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ABSTRACT

Objective: We introduce Medical evidence Dependency (MD)–informed attention, a novel neuro-symbolic

model for understanding free-text clinical trial publications with generalizability and interpretability.

Materials and Methods: We trained one head in the multi-head self-attention model to attend to the Medical ev-

idence Ddependency (MD) and to pass linguistic and domain knowledge on to later layers (MD informed). This

MD-informed attention model was integrated into BioBERT and tested on 2 public machine reading comprehen-

sion benchmarks for clinical trial publications: Evidence Inference 2.0 and PubMedQA. We also curated a small

set of recently published articles reporting randomized controlled trials on COVID-19 (coronavirus disease 2019)

following the Evidence Inference 2.0 guidelines to evaluate the model’s robustness to unseen data.

Results: The integration of MD-informed attention head improves BioBERT substantially in both benchmark

tasks—as large as an increase of þ30% in the F1 score—and achieves the new state-of-the-art performance on

the Evidence Inference 2.0. It achieves 84% and 82% in overall accuracy and F1 score, respectively, on the un-

seen COVID-19 data.

Conclusions: MD-informed attention empowers neural reading comprehension models with interpretability

and generalizability via reusable domain knowledge. Its compositionality can benefit any transformer-based ar-

chitecture for machine reading comprehension of free-text medical evidence.
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INTRODUCTION

Evidence-based medicine (EBM) calls for the incorporation of the

best available medical evidence from systematic research into clini-

cal decision making for principled patient care.1 Much medical evi-

dence is locked in free-text randomized control trial (RCT)

publications.2 As vast evidence bases such as PubMed grows expo-

nentially and rapidly, evidence retrieval and appraisal become ex-

tremely difficult due to information overload.3 It usually takes more

than 30 minutes for a clinician to search for evidence needed to an-

swer one clinical question encountered during patient care. In prac-

tice, however, their busy clinical routines can only spare less than 2

minutes for such laborious searches,4 resulting in limited translation

of evidence from research to practice. Therefore, it is imperative to

develop scalable and automated medical evidence extraction and

comprehension methods. Methods have been developed for evidence

retrieval,5–8 data elements extraction,9–13 automated systematic re-

view,14–16 and clinical question answering (QA).4,17–21 In this study,

we focus on machine reading comprehension (MRC).

MRC is the technology that teaches a machine to read unstruc-

tured text, mimic the inference process of human readers, and then

answer questions about it. Efficient comprehension and synthesis of

medical evidence in the literature is no trivial task—even for medical
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experts. An example abstract from22 and a related clinical question

are shown in Figure 1. The abstract reports an interventional study

that assessed the effectiveness of respiratory rehabilitation for el-

derly coronavirus disease 2019 (COVID-19) patients. The clinical

question asks whether respiratory rehabilitation can significantly

improve 2 outcomes: anxiety and depression. We highlight the text

in which inference is made to answer “yes” for anxiety and “no” for

depression based on the following rationale: (1) the answer comes

from the conclusion about the interventional group (not control);

(2) anxiety and depression are measured by Self-Rating Depression

Scale (SDS) and Self Rating Anxiety Scale (SAS) scores; and (3) in

the interventional group, both scores decreased but only the differ-

ence in SAS is statistically significant.

Early QA systems for improving patientcare relied heavily on

biomedical ontologies—such as the UMLS Metathesaurus23—and

lexico-syntactic patterns to extract biomedical concepts as candidate

answers, followed by a scoring function (eg, TF-IDF, LexRank) for

answer ranking.17–19 Generating answers from automatically con-

structed knowledge graphs is another technique for answering clini-

cal questions. A factorized Markov network was used to construct a

clinical knowledge base from clinical notes.20 Recent breakthroughs

of pretrained language models such as ELMo24 and BERT25 show

significant performance improvement on multiple tasks including

QA and MRC. Neural approaches in the biomedical domain have

benefited from these advances. It is common practice in biomedical

MRC to introduce attention variants from general NLP applica-

tions, followed by domain adaptation by fine tuning on a biomedical

corpus. For example, Du et al26 used biomedical word embedding

and a hierarchical multilayer transfer learning model with a co-

attention mechanism by Xiong et al27 and Wiese et al28 to concate-

nate general word embeddings with biomedical embeddings and

adopt FastQA29 in the attention layer to develop an extractive QA

system. While most of the prior work in the biomedical domain only

incorporates biomedical concepts through concept embeddings or

general transfer learning from large biomedical corpora, we dedicate

our efforts to design an efficient neural approach to make use of rel-

evant domain knowledge and improve the model’s reasoning capa-

bility over medical evidence text.

