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Abstract
Acute inflammation in the lung is essential for host defense against pathogens and other injuries but chronic or excessive
inflammation can contribute to several common respiratory diseases. In health, the inflammatory response is controlled by
several cellular and molecular mechanisms. In addition to anti-inflammatory processes, there are non-phlogistic pro-
resolving mechanisms that are engaged to promote the resolution of inflammation and a return to homeostasis. Defects in the
production or actions of specialized pro-resolving mediators are associated with diseases characterized by excess or chronic
inflammation. In this article, we review cellular and biochemical mechanisms for specialized pro-resolving mediators in
health and in sepsis and the acute respiratory distress syndrome as examples of unrestrained inflammatory responses that
result in life-threatening pathology. We are honored to contribute to this special edition of the Journal to help celebrate
Professor Viswanathan Natarajan’s contributions to our understanding of lipid-derived mediators and metabolism in lung
cell responses to inflammatory, infectious, or mechanical insults; his foundational discoveries in cell biochemistry and
biophysics are continuing to catalyze further advances by the field to uncover the mechanistic underpinnings of important
human diseases.
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Abbreviations
ALI acute lung injury
ARDS acute respiratory distress syndrome
BAL bronchoalveolar lavage
CF cystic fibrosis
Cif conductance regulator inhibitory factor
COPD chronic obstructive pulmonary disease
CysLT cysteinyl leukotriene
HCl hydrochloric acid
ICU intensive care unit
IDP isodielectric point
IDS isodielectric separation
LXA4 lipoxin A4

MaR1 maresin 1
Mo-PA monocyte-platelet aggregate
Ne-PA neutrophil-platelet aggregate

NETs neutrophil-extracellular traps
PA phosphatidic acid
PI3K phosphatidylinositol 3-kinase
PIPP polyisoprenyl phosphates
PLPP phospholipid phosphatase
PLD phospholipase D
PSDP presqualene diphosphate
PSMP presqualene monophosphate
ROS reactive oxygen species
RvD1 resolvin D1
RvD2 resolvin D2
RvE1 resolvin E1
SPM specialized pro-resolving mediator
VILI ventilator-induced lung injury

Introduction

Acute inflammatory responses are essential to health for
protection from environmental insults such as pathogens,
allergens, pollutants, and injuries [1]. Acute inflammation is
initiated within seconds after challenge. This vital process is
normally self-limited with an initiation and resolution phase
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culminating with the restoration of tissue homeostasis. This
process of returning an inflamed tissue back to a homeo-
static baseline has been termed “catabasis” [2]. Impaired
engagement of acute inflammation can lead to tissue injury;
however, recent evidence indicates that ineffective resolu-
tion can delay or disrupt catabasis, also resulting in tissue
injury from unrestrained and prolonged inflammation. In the
lung, unrestrained immune responses of several types are
associated with clinical diseases, including asthma, chronic
obstructive pulmonary disease, cystic fibrosis (CF), and
acute respiratory distress syndrome (ARDS) [3] (Table 1).

Resolution of acute inflammation is an active response
that is mediated by select resolution phase mediators [4].
There are several families of specialized pro-resolving
mediators (SPMs) that are generated during multicellular
host inflammatory responses [5]. SPMs are agonists of
specific pro-resolving receptors that are expressed in cell-
type specific manners. SPM-activated cellular effectors
function to limit inflammation and restore tissue home-
ostasis and function (Table 1). At the tissue or organism
level, there are five essential resolution parameters (the five
“R”s), namely “R”emoval of inflammatory cells and tissue
debris, “R”estoration of vascular integrity and perfusion,
“R”egeneration and repair of tissue, “R”emission of fever,
and “R”elief from inflammatory pain [4]. SPMs mediate
each of these resolution parameters that together comprise
the process of catabasis.

SPMs are derived by enzymatic conversion of essential
dietary fatty acids. Structurally distinct families of SPMs are
classified by their fatty acids origins, including lipoxins
(LXs) from arachidonic acid (C20:4, n-6); E-series resolvins
from eicosapentaenoic acid (EPA, C20:5, n-3); and D-series
resolvins, protectins, and maresins from docosahexaenoic
acid (C22:6, n-3) [6] (Fig. 1). Interestingly, several epide-
miological studies show an inverse correlation between
diets rich in omega-3 fatty acids and the prevalence of
inflammatory diseases [7, 8]. In addition, omega-3 fatty acid
supplementation during pregnancy can be protective in
children for symptomatic wheeze and respiratory infections
[9, 10]. SPMs are rapidly produced for local actions and
rapidly inactivated, exhibiting potent receptor-mediated
spatial and temporal regulation of inflammatory responses
in the lung. SPMs are functionally defined by their dual
actions as anti-inflammatory “stop” signals for neutrophils
and as pro-resolving “go” signals for macrophage phago-
cytosis and efferocytosis. As part of a larger resolution
program, defects in the SPM pathway have been identified
in several inflammatory diseases [4].

