
Citation: Sagulkoo, P.; Chuntakaruk,

H.; Rungrotmongkol, T.; Suratanee,

A.; Plaimas, K. Multi-Level Biological

Network Analysis and Drug

Repurposing Based on Leukocyte

Transcriptomics in Severe COVID-19:

In Silico Systems Biology to Precision

Medicine. J. Pers. Med. 2022, 12, 1030.

https://doi.org/10.3390/

jpm12071030

Academic Editor: Michal Marczyk

Received: 24 May 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Personalized 

Medicine

Article

Multi-Level Biological Network Analysis and Drug
Repurposing Based on Leukocyte Transcriptomics in Severe
COVID-19: In Silico Systems Biology to Precision Medicine
Pakorn Sagulkoo 1,2 , Hathaichanok Chuntakaruk 1,3, Thanyada Rungrotmongkol 1,3, Apichat Suratanee 4,5

and Kitiporn Plaimas 1,6,7,*

1 Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University,
Bangkok 10330, Thailand; pakorn.sagulkoo@cmu.ac.th (P.S.); hathaichanok.chuntakaruk@gmail.com (H.C.);
t.rungrotmongkol@gmail.com (T.R.)

2 Center of Biomedical Informatics, Department of Family Medicine, Faculty of Medicine,
Chiang Mai University, Chiang Mai 50200, Thailand

3 Center of Excellence in Biocatalyst and Sustainable Biotechnology Research Unit, Department of Biochemistry,
Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

4 Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North
Bangkok, Bangkok 10800, Thailand; apichat.s@sci.kmutnb.ac.th

5 Intelligent and Nonlinear Dynamics Innovations Research Center, Science and Technology Research Institute,
King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

6 Advance Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer
Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand

7 Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University,
Bangkok 10330, Thailand

* Correspondence: kitiporn.p@chula.ac.th

Abstract: The coronavirus disease 2019 (COVID-19) pandemic causes many morbidity and mortality
cases. Despite several developed vaccines and antiviral therapies, some patients experience severe
conditions that need intensive care units (ICU); therefore, precision medicine is necessary to predict
and treat these patients using novel biomarkers and targeted drugs. In this study, we proposed a multi-
level biological network analysis framework to identify key genes via protein–protein interaction
(PPI) network analysis as well as survival analysis based on differentially expressed genes (DEGs)
in leukocyte transcriptomic profiles, discover novel biomarkers using microRNAs (miRNA) from
regulatory network analysis, and provide candidate drugs targeting the key genes using drug–gene
interaction network and structural analysis. The results show that upregulated DEGs were mainly
enriched in cell division, cell cycle, and innate immune signaling pathways. Downregulated DEGs
were primarily concentrated in the cellular response to stress, lysosome, glycosaminoglycan catabolic
process, and mature B cell differentiation. Regulatory network analysis revealed that hsa-miR-6792-
5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-5p were predicted biomarkers.
CDC25A, GUSB, MYBL2, and SDAD1 were identified as key genes in severe COVID-19. In addition,
drug repurposing from drug–gene and drug–protein database searching and molecular docking
showed that camptothecin and doxorubicin were candidate drugs interacting with the key genes. In
conclusion, multi-level systems biology analysis plays an important role in precision medicine by
finding novel biomarkers and targeted drugs based on key gene identification.

Keywords: severe COVID-19; systems biology; key genes; novel biomarkers; drug repurposing

1. Introduction

Nowadays, our world has experienced the coronavirus disease 2019 (COVID-19)
pandemic, causing numerous morbid and mortal cases. The disease is caused by severe
infection of acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The virus is a positive-
sense single-strand RNA β-coronavirus classified in the Coronaviridae family, which also
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consists of SARS-CoV and middle east respiratory syndrome coronavirus (MERS-CoV) [1].
These viruses all emerged within the first 20 years of the 21st century and caused numerous
public health and economic issues. Comparative genomics studies have revealed that the
SARS-CoV-2 genome resembles the SARS-CoV sequence, with 79% identity. In contrast, the
MERS-CoV sequence shares only 50% identity with SARS-CoV-2’s sequence [2]. Moreover,
phylogenetic analysis using whole-genome sequences and phylogenetic tree construction
by the neighbor-joining method reveals that SARS-CoV-2 is clustered in the sarbecovirus
group and the virus is close to coronaviruses in bats and pangolins [2].

For the global statistics, the number of confirmed cases and deaths of COVID-19 from
World Health Organization (WHO) data on 21 June 2022 were 537,591,764 and 6,319,395,
respectively [3]. In addition, the global fatality rate is 3.4%. The rate is higher than seasonal
flu but lower than SARS-CoV and MERS-CoV infections [4,5]. Despite the assumption that
bats were hosts in this zoonotic infection, several studies have indicated that the disease
occurred via an intermediate host such as pangolins [6,7]. The disease’s main transmission
route is receiving infectious respiratory droplets from direct person-to-person contact [8,9].
SARS-CoV-2 can spread in all stages of the disease: asymptomatic, presymptomatic, and
symptomatic stages [6]. The median incubation period is approximately 5.1 days, and most
people (97.5%) have symptoms within 11.5 days. Only 1% of patients develop symptoms
after 14 days of quarantine [10]. The most common clinical features of COVID-19 are
dry cough, fever, fatigue, and myalgia. Some patients have gastrointestinal symptoms,
for instance, nausea, anorexia, and diarrhea [11–13]. Less common clinical presentations
include sputum production, headache, and hemoptysis [11,12]. About 64% to 80% of
patients present with anosmia or ageusia [14–16]. Furthermore, at least 50% of patients
will progress to dyspnea [17]. Progressive dyspnea and hypoxemia usually develop ap-
proximately one week after the clinical onset [18]. Acute respiratory distress syndrome
(ARDS), characterized by severe hypoxemia, and bilateral pulmonary edema that cannot
be explained by cardiac causes or volume overload, is a condition mainly found in severe
COVID-19 [18]. Several risk factors contributing to severe illness include older age, chronic
lung diseases, cardiovascular diseases, diabetes mellitus, obesity, chronic kidney diseases,
immunocompromised host, and cancers [12,18]. Nearly 17% to 35% of admitted patients
needed intensive care units (ICU) due to respiratory failure. Approximately 29% to 91% of
patients in ICU obtain mechanical ventilation [19–22]. The main causes of death are ARDS,
acute respiratory failure, coagulopathy, septic shock, metabolic acidosis, cardiovascular
complications, and multiple organ failure [23].

