation of power which is impeded by access to nutrients in the anodic media. The nutrients
in BMFCs are regularly supplied with fresh matter from the decay of microbes and animals, giving
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the BMFC an indefinite life span in theory [148]. In the BMFC, one biodegradable fuel was also
the bio-battery, but with this the power generation ultimately drops with time. Some substrates
only support a single form of organic material. Different types of chitin were also used in BMFC
anode as substrates. Chitin 80 and chitin 20 produced optimum power of about 84 ± 10 and
76 ± 25 mW/m2, respectively. The internal resistances of chitin 80 and chitin 20 were 650 ± 130 and
1300 ± 440, respectively. The electricity production could be enhanced by using substrates of precise
size, and slowly degradable substrates. The substrates of precise size enhance the degradation surface
area, and the slowly degradable substrates enhance the power production duration [146].

6. Conclusions

BMFC is a novel bio-technique that may be a potential solution to the two main problems,
namely pollutants bioremediation and sustainable energy production. These BMFCs will open new
possibilities for sustainable, cost-effective and controllable ways to generate power and bioremediate
toxic pollutants. For power generation, there are two main routes of electron transfer: direct electron
(physical contact between electrogens and anode) and indirect electron (conductive pili and flagella)
transfer from the electrogens towards the anode of BMFC. The performance of BMFC depends on the
use of different organic matters as the substrate. The novel BMFC technology will be encouraging for
in situ pollutants bioremediation. The challenges of BMFCs will be addressed jointly by the efforts of
scientists from many fields, such as environmental sciences, biotechnology, electrochemistry, electrical
engineering, biology and material sciences.
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