In this article, we review roles for SPMs in infectious
immunity and inflammatory pulmonary diseases, and
explore their signaling mechanisms that control cellular
responses to inflammatory stimuli. Here, in this special
issue of the Journal in dedication to his retirement, we also

shed light on the many contributions of Professor Viswa-
nathan Natarajan’s pioneering research on lipid-derived
signaling mechanisms for lung cell activation and control.

Sepsis and ARDS

In health, a self-limited inflammatory response to an
infection can successfully contain and clear the pathogen
and restore homeostasis and health. An overwhelmed or
dysregulated immune response can result in systemic
inflammation, organ dysfunction, shock and, in the extreme,
death, such as can occur in sepsis [11–13]. Notably, sepsis
is one of the principal risk factors for ARDS, a complex
syndrome characterized by such exuberant lung inflamma-
tion that the alveolar-capillary membrane is disrupted with
consequent pulmonary edema and lung injury that leads to
significant and potentially life-threatening hypoxemia [14].
Despite advances in clinical care and some improvement in
clinical outcomes, both sepsis and ARDS remain devastat-
ing illnesses with high mortality and morbidity and still no
host-targeted treatments, highlighting the need for a deeper
understanding of the cellular and molecular basis of sepsis-
induced systemic immune dysregulation [11–13].

At the center of the early inflammatory response to sepsis
and ARDS is the recruitment and activation of leukocytes to
the site of infection or injury; however, excessive leukocyte
activation can be maladaptive and contribute to tissue
inflammation and organ damage [15]. The infiltrating leu-
kocytes respond to multiple environmental and endogenous
signals that dictate their activation [16]. Given the sensory
role of leukocytes, their function and activation state are
indicative sentinels of the host response to sepsis progres-
sion or resolution and may serve as predictors of illness
severity. Monitoring of leukocyte counts alone is too vari-
able and not a reliable predictive measure of sepsis clinical
responses for individual patients. In experimental sepsis
in mice, organ injury and the severity of the infection can
be reduced by SPMs (i.e., resolvin D2) that regulate leu-
kocyte activation [17]. To more sensitively monitor leuko-
cyte activation, electrical label-free cell profiling of
leukocytes by isodielectric separation was recently devel-
oped to determine the membrane isodielectric point (IDP) of
neutrophils as a biomarker of their activation state [18]. The
neutrophil IDP changes early in murine sepsis concomitant
with cell activation (as confirmed by flow cytometry para-
meters) [18]. This new technology was recently tested in
human sepsis [19]. For preparative leukocyte isolation from
small volumes of peripheral blood, an innovative sample
sparing closed-loop inertial microfluidic platform was
developed [19]. This inertial microfluid separation enables
label-free isolation of adequate leukocyte numbers from
microliter blood volumes for ascertainment of cell IDP.
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Because this device is sample sparing, the risk for iatrogenic
anemia, a common problem in intensive care units (ICU), is
reduced [19]. This sample sparing approach allows for
repeated assessment of the neutrophil IDP as a biomarker of
the host response to monitor disease progression for critical
illnesses such as sepsis and ARDS in humans. This new
approach opens the possibility for a better understanding of
how early biochemical and biophysical events in sepsis and
ARDS influence leukocyte activation and may ultimately
help clinicians monitor disease severity and support the
development of new preventive and treatment strategies.