Pathogenesis and pathophysiology of COVID-19 are required for further studies. The
disease is classified into two stages: early and late stages [9]. In the early stage, SARS-
CoV-2 infects host cells and initiates proliferation. It enters respiratory epithelial cells and
alveolar cells via using spike (S) protein, primed by host transmembrane serine protease
2 (TMPRSS2), binding to host membrane receptors, for example, angiotensin-converting
enzyme 2 (ACE2) [24,25]. While viral replication occurs, the immune system will proceed.
Hence, mild constitutional symptoms arise in this stage. The innate immunity will recruit
myeloid-lineage leukocytes such as macrophages, neutrophils, and natural killer (NK)
cells to alveolar tissue [8]. In the late stage, pulmonary tissue damage and hyperinflam-
mation emerge from excessive proinflammatory cytokine secreted from these leukocytes.
Pneumocytes and alveolar endothelial cells are injured and dead, resulting in interstitial
fluid leakage; therefore, pulmonary edema will occur and progress to ARDS later [24].
Accumulation of fluid in alveolar space and pneumocyte damage leads to impaired gas
exchange, causing hypoxia and hypercapnia [24]. Furthermore, some patients will develop
to hyperinflammation stage or cytokine storm caused by excessive proinflammatory cy-
tokines such as interferon α (IFN-α), IFN- β, IFN-γ, interleukin 1β (IL-1β), IL-6, IL-12,
IL-18, IL-33, and tumor necrosis factor α (TNF-α) [26]. Cytokine storm is characterized
by cytokine overproduction causing collateral tissue damage [27]. Uncontrolled cytokine
storms can lead to multiple organ dysfunction and failure in the last stage [27]. Severe
COVID-19 cases usually die due to cytokine storms with multiple organ failures [28].



J. Pers. Med. 2022, 12, 1030 3 of 24

The gold standard diagnostic testing of COVID-19 is the reverse transcriptase-polymerase
chain reaction (RT-PCR) from nasal and throat swab samples [29]. The specificity of PCR is
nearly 100% if there are no contaminations. Antigen tests have benefits over PCR as they
have lower costs and are used in the point-of-care setting, though they have sensitivity less
than PCR [30,31]. Nevertheless, there are still no effective diagnostic testing or biomarkers
used to predict the possibility of severe illness progression precisely. The primary treatment
for COVID-19 is the best supportive care and respiratory support [23,24]. Medical therapies
include anti-inflammatory agents using corticosteroids and antiviral treatments such as
ritonavir and favipiravir [32–34]. In addition, the role of vaccines in COVID-19 prevention has
been studied and needs further investigation. Although the current treatments improve the
disease, they cannot cover all patients with severe conditions. As a result, discovering novel
biomarkers and targeted drugs based on cytokine storm and impaired immune-associated key
genes and proteins could play a crucial role in predicting and improving COVID-19 severity.

In the bioinformatics and precision medicine era, systems biology and multi-omics
studies allow translational medicine to be effective in clinical practices [35]. Several com-
bined wet and dry experimental studies have provided invaluable information in molecular
biology and medicine [36–38]. Moreover, a combination of knowledge between biology,
computer science, statistics, and mathematics explores the underlying molecular mecha-
nisms of numerous diseases such as cancer, degenerative diseases, genetic diseases, etc.
Structural information on protein-related SARS-CoV-2 such as S protein, main protease
(Mpro), and papain-like protease (PLpro), obtained from the Protein Data Bank (PDB), has
also provided the details on physical protein interactions and benefits for identifying
drug–protein interaction in COVID-19 via protein binding site analyses [39–45]. One of the
most powerful tools used in bioinformatics is network analysis. With the use of network
analysis, central node identification using various centrality measurements and community
detection by several network clustering algorithms [46,47] have been widely used in much
research. These approaches were successfully applied in several applications to identify
key disease-related genes, disease–disease associations, disease–protein associations, and
drug–disease associations [48–57]. Additionally, the benefit of the network analysis is drug
repositioning or drug repurposing, characterized by discovering a new role of treatment
from existing drugs based on the key disease-related genes identified from the biological
network [58]. Structural bioinformatics also plays a vital role in drug repurposing via
finding physical interactions between targeted proteins from PDB structures and drugs
using molecular docking [59–61]. In addition, novel biomarkers can be recognized from
the network analysis [62].

In this study, we proposed multi-level biological networks analysis, such as regulatory
and protein–protein interaction (PPI) network, based on leukocyte transcriptomic profiles
to identify novel biomarkers and key genes in severe COVID-19. Furthermore, drug
repurposing was performed based on drug–gene and drug–protein interaction database
searching and molecular docking. This study aims to discover novel biomarkers and
candidate targeted drugs to predict and treat severe COVID-19 at clinical levels by applying
various biological data and networks.

2. Materials and Methods

The overall process of identifying key genes, novel biomarkers, and candidate drugs
using several levels of the biological network is summarized in Figure 1. All our proposed
methods were dry experiments or in silico studies based on wet experimental data acqui-
sition from databases. First, the leukocyte transcriptomic profiles from Gene Expression
Omnibus (GEO) datasets [50] were downloaded to indicate an overall immune status in
severe COVID-19 patients compared to controls. Common differentially expressed genes
(DEGs) were identified by considering statistical criteria described in Section 2.1 Data
Collection and Preprocessing. The functional enrichment analysis of upregulated and
downregulated DEGs were conducted using Metascape [63]. Second, STRING v11.0 [64]
was used to construct the PPI network based on the common DEGs. Network clustering
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was conducted using the Molecular Complex Detection (MCODE) plugin in Cytoscape [65].
The degree and betweenness centrality were calculated using Network Analyzer in Cy-
toscape to find hub and bottleneck genes in the PPI network. Additionally, the survival
analysis from Gene Expression Profiling Interactive Analysis (GEPIA2) [66], using acute
myeloid leukemia (LAML) as a cell type model, was operated to identify key genes from
the hub and bottleneck genes. Third, MicroRNA Enrichment Turned Network (MIENTUR-
NET) [67,68] was used to construct regulatory networks and identify novel biomarkers.
Finally, drugs resulting from drug–gene and drug–protein interaction databases were
studied by molecular docking.
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Figure 1. Diagram summarizes the process of identifying key genes, novel biomarkers, and candidate
drugs using multi-levels of biological network analyses. There are four principal data and networks,
including transcriptomics data, protein–protein interaction network, miRNA–mRNA interaction
regulatory network, and drug–protein interaction network towards precision medicine.