All previous work can be categorized as either symbolic or statis-

tical. The idea behind a symbolic approach is to teach machines to

understand language in the same top-down manner that humans

do—learning and using rules as well as symbolic representations of

knowledge—which is explainable and offers good performance in

reasoning tasks as expert systems do. However, this technique relies

heavily on human-driven knowledge engineering and has had lim-

ited success in understanding and deciphering contextual informa-

tion.30 Recent state-of-the-art results in natural language processing

(NLP) have been achieved predominantly by statistical methods,

particularly the deep learning models. These bottom-up data-driven

approaches have shown significant advantages in learning latent and

sophisticated representations probabilistically. However, their rea-

soning capabilities are still rather limited when compared with sym-

bolic AI.31 In addition, the lack of transparency and the requirement

for extensive training data to fit these models become 2 severe draw-

Figure 1. An example clinical question and answer for a study formulated from Liu et al.22
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backs. These challenges are exacerbated in the healthcare domain by

the lack of trust in machines among clinicians. Other challenges fac-

ing text comprehension for medical literature have also been identi-

fied, such as that (1) models suffer from lengthy text and the long

distance dependencies throughout the articles32,33 and (2) the com-

plexities in clinical studies limit the neural models’ ability to effi-

ciently incorporate domain knowledge and develop clear intuitions

around strong patterns denoting complex concepts.33 The attention

mechanism34 and its variants conditioned on question text have

been applied to such problems and only achieve modest predictive

gains.32

Therefore, in this study, we aim to design a neuro-symbolic

MRC model to understand free-text medical evidence (eg, RCT pub-

lications) by leveraging both the high capacity of neural networks as

well as the expressiveness of symbolic methods. The traditional tech-

nique used to combine the 2 approaches is multitask learning with

hard parameter sharing between symbolic knowledge representa-

tions for medical evidence and neural reading comprehension mod-

els. Their potential shortcomings include overfitting and

dependency on the quality of the parser. By synergizing neural and

symbolic methods, our goal is to improve the interpretability, rea-

soning ability, and task generalizability of neural networks by add-

ing reusable domain knowledge. Our contributions are 3-fold: (1)

we propose a symbolic representation, called medical evidence de-

pendency (MD), to represent the compositional elements of medical

evidence; (2) we propose a novel attention mechanism, MD-

informed attention, which provides compositional submodel for any

Transformer-based language models and is able to pass linguistic

and domain knowledge onto later layers; and (3) we integrate MD-

informed attention into BioBERT to evaluate the model’s ability to

understand and synthesize unstructured medical evidence on 2 pub-

lic benchmarks. MD-informed attention substantially improves Bio-

BERT performance and achieves new state-of-the-art performance.

MATERIALS AND METHODS

Models
Medical evidence dependency

First, we define a simple and computable representation for medical

evidence, which represents compositional evidence elements and

relations among them. A medical evidence element is an atomic en-

tity in a finding. We adopt the PICO framework developed for for-

mulating clinical questions to retrieve evidence from literature1 to

define 4 types elements (P, I, C, and O):

Population the characteristics of the study population

Intervention the primary intervention considered

Comparator comparison for the intervention

Outcome the anticipated measures, improvements, or effects

Additionally, we define 2 new attribute classes to represent nec-

essary context: observation (quantitative or qualitative results with

respect to an outcome measure) and count (the count of participants

observed to have the same result for an outcome measure) Then we

define the directional relationships between a pair of evidence ele-

ments, called MD, with one element being the governor and the

other being the dependent. The directions are fixed to Interven-

tion(Comparator)!Observation !Outcome. Example

MD-structured text is shown in Figure 2. Using the elements and the

dependency, we can construct a “medical evidence proposition,” a

compositional unit of medical evidence. In the example, 2 medical

evidence propositions are formulated from the extracted interven-

tion, outcome, and observation elements. Both represent an ob-

served clinical fact with respect to the outcomes (cardiac index

became higher; vascular resistance was decreased) after the interven-

tion is applied.