There are many pro-inflammatory mediators such as
cytokines and chemokines that activate leukocytes to propel
the host inflammatory response to pathogens or tissue injury
[20]. There are a similarly large array of endogenous med-
iators produced to counterregulate the pro-inflammatory
signals as part of an active resolution program that promotes
a return to homeostasis [4, 5]. Principal among these
counterregulatory signals are the SPMs. These autacoid
lipid-derived mediators have dual anti-inflammatory and
pro-resolving properties [4, 5]. During self-limited acute
inflammatory responses SPMs are produced during the
resolution phase. Of note, select SPMs, such as resolvins and
LXs, can reduce leukocyte-mediated lung tissue damage
[21, 22]. Many experimental studies have shown that SPM
restraint of acute inflammatory processes leads to timely
resolution and mitigation of innocent bystander tissue
damage [22, 23]. Of interest, lipid mediator metabolomes are

dysregulated in sepsis with peripheral blood lipid mediator
profiles correlating with survival, respiratory failure and
ARDS development [24]. For example, lower plasma levels
of select SPMs (i.e., lipoxin A4 (LXA4) and maresin 1
(MaR1)) and concomitantly higher levels of prophlogistic
lipid mediators (i.e., cysteinyl leukotrienes (CysLTs) and
thromboxane) are associated with increased duration of
ventilatory support and ICU length of stay [25]. Individua-
lized CysLTs to SPM ratios that are increased are indicative
of increased lung inflammation, which is seen in most
patients with ARDS; and was associated with increased
disease severity and worse clinical outcomes in this study
[25]. SPM profiling has the potential to shed light on patient
status in critically ill subjects and sets the stage for
SPM signature profiling of biosynthetic pathway activation
as novel biomarkers for evaluating outcomes and represent
biologic therapeutic targets for modulating treatment
responses in sepsis.

In a sub-study of the Lung Injury Prevention Study with
Aspirin (LIPS-A) clinical trial, the relationships between
peripheral white blood cells and lipid mediators was
determined in patients at high risk for the development of
ARDS [26]. In this study, peripheral blood neutrophils,
monocytes, leukocyte-platelet aggregates, and select
bioactive lipid mediators were assessed and related to
clinical development of ARDS. Intravascular leukocyte and
platelet activation is integral to early inflammatory respon-
ses in ARDS, leading to heterotypic neutrophil–platelet

Fig. 1 SPMs, their receptors, signaling and actions in neutrophils.
Simplified biosynthesis pathway of the SPM families namely lipoxins,
maresins, resolvins, and protectins with examples of identified recep-
tors. Downstream signaling pathways and polyisoprenyl phosphate
remodeling in neutrophils upon LXA4-ALX interactions: LXA4 acts as
a “stop signal” during inflammation to inhibit PLD, PI3K, NFkB

among others and block PSDP turnover to PSMP. PSDP inhibits PLD
and PI3K to further reduce pro-inflammatory responses. Red lines
represent inhibition, and black arrows represent activation of a path-
way. PMN, polymorphonuclear neutrophils. Signaling schematic was
adapted from Bonnans et al. and Krishnamoorthy et al. [4, 73]. Created
with BioRender.com
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aggregate (Ne-PA) and monocyte-platelet aggregate (Mo-
PA) formation. These cell aggregates leverage secondary
capture of leukocytes by platelet adhesion molecules that
engage activated endothelial cells, leading to targeted and
enhanced leukocyte tissue entry and tissue inflammation
[27]. These events are regulated in part by lipid mediators:
platelet released thromboxane promotes leukocyte adhesion
to endothelial cells [28], whereas the SPM LXA4 and its
aspirin-triggered epimer 15-epi-LXA4 blunt leukocyte
activation [21, 29, 30]. Of interest, blocking Ne-PA for-
mation decreases experimental ARDS [23]. Results from
the LIPS-A clinical trial sub-study demonstrated that cir-
culating Ne-PA were elevated in these high risk patients
irrespective of ARDS development [26]. Of note, Mo-PA
numbers at enrollment were associated with progression to
ARDS, supporting a pivotal role for intravascular cellular
and lipid mediator events in early ARDS pathogenesis [26].

Neutrophil Activation in Critical Illness

Pneumonia and Host Responses

One of the most common causes of sepsis and ARDS is
acute pneumonia, which is a leading cause of excess global
morbidity and mortality [31]. Pneumonia pathobiology is
characterized by neutrophil activation that is important for
microbial host defense but can also lead to lung injury [32].
To limit lung tissue damage, similar to ARDS, neutrophil
responses need to be restrained. In a murine model of
nosocomial pneumonia from E. coli, the SPM resolvin E1
(RvE1) decreased neutrophil accumulation in the lung
while concomitantly enhancing microbial clearance and
survival [33]. This SPM is enzymatically derived from
EPA and when given after the development of pneumonia
can decrease neutrophil migration and pro-inflammatory
cytokines (including IL-1β, IL-6, MIP-1α, MIP-1β, KC,
and MCP-1) while enhancing microbial clearance from the
lung [33]. RvE1 also plays a pivotal role in host defense
against Pseudomonas aeruginosa, a gram negative bacter-
ium linked to acute exacerbations of lung diseases,
including CF [34].