2.1. Data Collection and Preprocessing

Two gene expression datasets (GSE164805 and GSE154998) were downloaded from
GEO DataSets (https://www.ncbi.nlm.nih.gov/geo/, accessed on 14 January 2022) [69].
Both datasets are leukocyte transcriptomic profiles collected from peripheral blood samples
in severe COVID-19 patients compared to non-COVID-19 controls. The gene expression
method in GSE164805 was conducted based on the microarray technique, while GSE154998
measured the transcriptomic profiles via the RNA sequencing (RNA-Seq) method [70,71].
The complete data sets, consisting of false discovery rate (FDR) q-value and log2fold change
(log2 FC), were manipulated using R package ‘dplyr’ [72]. The DEGs were filtered based on
genes expression having the FDR < 0.05 and absolute log2 FC (|log2 FC|) > 1. DEGs that
met the criteria in both data sets were common DEGs that were used for further analysis.

https://www.ncbi.nlm.nih.gov/geo/
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Moreover, common DEGs with log2 FC > 1 and log2 FC < −1 were considered upregulated
and downregulated DEGs, respectively.

2.2. Functional Enrichment Analysis Based on Up- and Downregulated DEGs

Metascape (https://metascape.org/gp/index.html#/main/step1, accessed on 20
January 2022) [63] was performed for functional enrichment analysis of the upregu-
lated and downregulated DEGs. Metascape is a web-based portal integrating func-
tional enrichment, interactome analysis, gene annotation, and membership search from
over 40 knowledgebases [63]. Functional and pathway terms used in the software in-
clude Gene ontology biological process (GO-BP) [73], Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways [74], Reactome pathways [75], WikiPathways [76],
Canonical [77], and CORUM pathway [78]. The functional enrichment analysis in the
software was performed using a hypergeometric test and Benjamini–Hochberg statistical
correction algorithm [63]. Enrichment terms with a significant level (FDR q-value < 0.01)
were selected.

2.3. PPI Network Construction from the Common DEGs

STRING v11.0 (https://string-db.org/, accessed on 20 January 2022) [64], a protein
interactome online database collecting a human interactome consisting of 19,556 proteins
and 11,938,498 interactions, was performed to construct the PPI network without adjacent
node expansion using the common DEGs as the input. The PPI network was built with
an interaction confidence score greater than 0.400 (medium confidence). The confidence
score of the interaction is the probability value calculated based on both experimental and
computational evidence such as text mining, high-throughput experiments, co-expression
and gene fusion data, and information from other databases. Furthermore, the PPI network
was downloaded and exported to Cytoscape 3.9.0 (https://cytoscape.org/ accessed on 20
January 2022) [65], a biological network visualizing software.

2.4. Topological and Network Clustering Analysis of the PPI Network

In Cytoscape, the Network Analyzer plugin was performed to calculate global topo-
logical parameters, for instance, average degree, diameter, radius, average clustering
coefficient, average shortest path length, and network density. Local topological parame-
ters, such as degree, closeness, betweenness, and clustering coefficient, were also computed.
Moreover, network clustering was conducted using MCODE plugin [79] in Cytoscape. The
plugin was used by default settings, for example, a degree cut-off: 2, node score cut-off: 0.2,
k-core: 2, and max depth: 100. An MCODE score cut-off for cluster selection was greater
than 5.

2.5. Regulatory Network Construction and Novel Biomarkers Identification

The gene sets in each MCODE cluster were inputted in MIENTURNET (http://userver.
bio.uniroma1.it/apps/mienturnet/, accessed on 22 January 2022) [67], an online-based
software, to construct microRNA (miRNA)–mRNA regulatory networks. The software was
used to find miRNA–mRNA interactions based on miRTarBase, a miRNA-target database
validated from experimental data [68]. miRNAs with interaction FDR q-value less than 0.05
were considered novel biomarkers in severe COVID-19.

2.6. Identification of Hub and Bottleneck Genes

Degree and betweenness centrality were measured using the Network Analyzer plugin
in the Cytoscape to find the hub and bottleneck genes in the PPI network. Given a network
called G, let A be a non-weight adjacency matrix of network G. Degree centrality (CD) is
the number of adjacent nodes interacting with interested node i, according to this equation

CD(i) = ∑
j

Aij , (1)

https://metascape.org/gp/index.html#/main/step1
https://string-db.org/
https://cytoscape.org/
http://userver.bio.uniroma1.it/apps/mienturnet/
http://userver.bio.uniroma1.it/apps/mienturnet/
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where Aij is a value of matrix A of node i and j, respectively. In biological networks, the
high-degree nodes are hub genes playing a crucial role in the network function due to
numerous interactions. Nodes in the PPI network having degree centrality greater than the
95th percentile were considered hub genes.

Betweenness centrality (CB) is the summation of the ratio between the shortest path of
node u and v that pass through node i. The betweenness centrality is calculated based on
this equation

CB(i) = ∑
u 6= v 6= i

σuv(i)
σuv

, (2)

where σuv is a total number of the shortest path between node u and v and σuv(i) is the
number of the shortest path between node u and v that pass through node i. Nodes with
betweenness more than 95th percentile were bottleneck genes in the PPI network. The
bottleneck nodes play an important function in forming the bridges controlling the flow of
information in the network.

2.7. Finding Key Genes Using Survival Analysis

Because there is no powerful tool to validate and predict the gene essentiality in
severe COVID-19 recently, we applied the cancer survival analysis to find key genes from
the PPI network. The key genes in severe COVID-19 were identified based on the hub
and bottleneck genes by using GEPIA2 (http://gepia2.cancer-pku.cn/#index, accessed
on 25 January 2022) [66]. GEPIA2 provides the single gene essentiality in several cancer
types by using survival and gene expression analysis based on The Cancer Genome Atlas
(TCGA) [80] and Genotype-Tissue Expression (GTEx) data [81]. As earlier described, the
myeloid-lineage leukocytes such as macrophages, neutrophils, and NK cells play a vital
role in COVID-19-associated cytokine storm by releasing the excessive proinflammatory
cytokines. Hence, LAML was used as a cell type model to find the key genes related to
immune-induced severe COVID-19. The survival analysis was performed by the Kaplan–
Meier method, which considers these parameters such as log-rank p-value and hazard ratio
(HR) with 95% confidence interval.