MD-informed self-attention

Most of the current neural NLP models use the Transformer intro-

duced by Vaswani et al35 as their backbone, such as BERT,25 XL-

Net,36 and GPT-2.37 The multihead attention mechanism is used to

capture global interactions across the text in multiple

“representation subspaces.” Such an architecture offers flexibility

and potential to teach the model to learn a “subspace” in the medi-

cal domain. The conventional neural attention mechanism is unsu-

pervised when learning to attend to relevant inputs. In this study, we

train the self-attention to attend to the MD as a mechanism for pass-

ing both linguistic and domain knowledge to subsequent layers, and

we hypothesize that our model can better attend to relevant text and

improve reasoning capability over long-distance evidence for clinical

questions (Figure 3).

Inspired by Strubell et al,38 in which syntactic dependency is in-

tegrated into attention for semantic role labeling, we design an MD

matrix, a specialized adjacency matrix for the directed graph in-

duced by MDs from text. The MD matrix, like self-attention, cap-

tures global dependencies within text segments (Figure 4). When a

MD is identified between a pair of terms, 1 is assigned to the corre-

sponding slot in the matrix; otherwise, 0 is assigned. In addition, be-

cause intervention elements are in the top hierarchy in the MDs

among all others, we define every recognized intervention element

as dependent on itself and assign 1 to the corresponding slot in the

matrix. Figure 4 shows an MD matrix for the example text.

Conventional self-attention adopted the scaled dot-product at-

tention, in which the attention is weighted sum of the values (Value).

The weight assigned to each value is determined by the dot-product

of the query (Query, ie, the information we are looking for) with all

the keys (Key [ie, the relevance to the query]). The detailed explana-

tion is given in Vaswani et al.35

Attention Query; Key; Valueð Þ ¼ Softmax
Query � Keyffiffiffiffiffi

dk

p
 !

� Value

Here, we modify the weights (scaled dot-product of Query and

Key) to make it relevant to medical evidence. In one self-attention

head from the Transformer, we drop in the MD matrix to replace

the scaled attention score generated from the dot product of Query

and Key (Figure 4), and take its Softmax to compute new weights.

Then by computing a new weighted sum of Value, we get a context

representation ZMD specialized to attend to medical evidence:

Attention MD Matrix; Valueð Þ ¼ SoftmaxðMD MatrixÞ � Value

Figure 3 depicts the overall architecture of one multihead self-

attention module with MD-informed attention. The attention heads

within black boxes in Figure 3 contain the MD-informed attention

values. We leave the other attention heads in multihead self-

attention as default to learn their own attention representation Z

from their Query, Value, and Key, and concatenate the learned ZMD
from MD-informed attention head with the rest of the conventional

context layers to obtain Z as the final output of one attention mod-

ule in the Transformer (the top layers in Figure 3). By introducing

MD-informed attention, the neural reading comprehension model
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can make efficient end-to-end use of domain knowledge. In addi-

tion, because MD is global, the model can efficiently capture and

reason over long-distance evidence relations.

MD parser

The parser extends our previous work and annotated dataset.10 We

module the task of extracting Medical Evidence Elements as named

entity recognition, and parsing Medical evidence Dependency as re-

lation extraction. Both named entity recognition and relation extrac-

tion models are trained by modifying the last layer and fine-tuning a

biomedical version of BERT39 on the dataset. It achieves a micro-F1

score of 0.72 for 5-class named entity recognition and 0.92 for

extracting MDs among PICO elements (details in Supplementary

Appendix). We apply this parser to construct the MD matrix and

MD-informed attention head. It is worth noting that this can be

replaced when a more advanced method or tool is available.

EXPERIMENTS

MD-informed self-attention is compatible with any Transformer-

based model and can support various natural language understand-

ing tasks on unstructured medical literature. In this study, we evalu-

ate its effectiveness under the BioBERT architecture and present

results on 2 shared benchmark datasets for text comprehension for

the medical literature, Evidence Inference 2.0 and PubMedQA.