CF patients are more susceptible than healthy individuals
to pneumonia from pulmonary infections with Pseudomonas
aeruginosa [35]. The P. aeruginosa CF transmembrane
conductance regulator inhibitory factor (Cif) is a secreted
epoxide hydrolase, so it can disrupt transcellular biosynthesis
of 15-epi LXA4, which is a potent regulator of neutrophil
activation and tissue inflammation. Of note, bronchoalveolar
lavage (BAL) fluid samples from CF patients with elevated
levels of Cif have lower levels of 15-epi LXA4, as well as
increased levels of the inflammatory cytokine IL-8, and
impaired lung function [34]. The observation that Cif levels

correlated with more severe disease in CF patients and that
Cif targets endogenous epoxide containing molecules
involved in inflammation and resolution, suggests that it
could serve as a potential therapeutic target [36]. A small
molecule targeting approach of Cif would result in blocking
the enzymatic degradation of lipid mediators that together
promote resolution of inflammation by reducing neutrophil
infiltration, bacterial burden, and overall lessening disease
severity.

Acute Lung Injury (ALI) and Host Responses

In addition to pathogen-initiated inflammation in pneumo-
nia, tissue injury can lead to acute lung inflammation [37].
SPMs also display protective actions in this experimental
setting. In a self-limited mouse model of hydrochloric acid
(HCl)-induced ALI that mirrors clinical acid aspiration,
lung cyclooxygenase-2 is induced and contributes to the
early acute inflammation and late induction of 15-
lipoxygenase for LX production and resolution [21]. This
self-limited murine model of acid-induced ALI has been
useful for studying the biochemistry and immunology of
lung inflammation resolution [38]. In addition to LXs, other
SPMs can contribute to the resolution of ALI-evoked
inflammation, including MaR1 and resolvins [22, 23]. The
SPM actions include promoting the clearance of alveolar
edema, increasing the efferocytosis of apoptotic neutrophils
by recruited macrophages, and accelerating the re-
epithelialization of the airways and alveoli to reduce vas-
cular leakage and tissue hypoxia [3].

Non-infectious organ injury can also occur in the setting
of transplant rejection. Lung allograft rejection is associated
with increased BAL fluid LXA4 levels [39]. In mouse
models of solid organ transplantation, LXA4 signaling via
its cognate receptor ALX/FPR2 protects against allograft
rejection [39]. When an LXA4 analog is administered in
organ perfusate and by the intravenous route at the time of
transplantation, organ rejection was decreased in two
separate and independent experimental models of vascu-
larized transplantation [39]. In both HCl-initiated ALI and
acute allograft rejection, SPM regulation of neutrophil
recruitment and activation was essential to SPM conveyed
tissue protection.

NETosis in Severe Asthma

One cellular response of extreme neutrophil activation is the
process of neutrophil extracellular trap formation, termed
NETosis. NETosis leads to the release of DNA-containing
NETs from cells [40]. In many situations NETosis results in
cell death; however, in some cases the enucleated cells can
reseal to form cytoplasts. This cellular response for neu-
trophils occurs in severe pneumonia [40], including SARS
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CoV-2 infection [41], and was recently linked to the
pathogenesis of severe asthma in a subset of patients with
non-type 2 inflammation [42]. These patients with severe
“neutrophilic” asthma have increased neutrophil counts in
their BAL with detectable cytoplasts in patients with >5%
BAL neutrophils and increased BAL fluid IL-17 levels [42].
This subset of asthma patients with increased BAL neu-
trophils and NETosis had increased risk for asthma co-
morbidities linked to infections, including frequent exacer-
bations and sinusitis. In addition, some severe asthma
patients have evidence for NETosis in their sputum with
increased extracellular hyper-citrullinated DNA and
increased IL-1β levels indicating inflammasome activation
in their airways [43]. The phenomenon of vital NETosis
with neutrophil cytoplasts was replicated in a mouse model
of LPS exposure during allergen sensitization with house
dust mite extract (a common household allergen) [42].
The neutrophil cytoplasts engaged lung dendritic cells to
promote differentiation of naive CD4+ T cells to Th17
CD4+ T cell effectors, resulting in allergen-mediated Th17-
driven immune responses. These findings shed light on
novel treatment possibilities, such as SPMs, for asthma
associated with excess neutrophil recruitment, activation,
and NETosis.

