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Abstract

Transgenic cotton expressing Cry51Aa2.834_16 Bt toxin (hereafter referred to as MON

88702) has the potential to be an important tool for pest management due to its unique activ-

ity against tobacco thrips, Frankliniella fusca. Unlike other Bt toxins targeting lepidopteran

cotton pests, MON 88702 does not cause direct mortality but has an antixenotic effect that

suppresses F. fusca oviposition. Previous work has shown neonicotinoid seed treated

(NST) crops have similar behavioral effects on thrips. This study used non-choice and com-

mon garden experiments to examine how the presence of MON 88702 cotton and soybean

(another F. fusca host) with and without NSTs might alter F. fusca infestation distributions.

In a no-choice environment, significant larval establishment differences were observed, with

untreated soybean plants becoming most heavily infested. In choice experiments, plants

expressing MON 88702 or were neonicotinoid treated had significantly lower larval estab-

lishment. Larval density decreased as dispersal distance increased, suggesting reproduc-

tive decisions were negatively related to distance from the release point. Understanding

how F. fusca responds to MON 88702 in an environment where adults can choose among

multiple host plants will provide valuable context for projections regarding design of MON

88702 resistance refuges. Reduced larval establishment on NST cotton and soybean sug-

gests that area-wide use of NSTs could reduce the number of susceptible F. fusca gener-

ated in unstructured crop refuges for MON 88702. These results also suggest that although

the presence of NST MON 88702 could suppress reproduction and resistance selection,

over time this benefit could erode resulting in increased larval establishment on NST cotton

and soybean due to increased frequency of neonicotinoid resistant F. fusca populations.

Introduction

Genetically engineered cotton varieties that express Bacillus thuringiensis (Bt) toxins are used

to manage lepidopteran pests throughout the world. Over the past two decades, Bt toxins have
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become a cornerstone of integrated pest management in cotton and have, in turn, driven a

reduction in the prevalence of target pests and the use of insecticides to manage them, while

increasing beneficial invertebrate abundance in the crop [1–4]. Despite the success of Bt cotton

against primary lepidopteran pests, ongoing secondary pest infestations continue to require

substantial insecticide inputs, often reducing these important benefits [5–7]. To address part

of this secondary pest gap, Bayer Crop Science has developed a novel Cry51Aa2.834_16 Bt
toxin expressed in cotton to target both hemipteran and thysanopteran pests [8]. In the U.S.

Cotton Belt, the Cry51Aa2.834_16 Bt toxin (hereafter referred to as MON 88702) will be the

first commercially available Bt toxin to control tarnished plant bugs (Lygus lineolaris Palisot de

Beauvois; L. hesperus Knight) and thrips (Frankliniella fusca Hinds; F. occidentalis Pergande)

[9].

Although MON 88702 cotton has documented efficacy against hemipteran and thysanop-

teran pests, both immature and adult stages feed on the cotton plant, which creates several

opportunities for resistance selection during the pest life cycle. Moreover, because both insect

groups have multiple generations in the cotton crop throughout the season [10, 11], new ques-

tions arise about the long-term strategy to mitigate resistance development after commercial

deployment of MON 88702. Opportunities for selection during multiple life stages over time is

a characteristic that further complicates effective resistance management strategies and will

require a more refined understanding of these pests’ interaction with MON 88702 cotton and

associated refuge habitats in the landscape.

In the eastern U.S., tobacco thrips (Frankliniella fusca) are an important early season pest of

seedling cotton that causes direct damage to expanding leaf tissue, loss of apical dominance,

reduced root growth, and, in cases of severe infestation, plant death [12]. To minimize seedling

damage, cotton growers use a combination of at-plant neonicotinoid applications (e.g. seed

treatments, in-furrow sprays) and foliar acephate applications to limit F. fusca infestations and

injury [12]. In the future, MON 88702 could be an effective replacement for these at-plant and

foliar insecticide applications [9]. However, the mechanism of MON 88702 activity creates

added challenges to resistance management in the field. Specifically, recent studies have shown

that MON 88702 acts by a non-lethal antixenosis leading to suppressed oviposition that results

in fewer F. fusca larvae developing on MON 88702 cotton [13–16]. Similar non-lethal suppres-

sion of oviposition by adult F. fusca in conjunction with acute larval toxicity have been docu-

mented for neonicotinoid seed treated (NST) cotton [17–19]. The importance of non-lethal

behavioral effects of both these toxins on adult F. fusca led to a specific question: how will

these antixenotic effects affect F. fusca larval establishment and potential for resistance selec-

tion when adults are exposed to combinations of treated (i.e., MON 88702 cotton and NST

crops) and untreated host plants that are more representative of many cotton agroecosystems?