2.8. Drug Repurposing Based on the Key Genes
2.8.1. Drug–Gene and Drug–Protein Interaction Database Searching

The key genes were inputted to find targeted drugs in these drug–gene interaction
databases, for example, DrugBank database (https://go.drugbank.com/, accessed on 30
January 2022) [82], Therapeutic Target Database (TTD) (http://db.idrblab.net/ttd/, ac-
cessed on 30 January 2022) [83], Comparative Toxicogenomics Databases (CTD) (http://
ctdbase.org/, accessed on 30 January 2022) [84], and GeneCards (https://www.genecards.
org/, accessed on 30 January 2022) [85]. The selected drugs were confirmed the interac-
tion significance using the STITCH v5.0 database (http://stitch.embl.de/, accessed on 30
January 2022) [86], a drug–protein interaction database, by considering a confidence score
greater than 0.400 (medium confidence). The confidence score is calculated based on both
experimental and computational evidence, similar to the STRING database. Drugs that met
the criteria were considered candidate-targeted drugs.

2.8.2. Molecular Docking of Potential Drugs against B-Myb

Molecular docking was performed to elucidate the interaction between drug candidates
and a target protein named B-Myb. This protein is encoded from MYBL2, an essential gene in
the network analysis. The crystal structure of B-Myb was received from PDB (https://www.
rcsb.org/, accessed on 12 June 2022) [87] using PDB ID: 6C48 from the study [88]. The function
of B-Myb is activated via binding between the LXXLL motif located in the B-Myb transactivation
domain and the KIX domain of coactivator p300 to form a transcriptional module [89–92]. Thus,
the motif containing L688, R687, G686, L685, and L684 residues was set as the binding site.
Several studies have shown that plumbagin, a natural naphthoquinone binding at this motif,

http://gepia2.cancer-pku.cn/#index
https://go.drugbank.com/
http://db.idrblab.net/ttd/
http://ctdbase.org/
http://ctdbase.org/
https://www.genecards.org/
https://www.genecards.org/
http://stitch.embl.de/
https://www.rcsb.org/
https://www.rcsb.org/
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can cause B-Myb/p300 interaction interference [93–95]; therefore, plumbagin was used as a
reference ligand in the docking study to compare with candidate drugs such as doxorubicin
and camptothecin. The three compounds were individually docked into B-Myb using HDOCK
server (http://hdock.phys.hust.edu.cn/, accessed on 12 June 2022) [96] and AutoDock VinaXB,
a docking program using a genetic algorithm [97]. The ionized states of B-Myb were configured
at pH 7.4 using PROPKA3.1 [98], while ChemAxon [99] was used to check the pKa value of
the compounds. The binding affinity of the candidate drugs was calculated and compared
to plumbagin. The 3D and 2D structures demonstrating the drug–protein interactions were
visualized using the UCSF Chimera package [100] and the LigPlot [101].

3. Results
3.1. Identification of Common DEGs

The common DEGs were filtered from the transcriptomics data based on microarray
and RNA-Seq dataset (see Material and Methods) by considering FDR q-value < 0.05 and
|log2 FC| > 1. There were 6692 and 1129 DEGs found by microarray technique and
RNA-Seq technology, respectively. Figure 2a displays the Venn diagram representing the
common DEGs from both datasets. In total, 384 common DEGs were identified, having
39 upregulated and 221 downregulated DEGs; however, the remaining common DEGs
(124 genes) had both upregulation and downregulation because their expression pattern
was contradictory between the two datasets. Figure 2b shows the correlation heatmap of
the common DEGs between the two datasets. The gene list of the common DEGs is shown
in Table S1 in Supplementary Materials.
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3.2. Functional Enrichment Analysis of Up- and Downregulated DEGs

The functional enrichment analysis using Metascape of the DEGs is shown in Figure 3.
In the upregulated DEGs, the terms were primarily enriched relevantly to viral innate
immune response and cell cycle regulation (Figure 3a). For instance, IFN-α and IFN-β were

http://hdock.phys.hust.edu.cn/
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type I IFN (IFN-I) predominant in the viral innate immune response. In addition, anaphase-
promoting complex/cyclosome (APC/C), a cell cycle regulator complex, and chromosome
segregation were enhanced in leukocytes during severe COVID-19. Other increased func-
tional terms, such as regulation of binding and endopeptidase activity, were also found in
the upregulated DEGs. Moreover, the functional enrichment in the downregulated DEGs
was mainly associated with cellular response to stress, lysosome, protein localization (the
processes establishing and maintaining proteins at specific locations), glycosaminoglycan
catabolic pathway, mature lymphocyte differentiation, positive regulation of intracellular
protein transportation, negative regulation of protein modification, response to hyperoxia,
and adaptive immune response (Figure 3b).
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3.3. PPI Network Construction, Topological Analysis, and Cluster Detection

From the PPI network construction without the neighboring node expansion via
STRING v11.0, there were 85 components with 384 nodes and 861 edges. The largest
component containing 288 nodes and 848 edges was extracted for topological analysis and
identifying clusters and key genes. The edge list information for the component is also
provided in Table S2 in Supplementary Materials. Global topological parameters calculated
from the Network Analyzer plugin in Cytoscape are illustrated in Table 1. Moreover,
local topological parameters in each node in the network are summarized in Table S3 in
Supplementary Materials.
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Table 1. Global topological parameters of the PPI network.

Symbol Description Value

N Number of nodes 288
M Number of edges 848

<k> Average degree 5.89
d Diameter 11
r Radius 7

mspl Mean shortest path length 4.33
D Density 0.02
acc Average clustering coefficient 0.28

The largest network visualized by STRING v11.0 is shown in Figure 4. The results
analyzed by the STRING revealed that the average node degree, expected number of edges,
and average local clustering coefficient were 5.89, 544, and 0.461, respectively. Additionally,
a PPI enrichment p-value was less than 10−16, indicating that the proteins have interactions
with each other more than by chance.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 10 of 25 
 

 

edges, and average local clustering coefficient were 5.89, 544, and 0.461, respectively. Ad-
ditionally, a PPI enrichment p-value was less than 10−16, indicating that the proteins have 
interactions with each other more than by chance. 