Benchmark datasets
Evidence Inference 2.02: Evidence inference and synthesis is a key

task in practicing EBM. Entries in this dataset consist of an interven-

tion (eg, chemotherapy), a comparator (eg, surgery), and an out-

come (eg, 5-year survival rate of operable cancers), along with an

associated article. The task is to infer the comparative performance

of the 2 treatments with respect to the outcome based on the article

to tell if there was a significant increase, a significant decrease, or no

significant change between the intervention and comparator. The

prompts labeled as invalid or whose answers cannot be found in the

article abstract are filtered out before training.

PubMedQA40: This is a machine reading comprehension dataset

for biomedical research questions. The task is, given a question and

a relevant piece of medical literature (a context), predict an answer

of yes, no, or maybe. The questions in the dataset are constructed

from the titles of PubMed articles, while the context is a structured

abstract with the Conclusion sentences omitted. No filtering is done

on this dataset. During preprocessing, each question-context pair is

separated by the special token [SEP]. Particularly in Evidence Infer-

ence 2.0, questions are given in terms of “prompts,” each specifying

Figure 2. Example medical evidence dependency (MD) for unstructured medical evidence. Two medical evidence propositions are extracted from this example

sentence.

Figure 3. Overall architecture for multihead self-attention with medical evidence dependency (MD)–informed attention. It visualizes 3 heads (vertical dot lines) in

the figure, but it is worth noting that there are usually 12 heads in BERT base architecture. The head with bold border represent the MD-informed attention head.

The tokens that relate in MD are assigned higher weights.
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an Intervention, a Comparator, and an Outcome. Every prompt and

context are processed as:

[O] Outcome [I] Intervention [C] Comparator [SEP] abstract

text

Basic statistics and examples for 2 benchmark datasets after

preparation are provided in Figure 5.

Experiments of MD-informed attention
We tested MD-informed attention on 2 benchmarks. When con-

structing the MD matrix for the prompts or questions, the questions

from PubMedQA are processed as the same way as the abstracts:

first we identify the Medical evidence Dependencies and then con-

struct the MD matrix accordingly. For Evidence Inference prompts,

because the element types are given, we assign 1 to all pairs of words

in Intervention and Comparator. Special tokens like [O], [SEP] are

left as 0 in the matrix. The model is then trained to select one correct

answer from multiple choice options (Evidence Inference 2.0:

“significantly increased,” “significantly decreased,” and “no signifi-

cant difference”; PubMedQA: “yes,” “no,” and “maybe”).

MD-informed attention is integrated into BioBERT and pre-

trained on biomedical corpus and SQUAD 2.0 for biomedical QA,21

by replacing one conventional Self-Attention head in the Trans-

former Encoder (henceforth, such systems referred as BioBERT-

MDAtt). To evaluate the robustness of MD-informed attention, we

also apply an attention mask on this attention head to randomly re-

move part of learned dependencies (BioBERT-MDAtt-masked), by

setting each pair of words in MD matrix assigned 1 to 0 with a prob-

ability of p.

Baseline models
We compare BioBERT-MDAtt results to the 2 baselines on both

tasks.

State-of-the-art performance: For the Evidence Inference 2.0

dataset, we compare our results to the best performance reported

in,2 and the top system on the leaderboard. In,2 the best model pre-

dicts answers using a BERT to BERT, 2-stage pipeline. A variant of

RoBERTa41 pretrained over scientific corpora serves as the base

model. The first BERT identifies evidence bearing sentences within

an article for given PICO elements. The second then classifies the an-

swer using the evidence extracted from the first stage. In the up-to-

date leaderboard, the top system applies a similar strategy and out-

performs the original system by 2%. The state-of-the-art system for

PubMedQA, reported in Jin et al40—which is also the top performer

on their leaderboard—adopts a multiphase fine-tuning of BioBERT

on both labeled and unlabeled data collections. In our experiments

on PubMedQA, only labeled QA pairs are used.