The overarching goal of the study was to characterize F. fusca larval infestations developing

on MON 88702 cotton, MON 88702 + NST, NST cotton and soybean, and untreated cotton

and soybean when adult F. fusca were allowed to choose among them in a common garden

experimental design that allowed insects to choose among differing host types. We hypothe-

sized that treated hosts (i.e., MON 88702 cotton, NST cotton, and NST soybean) would have

reduced larval establishment when adult female F. fusca were provided alternative untreated

refuge host plants in the same common garden. We also measured larval establishment on

individual host plant treatments under no-choice conditions. Outcomes of this study highlight

the importance of understanding behavioral avoidance of insecticidal toxins by highly mobile

pests that directly feed on crops during the adult stage. Our results provide preliminary evi-

dence that strategic decisions to reduce NST use in key alternate host crops could benefit the

long-term durability of MON 88702 in cotton production systems.
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Materials and methods

Plants and insecticidal treatments

Treatments were partitioned by plant type (soybean, non-Bt cotton, MON88702) and NST

insecticide (NST, no NST) combinations designed to document the oviposition choices of

adult F. fusca female thrips under choice and no-choice conditions (Table 1). Soybean was

included because it is widely grown throughout the U.S. Cotton Belt and is an important host

of F. fusca. Like cotton, soybean is also commonly grown using NST seed [20–22]. In both no-

choice and choice experiments, we used a standardized infestation level of 3 adult female F.

fusca per seedling; this density is commonly observed on seedling cotton under moderate to

high thrips pressure in the eastern U.S. Cotton Belt.

We used a near-isoline (Deltapine1 393) cotton variety to enable the most direct compari-

son possible between Bt and non-Bt cotton cultivars. DP 393 (hereafter referred to as non-Bt
cotton) was provided by Bayer Crop Science for the purposes of comparison to MON 88702 in

this study. NST-treated MON 88702 was treated with 0.375 mg imidacloprid per seed (Gau-

cho1 600FS, 600 g imidacloprid L-1, Bayer Crop Science, Research Triangle Park, NC USA).

NST-treated non-Bt cotton was not included in this study. Although NST-treated cotton varie-

ties that do not express the MON 88702 trait will be common during the initial deployment,

our overarching question involved the relative value of untreated, non-Bt cotton and soybean

as a refuge. To understand the relative importance of NST-treated and untreated soybean as a

F. fusca host, we selected a common soybean cultivar in North Carolina, Asgrow 4831 (Bayer

Crop Science, St. Louis, MO USA). Neonicotinoid-treated AG 4831 soybean seeds received

0.18 mg imidacloprid per seed (Acceleron1 IX-409, 600 g imidacloprid L-1, Bayer Crop Sci-

ence, St. Louis, MO USA). The amount of imidacloprid per seed for both cotton and soybean

was based on two common insecticide rates for commercial crop production in our region.

No-choice experiment

To document baseline reproductive suitability of host plants and treatments, we estimated lar-

val infestations per seedling that developed on each plant type and insecticidal toxin combina-

tion in a greenhouse experiment following release of adult female F. fusca under no-choice

conditions (Table 1). To do this, 25 ten-day-old seedlings of each treatment were grown in

individual 15.2 cm-diameter clay pots that contained commercial potting mixture (Fafard 4P

Mix, Sungro Horticulture, Agawam, MA, USA). Pots were completely randomized across two

greenhouse benches. Each pot was equipped with a thrips-proof enclosure constructed of a

modified 2 L beverage bottle equipped with 100 μm thrips-proof nylon monofilament mesh

vents to allow for airflow (NMO100, Midwest Filter, St. Charles, IL, USA). Individual seedlings

received water through an automated system delivering ca. 63.5 mL of water per pot over a

3-minute interval every 6 h (ca. 250 mL day-1). This maintained adequate soil moisture with-

out leaching of insecticide through the pot. Greenhouse conditions were maintained at 32˚C

under natural lighting for ten days before infestation. Under these conditions, cotton seedlings

Table 1. Details on plant types and insecticidal evaluated in choice and no-choice experiments.