 
Figure 4. The largest component of the PPI network constructed from the common DEGs visualized 
by STRING v11.0 with the interaction confidence score > 0.400 (medium confidence). The network 
consists of 288 nodes and 848 interactions. 

The network probably provided the small-world effect, such as several biological 
networks, because it had a low value of the mean shortest path length (mspl = 4.33) even 
though there was a moderate average clustering coefficient (acc = 0.28). Furthermore, the 
degree distribution plot illustrated in Figure 5a shows the power-law property, indicating 
the strong negative association between logarithmic scales of degree and its probability 
(R2 = 0.86). On the other hand, the clustering coefficient versus degree plot (Figure 5b) 
shows no relationship between the clustering coefficient and degree (R2 = 0.12). These be-
haviors suggested that the network had scale-free properties. 

Figure 4. The largest component of the PPI network constructed from the common DEGs visualized
by STRING v11.0 with the interaction confidence score > 0.400 (medium confidence). The network
consists of 288 nodes and 848 interactions.



J. Pers. Med. 2022, 12, 1030 10 of 24

The network probably provided the small-world effect, such as several biological
networks, because it had a low value of the mean shortest path length (mspl = 4.33) even
though there was a moderate average clustering coefficient (acc = 0.28). Furthermore, the
degree distribution plot illustrated in Figure 5a shows the power-law property, indicating
the strong negative association between logarithmic scales of degree and its probability
(R2 = 0.86). On the other hand, the clustering coefficient versus degree plot (Figure 5b)
shows no relationship between the clustering coefficient and degree (R2 = 0.12). These
behaviors suggested that the network had scale-free properties.
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There were three clusters identified from the MCODE plugin with the score of more
than 5: MCODE 1, 2, and 3. Topological parameters of the clusters were described in
Supplementary Table S4. Most MCODE 1 and 3 cluster members were upregulated DEGs,
while MCODE2’s cluster members were downregulated DEGs. Functional enrichment
results of each cluster are illustrated in Table 2 and Supplementary Figure S1. For instance,
MCODE 1 (Figure 6a) is enriched in the cell cycle and division regulation process, while
MCODE 2 (Figure 6b) is concentrated in the translation process and transactivation response
element RNA-binding protein (TRBP). Moreover, MCODE 3 (Figure 6c) is associated with
an innate immune response.

Table 2. Functional enrichment analysis of the MCODE clusters using Metascape.

Cluster Cluster Score Term ID Biological Term Count Log10 (q-Value)

MCODE1

R-HSA-1640170 Cell cycle 11 −11.20

13.692
GO:0007059 Chromosome

segregation 7 −6.85

M40 PID E2F pathway 5 −6.28

GO:1903047 Mitotic cell cycle
process 7 −5.60
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Table 2. Cont.

Cluster Cluster Score Term ID Biological Term Count Log10 (q-Value)

MCODE2 10.600

R-HSA-156842 Eukaryotic translation
elongation 8 −13.67

R-HSA-72766 Translation 9 −12.97

CORUM:5380

TRBP containing
complex (DICER,

RPL7A, EIF6, MOV10,
and subunits of the

60S ribosomal particle)

3 −4.38

MCODE3 10.000

R-HSA-913531 Interferon signaling 9 −14.37

GO:0051607 Defense response to
virus 8 −11.52

WP4197 Immune response to
tuberculosis 3 −3.91

GO:0002831 Regulation of response
to biotic stimulus 3 −3.91
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Figure 6. Cluster detection of the PPI network using MCODE plugin in Cytoscape 3.9.0. (a) MCODE
1 had 14 nodes and 89 edges. (b) MCODE 2 had 11 nodes and 53 edges. (c) MCODE 3 had 10 nodes
and 45 edges. The red and green nodes represent upregulated and downregulated DEGs. In contrast,
gray nodes represent genes having both upregulation and downregulation.

3.4. Finding Potential miRNAs as Novel Biomarkers in Regulatory Networks

Figure 7 illustrates miRNA–mRNA interaction networks constructed based on the
three MCODE clusters. The interactions were statistically significant at FDR q-value < 0.05.
There were five novel candidate biomarkers analyzed from the regulatory networks, for
instance, hsa-miR-6792-5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-
146a-5p. The further statistical and interaction data of regulatory networks in MCODE 1, 2,
and 3 are explained in Figure S2 and Tables S5–S7 in Supplementary Materials. There were
three miRNAs interacting with the mRNAs in MCODE 1 (Figure 7a): hsa-miR-6792-5p, hsa-
let-7b-5p, and hsa-miR-34a-5p. In addition, hsa-miR-92a-3p and hsa-miR-146a-5p interacted
with the mRNAs in MCODE 2 and 3, respectively. miRNA regulates gene expression via
mRNA binding and increases mRNA degradation or activation [102,103]. A change in
miRNA levels can indicate gene expression status; therefore, miRNA measurement can be
applied to predict severe COVID-19 based on the effect on gene expression patterns.
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Figure 7. miRNA–mRNA interaction regulatory networks based on MCODE clusters from the PPI
network. The networks were bipartite graphs. The regulatory network of (a) MCODE 1 had 12 nodes
and 15 edges, (b) MCODE 2 had 7 nodes and 6 edges, and (c) MCODE 3 had 6 nodes and 5 edges.
The blue triangular nodes are miRNAs. The red and green circular nodes represent upregulated
and downregulated DEGs, respectively. In comparison, gray nodes represent genes having both
upregulation and downregulation.

3.5. Key Gene Identification and Survival Analysis

There were 19 and 15 genes being hub and bottleneck, respectively. Tables S8 and
S9 in Supplementary Materials reveal topological parameters of the hub and bottleneck
genes, such as degree, betweenness, closeness, and clustering coefficient. Furthermore,
Figure S3 in Supplementary Materials shows a Venn diagram of nodes being the hub and
bottleneck genes. Seven genes were both hub and bottleneck: AURKB, CD44, CDC25A,
DDX58, DICER1, POLR2B, and RPL7. Table 3 displays the biological function of the hub
and bottle genes. Most hub genes were involved in cell proliferation and differentiation,
such as cell cycle regulation, hematopoiesis, antiapoptotic process, DNA replication and
transcription, and ribosomal synthesis. Additionally, the bottleneck genes in the PPI net-
work mainly play an essential role in inflammation, antiviral and innate immune activation,
oxidative stress prevention, and biomolecule metabolisms, for instance, lymphocyte and
macrophage activation, viral recognition, mitochondrial protein transportation, protein
and glycosaminoglycan degradation, and heme catabolism.