SPMs and Regulation of Neutrophil Activation

As reviewed above and in multiple additional studies, SPMs
as a class of mediators carry potent in vivo regulatory
properties that restrain neutrophil activation (Fig. 1). Of
note, at a cellular level, neutrophil function is not entirely
blocked by SPMs; rather they are modulated, which is
important for preservation of some of their host protective
actions [44]. Eicosanoids of different classes are structurally
and functionally distinct. Most leukotrienes (LTs) and
prostaglandins (PGs) contribute to acute inflammation,
including neutrophil chemotaxis, degranulation, and super-
oxide release. In contrast, LXs counter the LT and PG pro-
inflammatory actions to serve as “stop signals” for neu-
trophil trafficking and inflammatory responses.

SPMs play crucial roles in the resolution of lung mucosal
inflammation in a myriad of conditions. RvE1 is important
in the resolution of allergic airway inflammation, and 15-epi-
LXA4, 17-epi-RvD1, and MaR1 are protective during HCl
acid-induced lung injury [6, 21, 22]. In addition to these
sterile inflammatory insults, in a murine model of pathogen-
initiated lung inflammation, 17-epi-RvD1 and RvE1 also
mediate host protection [33, 45]. During self-limited E. coli
pneumonia, 17-epi-RvD1 levels are increased concomitant
with resolution [45]. This temporal regulation of SPM levels
was also associated with increased numbers of lung mac-
rophages that can produce and respond to SPMs. 17-epi-
RvD1 stimulated macrophages in a non-phlogistic manner to

promote phagocytosis of bacteria, and efferocytosis of
apoptotic neutrophils, and also enhanced lung expression of
lipocalin-2, an anti-microbial siderophore that limits the
growth of E. coli [45]. Together, these anti-inflammatory,
anti-microbial, and pro-resolving mechanisms were additive
to antibiotics in lessening the severity and duration of this
model of nosocomial pneumonia.

In addition to apoptotic neutrophils being cleared by
macrophage efferocytosis, neutrophil clearance can also
proceed via reverse migration (i.e., retrotaxis) away from
sites of inflammation [46]. The lipid mediator PGE2 is
released by macrophages following neutrophil engulfment
in efferocytosis and plays several important roles in reso-
lution, including a key role in lipid mediator class switching
to SPMs. PGE2 switches lipid mediator biosynthesis from
predominantly pro-inflammatory LTB4 to pro-resolving
LXA4 via EP4 receptor signaling and cAMP-mediated
CREB activation of 15-lipoxygenase expression for LX
production [44]. PGE2 and LXA4 then serve to repel neu-
trophils so that they migrate away from the site of infection
[46], possibly by interfering with potential “retention sig-
nals” that retain neutrophils in place.

Another important counterregulatory action for SPMs is
to decrease pro-inflammatory cytokine production (e.g.,
BAL fluid TNF-α and MIP-2 after ALI) in part via inhibi-
tion of NF-κB in lung epithelial cells and macrophages [22].
SPM regulates NF-κB via A20 and SIGRR, potent intra-
cellular inhibitors of NF-κB activation [47]. Of interest,
bone marrow–derived mesenchymal stem cells, through
cell–cell interactions with human alveolar epithelial type II
cells, can increase lung LXA4 levels and upregulate ALX/
FPR2 expression under inflammatory stimulation and as
such may leverage the endogenous SPM signaling pathways
to enhance resolution [48].

Polyisoprenyl Phosphate Signaling
Regulates Neutrophil Activation

In response to environmental stimuli, leukocyte membrane
remodeling generates biologically active lipid mediators
that depending on timing and signal transduction can dictate
cellular responses [49]. To control cellular responses during
acute inflammation it is critical to regulate leukocyte acti-
vation. In a search for intracellular regulators of leukocyte
activation, screening of neutrophil-derived extracts revealed
a fraction rich in phosphorylated, non-saponifiable lipids
that carried regulatory actions for phosphatidic acid (PA)-
initiated NADPH oxidase assembly and superoxide anion
generation in a cell-free system [50]. Physical chemical
analyses led to the structural elucidation of four main
polyisoprenyl phosphates (PIPPs) in this regulatory fraction
of neutrophil lipids, namely farnesyl diphosphate (FDP),
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farnesyl monophosphate (FMP), presqualene diphosphate
(PSDP), and presqualene monophosphate (PSMP) [50].
PSDP is present in unactivated cell membranes and in
response to receptor-mediated pro-inflammatory stimuli,
PSDP is rapidly and reciprocally remodeled to PSMP
within seconds. PSDP, but not PSMP, acts as a potent
inhibitor of NADPH oxidase assembly, as well as phos-
pholipase D (PLD) [51, 52] and phosphatidylinositol 3-
kinase (PI3K) activity [53], thus PSDP can limit neutrophil
superoxide anion (O2