Plant type Cultivar Bt toxin Seed treatment

Cotton MON 88702 Cry51Aa2.834_16 0.375 mg imidacloprid seed-1

Cotton MON 88702 Cry51Aa2.834_16 -

Cotton DP 393 - -

Soybean AG 4831 - 0.18 mg imidacloprid seed-1

Soybean AG 4831 - -

https://doi.org/10.1371/journal.pone.0239910.t001
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developed to the emergence of the first true leaf, and soybeans to the emergence of the first

trifoliate.

Individual seedlings were moved to a controlled environment of 23.5˚C under constant

light and infested with three adult female F. fusca obtained from a neonicotinoid-susceptible,

laboratory-reared colony maintained on white cabbage (Brassica oleracea L.). To maximize

reproductive potential, insects were selected ca. 2 days after becoming adults. After ten days,

seedlings were harvested and washed through a series of soil sieves to collect larval thrips using

the methods of Rummel and Arnold [23]. Briefly, harvested seedling samples were first washed

over a 500 μm sieve to separate immature thrips from plant matter and large debris, followed

by a 150 μm sieve, which collected the thrips larvae. Thrips were then rinsed from the fine

sieve with 70% ethanol into 20 mL scintillation vials. Frankliniella fusca larvae were counted

using a stereomicroscope.

Choice experiments

All seedlings for F. fusca choice experiments were germinated and maintained in square

16-cell Styrofoam float trays designed for growing seedlings in hydroponic float systems. Trays

were constructed by cutting commercial 8 x 16-cell float trays (128-cell CGP Float Tray, Caro-

lina Greenhouses, Kinston, NC, USA) into 4 x 4-cell square blocks using a heated cutting

knife. Cells were 16 cm2 and contained commercial potting mixture (Table 1, Fafard 4P Mix,

Sungro Horticulture, Agawam, MA, USA). Each 16-cell float tray was planted with a single

treatment prior to placement in a deep water-culture, raft system on a greenhouse table. Indi-

vidual trays floated so that the soil passively imbibed water. Greenhouse conditions were main-

tained at 32˚C under natural lighting for ten days before starting choice experiments. Under

these conditions, cotton seedlings had developed to the emergence of the first true leaf, and

soybeans to the emergence of the first trifoliate, when placed in experimental arenas.

To understand the effect of treatments on combined effects of adult F. fusca host selection

and larval establishment, we conducted four temporal replicates of a choice experiment. Each

temporal replicate included eight independent large cage replications that contained two seed-

ling trays from each treatment (Table 1). Choice cages were 160 x 90 cm (width x height) open-

bottomed cylinders constructed of 100 μm thrips-proof nylon monofilament mesh (NMO100,

Midwest Filter, St. Charles, IL, USA). A single, vertical zipper closure was sewn along one edge

to allow access to the cage interior. Each cage had six equally spaced loops sewn along the cir-

cumference, which were used to hang each screen cage on a circular PVC frame. Cage bottoms

were sealed using adhesive tape to prevent insect escape. The center point of each cage interior

was determined and two concentric rings (60 & 120 cm diameter) were marked. Using this

design, trays were located at a radius of either 30 or 60 cm from the central F. fusca release

point. Along each ring circumference, five locations were marked at equal 72˚ intervals. The

marks between the interior and exterior rings were offset by 36˚, allowing for a clear line-of-

sight from each of the ten seedling tray locations to the central insect release point of the cage.

Seedling trays of each treatment were randomly assigned to locations on each concentric

ring, ensuring one replicate of each treatment was placed at 30 and 60 cm from the central

thrips release point (one treatment by distance replicate in each cage). Neonicotinoid suscepti-

ble, adult female F. fusca were aspirated into 1.5 mL Eppendorf tubes in groups of 96 individu-

als. Five tubes of insects were released from a Styrofoam tube rack placed at the center point of

each cage (N = 480 individuals per cage or approximately 3 adults per seedling). Insects were

allowed to infest plants for 10 d under controlled conditions of 23.5˚C with constant, uniform,

overhead lighting. In total, the eight cage replicates per temporal replicate, and four temporal