Table 3. Summary of the biological functions of 27 genes which were hub or bottleneck.

Symbol Description Node Property Biological Function

ANXA5 Annexin A5 bottleneck Inflammation, growth, and
differentiation

AURKB Aurora Kinase B hub, bottleneck Cell cycle regulation
BIRC5 Baculoviral IAP Repeat Containing 5 hub Antiapoptotis
CAT Catalase bottleneck Oxidative stress prevention

CD44 Cluster of Differentiation 44 hub, bottleneck Hematopoiesis and lymphocyte
activation

CDC20 Cell Division Cycle 20 hub Cell cycle regulation
CDC25A Cell Division Cycle 25A hub, bottleneck Cell cycle regulation
CSF1R Colony Stimulating Factor 1 Receptor bottleneck Macrophage differentiation
DDX58 DExD/H-Box Helicase 58 hub, bottleneck Viral dsRNA recognition

DICER1 Ribonuclease III hub, bottleneck Small RNA production and
antiviral agent

EEF1D Eukaryotic Translation Elongation Factor 1 Delta hub Transport tRNAs to ribosome
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Table 3. Cont.

Symbol Description Node Property Biological Function

GUSB Glucuronidase Beta bottleneck Glycosaminoglycan
degradation

HMOX1 Heme Oxygenase 1 bottleneck Heme catabolism
MYBL2 MYB Proto-Oncogene Like 2 hub Cell cycle regulation
POLR2B RNA Polymerase II Subunit B hub, bottleneck DNA transcription

PSMD4 Proteasome 26S Subunit Ubiquitin Receptor,
Non-ATPase 4 bottleneck Protein degradation

RPL7 Ribosomal Protein L7 hub, bottleneck A protein component in
ribosomes

RPL11 Ribosomal Protein L11 hub A protein component in
ribosomes

RPL13A Ribosomal Protein L13a hub A protein component in
ribosomes

RPL17 Ribosomal Protein L17 hub A protein component in
ribosomes

RPL19 Ribosomal Protein L19 hub A protein component in
ribosomes

RPS20 Ribosomal Protein S20 hub A protein component in
ribosomes

SDAD1 SDA1 Domain Containing 1 hub Ribosomal production and
transportation

TOMM20 Translocase Of Outer Mitochondrial Membrane 20 bottleneck Mitochondrial protein
transportation

TOP2A DNA Topoisomerase II Alpha hub DNA replication and
transcription

TYMS Thymidylate Synthetase hub DNA replication and repair

USP9X Ubiquitin Specific Peptidase 9 X-Linked bottleneck Similar to ubiquitin-specific
proteases

IAP, inhibitor of apoptosis protein; dsRNA, double-strand RNA; tRNA; MYB, myeloblastosis; SDA1, severe
depolymerization of actin protein 1.

The survival analysis using GEPIA2 based on the LAML model in the TCGA database
of the 27 hub and bottleneck genes revealed that only MYBL2 provided significant overall
survival (log-rank p-value < 0.05) and a high hazard ratio (HR = 1.7); however, there
were three genes that were nearly significant overall survival and high hazard ratio, for
example, CDC25A (log-rank p-value = 0.064 and HR = 1.7), GUSB (log-rank p-value = 0.057
and HR = 0.58), and SDAD1 (log-rank p-value = 0.082 and HR = 1.6). Figure 8 displays
Kaplan–Meier overall survival analysis of the significant and almost significant genes. The
overall survival analysis of other hub and bottleneck genes is illustrated in Figure S4 in
Supplementary and Materials.

3.6. Finding Candidate Targeted Drugs

MYBL2, the significant key gene obtained from the survival analysis, was inputted
to the drug–gene interaction databases: DrugBank database [82], TTD [83], CTD [84], and
GeneCards [85]. The almost significant key genes, such as CDC25A, GUSB, and SDAD1,
were also used to find drug–gene interactions. The result showed 35 FDA-approved drugs
interacting with the key genes, as illustrated in Table S10 in Supplementary Materials.
STITCH v5.0 database [86] was used to confirm the result from the search. MYBL2 was
the only key gene having drug–protein interaction. The STITCH result revealed that
doxorubicin and camptothecin interact with MYBL2, as shown in Figure 9.



J. Pers. Med. 2022, 12, 1030 14 of 24

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 14 of 25 
 

 

overall survival (log-rank p-value < 0.05) and a high hazard ratio (HR = 1.7); however, 
there were three genes that were nearly significant overall survival and high hazard ratio, 
for example, CDC25A (log-rank p-value = 0.064 and HR = 1.7), GUSB (log-rank p-value = 
0.057 and HR = 0.58), and SDAD1 (log-rank p-value = 0.082 and HR = 1.6). Figure 8 displays 
Kaplan–Meier overall survival analysis of the significant and almost significant genes. The 
overall survival analysis of other hub and bottleneck genes is illustrated in Figure S4 in 
Supplementary and Materials. 

 
Figure 8. Kaplan–Meier overall survival analysis of the hub and bottleneck genes with significant 
or almost significant log-rank p-value: CDC25A, GUSB, MYBL2, and SDAD1. The curves were plot-
ted using Gene Expression Profiling Interactive Analysis (GEPIA2). Acute myeloid leukemia 
(LAML) from The Cancer Genome Atlas (TCGA) database was used as a cell type model to find key 
survival genes in cytokine storm-related myeloid cells such as neutrophils, monocytes, and macro-
phages. 

3.6. Finding Candidate Targeted Drugs 
MYBL2, the significant key gene obtained from the survival analysis, was inputted to 

the drug–gene interaction databases: DrugBank database [82], TTD [83], CTD [84], and 
GeneCards [85]. The almost significant key genes, such as CDC25A, GUSB, and SDAD1, 
were also used to find drug–gene interactions. The result showed 35 FDA-approved drugs 
interacting with the key genes, as illustrated in Table S10 in Supplementary Materials. 
STITCH v5.0 database [86] was used to confirm the result from the search. MYBL2 was 
the only key gene having drug–protein interaction. The STITCH result revealed that dox-
orubicin and camptothecin interact with MYBL2, as shown in Figure 9. 