BioBERT for QA: Additionally, we implement BioBERT for bio-

medical QA21,42 as another strong baseline, with all attention heads

left on their own to learn. The last layer is modified to adapt to our

Figure 4. Medical evidence dependency (MD) matrix and MD-informed self-attention function, ZMD. Conventionally, the attention function Z is learned from

Query, Value, and Key: Z ¼ Softmax(Q � KT) V. To adapt it to medical evidence, we drop in the MD matrix to replace the scaled attention score generated from the

dot product of Query and Key, and take its Softmax.
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question type and fine-tuned on both datasets (referred as Bio-

BERT).

Given that the information necessary to answer the question

might be scattered throughout the abstract, we fix a large number,

384, as the maximum sequence length while training all the models.

All BERT models deployed in this study are BERT-Base, with 12 at-

tention heads. If MD-informed attention is applied, one head will be

replaced. We fine-tuned all other underlying parameters. We trained

all models using the Adam optimizer43 with a learning rate 2e-5. All

systems are implemented in TensorFlow 1.14.0 and trained on 4x

NVIDIA GeForce RTX 2080 Ti GPUs.

RESULTS AND DISCUSSION

Evidence inference 2.0
Table 1 lists the main results on the Evidence Inference 2.0 test set.

Our proposed BioBERT-MDAtt model achieves the new state of the

art (macro-F1: 0.843, micro-F1: 0.844, accuracy: 0.84), over 4%

absolute macro-F1 higher than previously reported best models.2

The baseline model that fine-tunes on BioBERT achieves 0.55

macro-F1, comparable to the reported performance (0.51 macro-F1)

of the BERT Pipeline without conditioning on recognized PICO

elements in DeYoung et al.2 We report per-class performance from

BioBERT and BioBERT-MDAtt in Table 2. Simple addition of

MD-informed attention brings substantial improvement—almost a

þ0.30 increase in macro-F1 score and accuracy.

Table 1 shows the performance of the model with P¼ .4. The

performance drops slightly compared with the model with the at-

tention mask, but MD-informed attention still outperforms the

previous state of the art. Compared with the prior models, in

which the final label is predicted based upon evidence sentence

extracted in the prior stages, BioBERT-MDAtt is conducted as a

completely end-to-end pipeline and leverages knowledge in a

domain-agnostic way rather than running the risk of overfitting

to the training data.

Figure 5. Dataset statistics and example instance for the 2 benchmarks. Both are formulated as a machine reading comprehension task, in which the model is

trained to predict the answer by giving a question (in Evidence Inference 2.0’s case, a prompt) and a related abstract from randomized controlled trial reports

(context). Partial relevant context to answer the example question is highlighted in the figure. It is worth noting that, for PubMedQA dataset, we only use the part

that is labeled with gold standard answer (PQA-L set).

Table 1. Accuracy, macro-F1 score, precision, and recall on Evi-

dence Inference 2.0 test set.

Model Accuracy F1 Score Precision Recall

DeYoung et al2 / 0.780 0.784 0.777

Leaderboard / 0.797 0.796 0.797

BioBERT 0.56 0.551 0.551 0.551

þMDAtt 0.84 0.843 0.850 0.841

þMDAtt-masked 0.82 0.819 0.823 0.817

The first 2 rows are retrieved from the original publication and the leader-

board for the benchmark.
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PubMedQA
There are multiple data collections in PubMedQA, and only PQA-

L(abeled) includes human-curated answers. However, it is an ex-

tremely low resource setting in which there are 1000 abstracts and

only 450 training question-answer pairs in each fold of cross-

validation. All evaluations in Tables 2 and 3 are carried out on the

PQA-L test set of 500 QA pairs by 10-fold cross validation. Two

systems from Jin et al40 are compared against ours. The multiphase

system in PubMedQA paper achieves the state-of-the-art perfor-

mance by multiphase fine-tuning BioBERT, first on a large unla-

beled corpus and then on PQA-L (over 200 000 abstracts in total).

The Final Phase system in Table 3 is trained by fine-tuning BioBERT

only on PQA-L (1000 abstracts). To evaluate the effectiveness of the

MD-informed attention, we also only use PQA-L data to train our

MRC models in this study, thus our models are comparable to the

Final Phase Only model.