−) production, degranulation, and
chemotaxis [54] (Fig. 1).

A lipid phosphate phosphatase that converts PSDP to
PSMP was identified as a member of the phospholipid
phosphotransferase/phosphatase (PLPP) family of enzymes
and is now named PLPP6 (aka PDP1, PPAPDC2, CSS2)
[55–57]. Distinct from the parent member of this family
PLPP1, PLPP6 only converts the isoprenyl diphosphate
(i.e., PSDP or FDP) to its monophosphate form (i.e., PSMP
or FMP) whereas PLPP1 will also convert the isoprenyl
monophosphate to the corresponding alcohol (e.g., farnesol)
[56]. It is notable that PSDP is produced by squalene syn-
thase from two molecules of FDP, then PSDP can be con-
verted by squalene synthase in an NADPH-dependent
second step reaction to squalene as a biosynthetic inter-
mediate for cholesterol [56]. In isolated enzyme systems,
PSDP production by squalene synthase is available for
conversion by PLPP6 to PSMP. Thus, PSDP production
does not inevitably result in squalene biosynthesis; rather it
is available for additional signaling functions as described
here (Table 2). Several pro-inflammatory soluble stimuli for
neutrophils activate PLPP6 for PIPP remodeling with
PLPP6 phosphorylation by phospho-PKCβII playing an
important role in its activation [54]. SPMs appear to
transduce their “stop signaling” for neutrophils, in part, by
regulation of PKCβII phosphorylation, thereby preventing
PLPP6 activation and enabling increased cellular levels of
PSDP that can inhibit PLD and PI3K activity and NADPH
oxidase [55, 58] (Fig. 1). PIPP remodeling provides a

signaling mechanism for SPM receptor-mediated transduc-
tion of cell-type-specific responses. PLPP6 is the first
identified phosphatase for PSDP, yet it can also depho-
sphorylate other substrates, most notably FDP [56, 57].
PLPP6 is expressed in human leukocytes and multiple
human tissues and upon exposure to LTB4 is activated to
decrease PSDP levels, suggesting that PLPP6 is a potential
new therapeutic target to dampen overexuberant neutrophil
activation in disease [53]. PLPP6 activity can be reversed
by an ALX/FPR2 receptor agonist, such as 15‐epi‐LXA4

that also inhibits LTB4‐initiated PLD and PI3K activation
and superoxide anion generation [51, 53, 54]. These find-
ings provide evidence for receptor‐initiated PIPP remodel-
ing as a regulatory signaling pathway. Novel synthetic PIPP
mimetics, such as (Z)-containing isomer of PSDP ((Z)-
PSDP), have been synthesized and carry potent inhibition
for experimental models of neutrophil accumulation, acti-
vation and leukocyte-driven reactive oxygen species (ROS)
generation, toward controlling inflammatory responses and
limiting tissue injury [52].

PLD and ARDS

The airway epithelium, in addition to being the first line of
defense as a physiochemical barrier, plays an essential role
in production and secretion of inflammatory mediators to
augment host defense in the lungs [59]. Close commu-
nication between the pulmonary vascular endothelium and
respiratory epithelium is important for coordination of the
recruitment, activation, and retention of leukocytes during
inflammation [60].

In addition to its important roles in leukocyte activation,
PLD signaling is engaged in activation of lung epithelium.
Multiple isoforms of PLD exist, of which PLD1 and PLD2
are enzymatically active and have been implicated in human
pathophysiology, including ARDS [61]. PLD catalyzes the
hydrolysis of the membrane phospholipid, phosphati-
dylcholine, generating choline and PA, which in turn reg-
ulates multiple intracellular signaling responses, including
activation of NFκB and activator protein-1 transcription
factors resulting in airway epithelial cell secretion of the
pro-inflammatory cytokine IL-8 [59]. IL-8 is a potent che-
moattractant and activator of neutrophils, with reports of
elevated levels in the BAL fluid of patients with a variety of
respiratory disorders including ARDS [62].