Figure 8. Kaplan–Meier overall survival analysis of the hub and bottleneck genes with significant or
almost significant log-rank p-value: CDC25A, GUSB, MYBL2, and SDAD1. The curves were plotted
using Gene Expression Profiling Interactive Analysis (GEPIA2). Acute myeloid leukemia (LAML)
from The Cancer Genome Atlas (TCGA) database was used as a cell type model to find key survival
genes in cytokine storm-related myeloid cells such as neutrophils, monocytes, and macrophages.
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Figure 10 displays the molecular docking results of the studied compounds binding
to the LXXLL motif by the HDOCK webserver (Figure 10a) and AutoDock VinaXB (Fig-
ure 10b). The former program showed that either plumbagin or candidate drugs interacted
with the three crucial residues associated with the motif, i.e., L685, R687, and L688. Through
the interaction with the active site of B-Myb, doxorubicin and camptothecin produced an
HDOCK score of −119.59 and −88.15 kcal mol−1, relatively outperforming plumbagin’s
(−64.19 kcal mol−1). The strong binding affinity of doxorubicin was supported by two
hydrogen bonds formed with the two positively charged residues, R682 and R687. Con-
versely, only one hydrogen bond binding to residue R687 was detected in the reference
ligand and camptothecin. The obtained data were in accordance with the AutoDock VinaXB
results. All compounds can bind to the critical residues L685, R687, and L688 with binding
affinities of−4.1,−5.6, and−5.5 kcal mol−1 for plumbagin, doxorubicin, and camptothecin,
respectively. Again, there were hydrogen bonds between the candidate drugs and B-Myb
through R682 and R687 residues. In contrast, no hydrogen bond formation was identified
in the case of the reference ligand.
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tif of B-Myb compared to plumbagin/B-Myb complex via (a) HDOCK webserver and (b) AutoDock
VinaXB. HDOCK scores and binding affinities of all complexes are also shown.

4. Discussion

Finding novel biomarkers, key genes, and candidate targeted drugs is necessary to
predict, treat, and follow severe COVID-19 patients. This study conducted various types of
biological network analysis, such as regulatory and protein–protein interaction networks,
based on common DEGs from microarray data and RNA-Seq data for the transcriptomics
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data of severe CPVID-19 patients. The functional enrichment analysis of the upregulated
and downregulated DEGs was operated to discover the disease’s underlying molecular
mechanisms. We also detected a network community in the PPI network. Novel biomarkers
were discovered via miRNA identification in the regulatory networks constructed based on
the MCODE modules. In addition, the key genes in the PPI network were found by finding
the hub and bottleneck nodes using degree and betweenness centrality measurement
and were validated by the overall survival analysis of the LAML model. Finally, drug
repurposing was performed by drug–gene and drug–protein interaction database searching
and molecular docking based on the key genes.

We identified 384 common DEGs that met the two datasets, and the number of upregu-
lated and downregulated genes were 39 and 221, respectively. The remaining 124 DEGs had
both upregulation and downregulation. The functional enrichment result of the upregu-
lated DEGs revealed that the terms were generally involved in antiviral and innate immune
response and cell cycle regulation. The processes and pathways were concordant with
immune responses to infectious diseases. In host response to infections, immune-related,
inflammatory-related, and leukocyte proliferation and differentiation genes are overex-
pressed to eradicate pathogens [104–107]; however, excessive immune and inflammatory
responses can cause uncontrolled self-tissue injury, leading to severe complications and
increased morbid and mortal cases. Furthermore, the enrichment analysis of the down-
regulated DEGs mainly concentrated in the cellular response to stress, lysosome, mature
lymphocyte differentiation, negative regulation of protein modification, glycosaminoglycan
catabolic pathway, response to hyperoxia, and adaptive immune response. Numerous
studies have shown that impaired lymphocyte differentiation and adaptive immune acti-
vation are found in severe COVID-19, resulting in delayed viral clearance and persistent
proinflammatory cytokine release [108–112]. ARDS and severe pneumonia are also found
in severe COVID-19, causing hypoxia. Hence, genes related to the hyperoxia response
were downregulated. In addition, negative protein modification regulation expression was
reduced to increase the proinflammatory cytokine and antiviral protein production and
release. Decreased glycosaminoglycan degradation can promote SAR-CoV, MERS-CoV,
and SARS-CoV-2 to infect host cells. For example, some studies have revealed that the
viruses use S protein binding with heparan sulfate proteoglycans (HSPGs) to enter the host
cells in the disease’s early stage [113–116].

The PPI network constructed by the STRING database based on the common DEGs,
same as other biological networks, had the scale-free property. The scale-free property
was proved by the strong relationship between degree and degree probability in degree
distribution and the independence of the clustering coefficient and degree. Furthermore,
the network likely provided the small-world effect because it had a low average shortest
path length and moderate average clustering coefficient. The PPI network cluster detection
using the MCODE algorithm showed three clusters with high MCODE scores: MCODE 1, 2,
and 3. MCODE 1 was the upregulated gene cluster mainly enriched in cell proliferation and
cell cycle. MCODE 2, the downregulated gene set, was primarily concentrated in ribosomal
synthesis and protein translation regulation. Furthermore, MCODE 3 was centered on
antiviral and innate immune responses; therefore, the enrichment terms of each cluster
were according to the terms found in upregulated and downregulated DEGs.

The regulatory networks from the MCODE clusters showed that five miRNAs, hsa-
miR-6792-5p, hsa-let-7b-5p, hsa-miR-34a-5p, hsa-miR-92a-3p, and hsa-miR-146a-5p, were the
novel candidate biomarkers. hsa-miR-6792-5p, hsa-let-7b-5p, and hsa-miR-34a-5p interacted
upregulated mRNAs related to cell proliferation and differentiation in MCODE 1 cluster. In
MCODE 2, downregulated mRNAs involved in protein translation regulation were associated
with hsa-miR-92a-3p. Moreover, hsa-miR-146a-5p interacted with upregulated antiviral and
innate immune mRNAs in MCODE 3. miRNAs are small, non-coding RNAs that play an
essential role in controlling gene expression via binding mRNA and then increase mRNA
cleavage or translation dependent on their properties [103,117]. miRNAs also have a role in
clinical applications such as diagnostic markers and therapeutic targets [118,119]. Because
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miRNAs are stable and detectable in serum and plasma, they are applied as biomarkers for
diagnosis [120]. Several studies have revealed miRNA expression based on viral proteins,
host membrane receptors, and proinflammatory cytokines [121–124]; however, no study has
reported the relationship between the five miRNAs acquired from the regulatory network
analysis and COVID-19. Thus, they could play a crucial role in novel diagnostic biomarkers
and therapeutic agents in severe COVID-19 and further investigation of their roles should
be needed.