Our baseline model, fine-tuning BioBERT on PQA-L, achieves

comparable results to Final Phase Only system from the PubMedQA

article. The effects of incorporating the MD-informed attention

head into BioBERT are reported in Table 2. The BioBERT-MDAtt

model achieves near state-of-the-art performance with substantially

less data (macro-F1: SOTA 0.527 using 200 000 abstracts vs

BioBERT-MDAtt 0.482 on 1000 abstracts) and showed consider-

able improvement upon the counterpart models (þ0.17 in macro-F1

to the BioBERT baseline, and þ0.19 to Final Phase Only model). Of

note, the strategy adopted in the state-of-the-art (SOTA) system

does not contradict with ours. It is easy to combine the two (ie,

training MD-informed attention on PQA-L data after multiphase

fine-tuning on large unlabeled corpus) and benefit from both strate-

gies. This combination theoretically can achieve better results than

individual approaches. Additionally, we notice both models have

low performance for this class given the inherent ambiguity of

“maybe” class (Table 2). Consistent with what we observe in the Ev-

idence Inference 2.0 task, when masking is applied at P¼ .4 the per-

formance drops slightly, but the addition of MD-informed attention

head still results in a significant improvement in the model’s perfor-

mance. The results on PubMedQA task show that, by applying

neuro-symbolic approach, the model can generalize over tasks via

reusable knowledge and achieve better results with less data. We be-

lieve that our model has great potential to excel when a larger data-

set is available.

For both tasks, the evaluations in Table 2 reveal that, replacing

one conventional attention head with MD-informed attention in

BioBERT results in extensive improvement in all measures. The

MD-informed attention helps BioBERT further generalize over dif-

ferent tasks by reusable domain knowledge. More importantly, this

improvement is understandable via human-readable symbolic form

introduced by Medical evidence Dependency. In addition, because

MD-informed attention is adaptable to any Transformer-based

model (ie, most of the state-of-the-art language models), it provides

a beneficial feature as being compositional and easy to be integrated.

Therefore, MD-informed attention can serve as a reusable submodel

to benefit any Transformer-based architecture and improve their

abilities in understanding free-text medical evidence.

COVID-19 clinical trials case study
To further evaluate the robustness of MD-informed attention, we

curate a small set of recently published PubMed abstracts reporting

clinical trials on COVID-19. We selected this disease domain for

evaluation because the studies in this domain have only started to

accumulate recently, which provides us unseen examples for both

the MD parser and the MRC model. Following the annotation

guidelines from Evidence Inference 2.0, we create 50 “prompt-

abstract” pairs from 10 abstracts that report RCTs of COVID-19

and make it available in the Supplementary Appendix. BioBERT-

MDAtt trained on Evidence Inference 2.0 (performance reported in

Tables 1 and 2) is applied to predict the 50 pairs.

We evaluate the model from 3 aspects: (1) performance on un-

seen data, (2) reasoning capabilities over variance of the expressions

for Intervention/Comparator/Outcome, and (3) reasoning

capabilities over long-distance evidence relationships. To do so,

while creating prompt-abstract pairs, we intentionally replicate the

original pair and replace elements in the prompts with their variants

occurring in the other sections in abstract—a model with good rea-

soning capability should predict the same results for the pairs. For

instance, consider the 2 pairs of prompts created from the article

shown in Figure 1:

Table 2. Per-class and overall performance by BioBERT and BioBERT-MDAtt on 2 benchmarks.