PLD isoforms are differentially associated with survival
in human patients with ARDS, and differentially regulate
mouse host responses to ALI [61]. This has been high-
lighted via a targeted analysis of PLD and PLD-related gene
expression of a published human gene expression micro-
array dataset in patients with ARDS. PLD1 gene expression
was increased in patients with ARDS and correlated with

Table 2 Presqualene diphosphate (PSDP): evidence for roles as a
signaling molecule

• Rapid and reciprocal remodeling of PSDP to PSMP upon
neutrophil activation by soluble pro-inflammatory stimuli [50]

• PLPP6 (a.k.a. PDP1); a lipid phosphate phosphatase that converts
PSDP to PSMP [55]

• Inhibition of PLD and subsequent PA production [51, 52]

• Inhibition of PI3K [53]

• Inhibition of NADPH oxidase assembly and superoxide anion
production in neutrophils [50, 51]

• SPMs (i.e., LXA4) inhibit PLPP6 and PSDP conversion to PSMP
[55]

• Protective action of PSDP can be replicated by synthetic
polyisoprenyl phosphate mimetics [53]
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survival, whereas PLD2 expression was associated with
mortality. Upon comparison of gene expression between an
animal model of ALI and human ARDS, the changes with
lung inflammation were comparable in both species with an
association between gene expression and recovery from
disease [61]. In a murine model of self-limited ALI, PLD1
gene expression increased in injured lungs, and PLD1
deficiency in a knockout mouse worsened ALI severity by
alveolar barrier disruption and decreased macrophage pha-
gocytosis. In contrast, PLD2 expression decreased in mur-
ine self-limited ALI and PLD2 deficiency in a knockout
mouse lessened ALI severity, and was associated with
increased recruitment of macrophages with enhanced pha-
gocytosis and decreased neutrophil production of ROS [61].
Together, these findings have uncovered pathogenic and
protective signaling circuits of PLD1 and PLD2 that reg-
ulate the intensity of inflammation and its resolution thus
influencing the nature and severity of lung injury and
inflammation; emphasizing the potentially important role of
PIPP remodeling and its effect on PLD activity for a con-
trolled inflammatory response without progression to
ARDS [61].

Dr. Natarajan’s Contributions to Lung Cell
Biochemistry and Lipidology

It is an honor for us to participate in this special issue of the
Journal that is dedicated to Professor Natarajan and his
lifelong passionate investigation of lipid biochemistry and
its translation to cell biology and important lung diseases.
His basic research on lipid phosphates and their phospha-
tases, especially sphingosine-1-phosphate (S1P) and its
corresponding phosphatases, have uncovered several
mechanisms for intracellular lipid signaling control of
fundamental processes in lung cell biology [63–71].
Dr. Natarajan showed the important role of sphingosine in
pulmonary endothelial cell signal transduction. Of note,
sphingosine directly, or indirectly (upon conversion to
S1P), can activate PLD, leading to accumulation of PA with
downstream cellular responses [72]. In addition, sphingo-
sine (but not S1P) can also inhibit PA phosphatase activity
(i.e., the enzyme converting PA to diacylglycerol). PLD-
mediated PA generation plays an important role as a
bioactive lipid second messenger in the regulation of var-
ious cellular processes including cell survival, cell migra-
tion, cell proliferation, differentiation, cytoskeletal changes,
membrane trafficking, and autophagy [61].

Pathogen-induced lung inflammation is characterized by
excess ROS generation [65]. Dr. Natarajan’s lab identified a
key role for NOX4 in mediating Pseudomonas-induced
lung inflammation and injury via nuclear ROS generation,
chromatin remodeling (by oxidant inhibition of HDAC1/2

activity) and secretion of pro-inflammatory cytokines [65].
P. aeruginosa instillation into mouse airways stimulates
NF-κB in epithelial cells, and S1P signaling regulates
NOX4-dependent nuclear ROS via Rac1. These novel
results laced together a signaling cascade for PA-induced
PKC with downstream activation of SPHK2, Rac1, and
NOX4, leading to nuclear ROS generation [65]. Further-
more, NOX4 was pivotal for epithelial apoptosis and dif-
ferentiation of fibroblasts to myofibroblasts in lung fibrosis
mouse models. Together, these studies highlight the
potential targeting of NOX4 in mitigating lung infection
and other pulmonary inflammatory diseases.