replicates, generated 32 replicates for each unique treatment by concentric ring combination.
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At the end of the infestation period, seedlings were destructively harvested by clipping the

hypocotyl flush with the soil. The total number of seedlings in each tray was recorded and har-

vested seedlings were placed into 260 mL plastic jars (#128070TSPP, Mold-Rite Plastics, Platts-

burgh, NY, USA) containing 150 mL water and 250 μL liquid detergent. The median seedling

count per tray was 15 across all four choice experiment replications (13 first quartile, 16 third

quartile). Larvae were washed as described in the no-choice experimental methods above. The

total number of larvae were divided by the total number of seedlings in each individual treat-

ment tray to calculate the average number of thrips larvae per seedling (average larvae per

treatment by release distance).

Statistical analysis

Generalized linear mixed models were used to test for differences in F. fusca larval establish-

ment among treatments using PROC GLIMMIX in SAS Version 9.4 (SAS Institute, Cary, NC,

USA). The response variable was the average count of F. fusca larvae per seedling, which was

log(x+1) transformed to meet assumptions of normality. The no-choice model tested a fixed

effect of treatment using one-way ANOVA. For choice experiments, the analysis tested cate-

gorical fixed effects of treatment and a continuous effect for distance, along with their interac-

tion using a two-way ANOVA. The choice experiment mixed model included temporal

replication and cage nested within temporal replication as random effects. For both the choice

and no-choice experiments, Tukey’s Honestly Significant Difference (HSD) tests were used to

compare least squares means among treatments at a significance level of α = 0.05. All summary

statistics and figures were generated in R (R-Core, Version 3.4.3).

Results

No-choice experiment

Frankliniella fusca larval establishment was significantly different among host plant treatments

(F4,120 = 39.2; P< 0.001). Treatment means separation tests indicated F. fusca infestations

were highest on untreated soybean (Fig 1). In this experiment, 10.1-fold more F. fusca larvae

were recovered from untreated than NST-soybean (Table 2). Moreover, F. fusca larval estab-

lishment between untreated soybean and MON 88702 with or without NST were significantly

different (Fig 1 and Table 2). In contrast, a 0.2-fold difference in larval establishment was

observed between untreated and neonicotinoid treated MON 88702 cotton (Table 2). These

differences highlight clear effects of insecticidal toxins on thrips larval establishment. Compar-

ison of untreated MON 88702 and NST soybean were not statistically different and only

resulted in a small difference in average larval establishment (Fig 1 and Table 2). NST soybean,

NST MON 88702 and untreated MON 88702 resulted in the largest suppression of F. fusca lar-

val establishment relative to untreated soybean (Fig 1), under no-choice conditions.

Choice experiments

In this study, we documented a strong effect of plant treatment on larval establishment in com-

mon garden cages (F4,229 = 22.49; P< 0.001). Treatments that did not include MON 88702 or

a neonicotinoid had the greatest average larval establishment (Fig 2). Select treatment compar-

isons revealed considerable differences in average larval establishment between NST-treated

plants and their untreated comparison (Table 2). Similar levels of larval establishment were

observed between soybean and non-Bt cotton in the absence of insecticidal components. The

same pattern was observed between NST-treated MON 88702 cotton and NST-treated
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soybean, with infestations on non-treated MON 88702 cotton being intermediate (Fig 2).

Fold-change values highlight the large differences among main effect treatments (Table 2).

Using our ring design, we determined that host plant proximity to the initial release point

affected adult F. fusca reproductive host decisions and subsequent larval establishment. The

negative effect of distance from the central release point was highly significant (F1,229 = 41.6;

P< 0.001), as was the treatment by distance interaction (F4,229 = 5.6; P< 0.001). Host plant

selection was more discriminating close to the central release point, as indicated by greater

Fig 1. Effect of plant type and treatment on Frankliniella fusca larval establishment per seedling under no-choice

conditions. Each treatment group consisted of 25 individual seedling replicates. Treatments with different letters

above bars differed significantly from each other (Tukey’s HSD tests, P� 0.05).

https://doi.org/10.1371/journal.pone.0239910.g001

Table 2. Pairwise fold differences in F. fusca larval counts among treatments in no-choice and choice experiments.