Class Precision Recall F1 score Support

BioBERT þMDAtt BioBERT þMDAtt BioBERT þMDAtt

Evidence Inference 2.0 Significantly increased 0.63 0.80 0.64 0.88 0.63 0.84 227

No significant change 0.52 0.88 0.53 0.87 0.52 0.87 208

Significantly decreased 0.53 0.86 0.51 0.77 0.52 0.82 180

Macro-average 0.55 0.85 0.55 0.84 0.55 0.84 615

Micro-average 0.55 0.84 0.55 0.84 0.55 0.84 615

PubMedQA Yes 0.58 0.67 0.85 0.73 0.69 0.70 276

Maybe 0.00 0.18 0.00 0.11 0.00 0.14 55

No 0.40 0.57 0.22 0.57 0.29 0.57 169

Macro-average 0.32 0.48 0.35 0.48 0.31 0.48 500

Micro-average 0.53 0.61 0.57 0.61 0.53 0.61 500

Table 3. Macro-averaged performance from 10-fold cross-valida-

tion on PubMedQA test set

Model Accuracy F1 Score Precision Recall

Jin et al. (2019)40

Multiphase (state of the art) 0.68 0.527 / /

Final phase only 0.57 0.287 / /

BioBERT 0.53 0.311 0.315 0.34

þMDAtt 0.61 0.482 0.482 0.483

þMDAtt-masked 0.60 0.463 0.469 0.463
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[O] anxiety [I]respiratory rehabilitation [C] without any reha-

bilitation intervention

[O] SAS score [I] respiratory rehabilitation [C] without any

rehabilitation intervention

The 2 are asking the same question: if the intervention has signif-

icant effect on anxiety compared with the comparator, which we

should infer from the abstract, then it should significantly affect the

SAS score (which is used to quantify anxieties). We report the

BioBERT-MDAtt model performance in Table 4. Overall, even

though this is an unseen dataset for both the parser and MRC

model, the F1 score only drops slightly compared with original eval-

uation on the Evidence Inference 2.0 test set (from 0.84 to 0.82). A

total of 42 of 50 pairs are answered correctly, indicating that our

proposed model is robust. From examining the detailed results, we

find that the model can answer both variants correctly for the cre-

ated prompt pairs. The most common error that it makes is to mis-

classify “no significant difference” as 1 of other 2 labels. For

example, from the example in Figure 1, “SAS and SDS scores in the

intervention group decreased after the intervention, but only anxiety

had significant statistical significance within and between the 2

groups,” the model misclassified “depression” as significantly de-

creased instead of correctly reasoning over the adversative transi-

tion.

By visualizing the MD-informed attention head for the example

text just mentioned (Figure 6), the isolated attention is visualized,

showing connecting from the word “score” to all the words or

tokens in a separated sentence that generates separated medical evi-

dence propositions. The MD-informed attention head learns to high-

light the relevant evidence components like “anxiety,” “statistical

significance” and “groups,” and the highest weight comes the pair

“score” to “anxiety,” congruent with the facts that they both belong

to outcome class and “(SAS) score” is the quantified measure for

“anxiety.” This shows that MD-informed attention is able to

capture clinically meaningful or understandable interactions across

different medical evidence propositions, instead of being a “black

box” for practitioners. In future work, we would like to incorporate

MD-informed attention into more advanced models to further test

its effectiveness.

CONCLUSIONS

In this study, we present and evaluate a novel attention mechanism,

MD-informed self-attention, for understanding and reasoning over

free-text medical evidence such as RCT publications. By integrating

MD-informed self-attention into BioBERT, and evaluating on 2

benchmarking tasks, we gain substantial improvement over Bio-

BERT with the conventional multihead attention. We also outper-

form the prior state of the art on one task, and achieve near state-of-

the-art performance with considerably less data on the other. By

synergizing neural and symbolic methods, we introduce reusable

knowledge and empower existing neural reading comprehension

models with better understandability, reasoning ability, and task

generalizability. In addition, because MD-informed attention is

adaptable to any Transformer-based model (ie, most of the state-of-

the-art language models), its compositionality is a beneficial feature

to any Transformer-based architecture and can improve their abili-

ties in understanding free-text medical evidence.
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Table 4. Per-class and overall performance on new COVID-19 data-

set by applying BioBERT-MDAtt model trained on Evidence Infer-

ence 2.0

Accuracy F1 Score Precision Recall Support

Significantly decreased 0.67 0.74 0.83 0.67 15

No difference 0.92 0.89 0.86 0.92 26

Significantly increased 0.89 0.84 0.80 0.89 9

Macro average 0.84 0.82 0.83 0.83 50

COVID-19: coronavirus disease 2019.

Figure 6. Medical evidence dependency (MD)–informed attention head visual-

ization. The weights for the word “scores” learned from the MD-informed

head is visualized between 2 sentences.
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