Patients with sepsis or pneumonia can develop respira-
tory failure resulting in the need for assisted ventilation
[14]. Overinflation of the lung or extended duration of
mechanical ventilation can cause ventilator-induced lung
injury (VILI). Using a mouse model of VILI, Dr. Natar-
ajan’s group identified decreased levels of S1P in lung tis-
sues, which correlated with increased expression of S1P
Lyase (S1PL; an enzyme that converts S1P to Δ2-hex-
adecenal and ethanolamine phosphate) [66]. Of note, there
is suggestive evidence that 2-halofatty aldehydes metabo-
lites of S1P, derived from its degradation by S1PL, can
serve as signaling lipids in mammalian cells [68]. Because
mechanical ventilation in mice was associated with
increased S1PL expression and consequent reduction of
S1P levels, the corresponding signaling pathways could be
important contributing mechanisms to alveolar epithelial
cell apoptosis, barrier dysfunction as well as inflammatory
cytokine release in VILI.

Regeneration and repair of tissue are integral to resolu-
tion of lung injury and inflammation. Dr. Natarajan’s group
has identified an interesting and important role for S1P
signaling in this process by its regulation of the regenerative
function of alveolar type 2 (AT2) cells, which are important
for restitution of the integrity of the alveolar epithelial
barrier. In a mouse model of bacterial lung injury, angio-
crine S1P via the S1P-S1PR2-YAP signaling axis promotes
differentiation of AT2 to AT1, thus regulating alveoli epi-
thelial repair [64]. This insightful work highlighted the
importance of endothelial cell communication and interac-
tion with epithelial cells for lung barrier integrity and repair
mediated by bioactive S1P autacoid signaling.

Together, Dr. Natarajan’s fundamental contributions to our
understanding of lysophospholipid and lipid phosphate
phosphatase biochemistry in lung cell responses to inflam-
matory, infectious, or mechanical insults have uncovered
physiologic and pathologic mechanisms for cell activation
and control. His impactful discoveries have had a particular
focus on heterotypic cell–cell interactions for regulation of
alveolar epithelial barrier homeostasis and its restitution after
injury during catabasis. These findings have also provided
insights into fibroblast biology and interstitial fibrosing
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diseases. The potentially broad impact of Dr. Natarajan’s
science underscores its fundamental importance.

Concluding Remarks

In summary, here we have reviewed evidence in support of
important roles for lipid-derived mediators in cellular
responses in the pathobiology of sepsis and ARDS. Pro-
inflammatory prostanoids and LTs are potent chemoat-
tractants and activating mediators for leukocytes and tissue
resident cells. Sepsis is a clinical syndrome of life-
threatening systemic inflammation. Similarly, ARDS is a
syndrome of excess inflammation in the lung that compro-
mises oxygenation and typically requires support with a
mechanical ventilator that places patients at further risk for
VILI. Both of these critical illnesses are propelled, in part,
by vigorous and unrestrained leukocyte activation by pro-
inflammatory lipid mediators. In addition to the upslope of
inflammatory responses, in health, lipid mediators are also
potent regulators of the resolution of these inflammatory
responses. SPMs are enzymatically derived from essential
polyunsaturated fatty acids at sites of inflammation and
serve as receptor-mediated autacoids to resolve the inflam-
matory response and restore homeostasis. Pro-inflammatory
stimuli, including LTs, activate PIPP remodeling to tran-
siently unlock leukocyte cellular responses; signal trans-
duction pathways that are blocked by resolution phase
mediators, including LXs. In addition to PIPPs, other
phosphorylated lipids, such as S1P, can regulate cell acti-
vation in inflammatory responses. In addition to leukocyte
responses, lipid mediators regulate lung structural cell bar-
rier integrity and regeneration and repair of injured tissues
—restorative functions for the resolution of lung infection,
trauma, and environmental insults. The study of lipid-
derived mediators and metabolism has contributed much to
our understanding of acute lung injury and systemic
inflammation, yet there are still many questions to answer.
Contributions of leaders like Professor Natarajan have
paved a scientific path forward to address these questions
and have mentored a generation of scientists to carry the
mission forward for an even better understanding of the
underlying lipid biochemistry and cell biology of sepsis and
ARDS toward the development of new therapeutics for
these critical illnesses.
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