There were 27 hub or bottleneck genes from high degree and betweenness value selec-
tion. The hub genes were mainly involved in cell proliferation and differentiation, while
the bottleneck genes were focused on antiviral and innate immune responses. We also
found the four key genes, such as CDC25A, GUSB, MYBL2, and SDAD1, from the overall
survival analysis based on the LAML model. CDC25A is a cell cycle and apoptosis regulator
that plays a vital role in many cancers’ progression, for example, breast, esophageal, lung,
colorectal, prostate, and ovarian cancer [125,126]. Furthermore, in viral infection, a study
performing Sendai virus-infected cell line showed that upregulated CDC25A suppressed
IFN-β activation while knockdown of CDC25A increased IFN-β stimulation [127]. The
result suggested that CDC25A could participate in impaired viral innate immunity and
increase viral survival. GUSB is a hydrolase enzyme for glycosaminoglycan degrada-
tion [128]. As described earlier, declined glycosaminoglycan degradation can promote the
coronaviruses to enter the host cells. As a result, GUSB can play a central role in COVID-19
progression. B-Myb, encoded from MYBL2, is a transcription factor in the MYB family
that plays an essential role in cell proliferation, differentiation, apoptosis, and tumorigene-
sis [129]. It is used as a prognostic marker in many cancer types, such as hepatocellular
carcinoma, gallbladder, colorectal, and breast cancer [130–133]. Interestingly, a weighted
gene co-expression network analysis in the COVID-19 study reported that MYBL2 was one
of 52 hub genes from the network analysis [134]. This result suggested the important role
of MYBL2 in numerous biological networks. There are a few studies on the role of SDAD1.
It probably plays a role in ribosomal biogenesis and tumorigenesis [135]. There is no report
about a relationship between its expression and COVID-19. Hence, further studies on the
biological roles of SDAD1 are needed.

The candidate targeted drug discovery came from searching in the four drug–gene
interaction databases and the drug–protein interaction database based on the four key
genes. The result indicated that doxorubicin and camptothecin had interacted with MYBL2.
The drug–protein interactions can be investigated by molecular docking. No 3D structure of
B-Myb in complex with known inhibitor is currently available. The involvement between
the key residues and binding site in B-Myb’s LXXLL motif, a multifunctional binding
sequence in transcriptional regulation [136], was reported [93–95]. The b-Myb activity was
inhibited by blocking the KIX domain of the B-Myb interaction partner, which was p300 [89],
through natural [137–139] and small compounds [140]; however, identifying compounds
that inhibit directly on B-Myb rather than p300 has not been revealed. In this work, the
molecular docking results from the HDOCK webserver and AutoDock VinaXB showed
that the two drug candidates, doxorubicin and camptothecin, had physical interactions
with B-Myb. This evidence was supported by a reduction in cell proliferation in cancer cell
lines having MYBL2 overexpression without proving apparent mechanisms [141,142]. We
then proposed the possible mechanism from our study that their direct interactions with
B-Myb could be involved in the decreased cellular activity of upregulated MYBL2 cells.
Additionally, the candidate drugs demonstrated binding interaction and susceptibility with
B-Myb significantly greater than plumbagin, the reference ligand; therefore, doxorubicin
and camptothecin could be potential candidates to combat COVID-19.

There is other evidence to support that the candidate drugs could play an important
role in severe COVID-19 treatment. Doxorubicin is a chemotherapeutic agent treating vari-
ous types of cancer [143]. A study of structural bioinformatics revealed that doxorubicin
proved the significant binding energy with SARS-CoV-2 main protease in the molecular
docking [144]. This result suggested that doxorubicin could be a potential drug to treat



J. Pers. Med. 2022, 12, 1030 18 of 24

severe COVID-19. Camptothecin is a natural product extracted from the Chinese happy tree
(Camptotheca acuminata) [145]. It is used as a chemotherapeutic agent in cancer treatment by
inhibiting DNA replication [146,147]. Camptothecin also has antiviral activity by inhibiting
viral replication [148–150]. A study on transcriptomic profile in COVID-19 using bioin-
formatics showed that camptothecin could reverse the gene signature in COVID-19 [151].
In addition, the evidence from a molecular docking study uncovered that camptothecin
formed hydrogen bonds with SARS-CoV-2 S protein to prevent the binding between S
protein and ACE2 receptor [152]. The results indicated that camptothecin could play a vital
role in COVID-19 treatment.

We studied the biological networks and structural biology to identify the key genes,
novel biomarkers, and candidate targeted drugs based on leukocyte transcriptomic profiles;
however, the immunopathology of severe COVID-19 is the interaction between immune
cells and respiratory cells. Analysis of peripheral white blood cell gene expression can lose
some proinflammatory cytokine information. Performing lung transcriptomic profiles for
biological network construction is our suggestion for future research. Single-cell methods
should be conducted to identify key genes and targeted drugs in each cell type. Advanced
computational chemical methods such as molecular mechanics and molecular dynamics
should also be included to simulate drug–protein interactions. Moreover, machine learning
approaches are needed to deal with the big data of transcriptomic profiles to find the
important features and predict key genes, novel biomarkers, and candidate-targeted drugs
more widely and precisely.

5. Conclusions

Our study performed the multi-level biological network analysis from peripheral
white blood cell transcriptomic profiles in severe COVID-19 patients. We found that
the upregulated genes were enriched in cell proliferation and innate immune responses
while the downregulated genes were concentrated in lymphocyte differentiation, adaptive
immune response, and glycosaminoglycan degradation. The regulatory network analysis
of the PPI network clusters provided novel diagnostic biomarkers from miRNAs. The key
genes in severe COVID-19 were also identified via topological and survival analysis. These
key genes play a significant role in leukocyte proliferation, antiviral activity, and viral
proliferation. Furthermore, the candidate drugs targeting the key genes were found from
database searching and evaluated with molecular docking. Nonetheless, other biomarkers,
key genes, and candidate-targeted drugs were not found and need further investigation;
therefore, advanced experimental and computational tools should be integrated to find
new biomarkers and target treatments more precisely and personally.
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