Group One Group Two Choice fold differencea Choice fold difference rankb No-choice fold difference No-choice fold difference rank

Soybean MON 88702 + NST 5.9 1 7.8 2

DP393 MON 88702 + NST 4.6 2 1 6

Soybean soybean + NST 2.9 3 10.1 1

MON 88702 MON 88702 + NST 2.5 4 0.2 8

DP393 Soybean + NST 2.1 5 1.6 5

MON 88702 Soybean + NST 1 6 0.5 8

Soybean MON 88702 0.9 7 6.4 3

Soybean + NST MON 88702 + NST 0.8 8 -0.2 10

DP393 MON 88702 0.6 9 0.7 7

Soybean DP393 0.2 10 3.3 4

aFold Difference = (group1—group2)/group2.
bPairwise differences have been ordered from largest to smallest differences in choice experiments.

https://doi.org/10.1371/journal.pone.0239910.t002
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differences in larval numbers among treatments at 30 than at 60 cm from the release point (Fig

3). Interestingly, the effect of distance on F. fusca larval establishment was minimal between

two NST-containing treatments, which caused this significant interaction (Fig 3).

Discussion

Both MON 88702 cotton and neonicotinoid seed treatments have strong antixenotic effects on

adult F. fusca resulting in large reductions in oviposition and larval establishment on cotton,

even in the presence of alternative host plants. While MON 88702 alters feeding behavior and

reduces oviposition of adults, it has minimal impacts on adult and larval survival [13–16].

Both imidacloprid and thiamethoxam applied as seed treatments also have minimal impact on

survival of adult F. fusca and dramatically reduce oviposition on treated cotton seedlings; how-

ever, they also cause moderate to high levels of larval mortality [17–19]. Because NST’s are

used on ca. 87% of the soybean and 90% of cotton acreage [24–26] in the region and MON

88702 has the potential to replace a significant portion of this use in cotton, this study was

undertaken to examine how the presence of MON 88702 cotton and soybean with and without

NSTs in a landscape might alter F. fusca infestation distributions.

Our results show an effect of MON 88702 combined with imidacloprid seed treatment on

the larval populations developing on seedlings in both choice and non-choice experiments,

but the number of significant differences among treatments was greater when adults were

allowed to select plants on which to oviposit. In the no-choice experiment, larval infestations

on soybean (no NST) were greater than those on non-Bt cotton (no NST) (Table 2). Differ-

ences between non-treated soybean and MON 88702 with and without NST and the soybean

Fig 2. Average Frankliniella fusca larvae per treatment across all four temporal replicates of the common-garden

experiment in which adults were allowed to oviposit freely across treatments. Treatments with different letters

above bars differed significantly from each other (Tukey’s HSD tests, P� 0.05).

https://doi.org/10.1371/journal.pone.0239910.g002
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+ NST treatments were of even greater magnitude but differences among these latter three

treatments were small and not significant (Fig 1 and Table 2).

In our common garden experiment, thrips larval density decreased with distance from the

adult release point. The magnitude of differences among the soybean, non-Bt cotton, and

MON 88702 treatments without NST were greater close to the adult release point. In contrast,

larval densities on MON 88702 and soybean treatments with NST were consistently low and

similar at both distances (Fig 3), likely reflecting both the strong antixenotic effects of imida-

cloprid seed treatments on adult F. fusca and effects on larval mortality [17–19]. Larval infesta-

tions on soybean and non-Bt cotton both in the absence of NST, did not differ significantly,

and the infestation on soybean in the absence of NST was only 0.9-fold greater than that on

MON 88702 without NST. Although larval infestations on both MON 88702 + NST and soy-

bean + NST were both lower than the soybean and MON 88702 treatments in the absence of

NST, the magnitude of the difference between these pairwise comparisons were similar

(Table 2). Thus, NST treatments reduced the size of the larval infestation that developed on

both MON 88702 and soybean seedlings but not the magnitude of the relative difference in

infestation size between MON 88702 cotton and soybean (Table 2).

In cotton production landscapes, fields of both NST-treated MON 88702 cotton and NST-

treated soybean will likely co-occur following the commercialization of MON 88702. Other

Fig 3. Average larval Frankliniella fusca per seedling from each treatment by distance from release point. Distance

from release point is a continuous variable. Means and error bars have been jittered to improve the visualization of

treatment comparison within and between concentric rings.

https://doi.org/10.1371/journal.pone.0239910.g003
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possible scenarios include: presence of fields planted to NST-treated MON 88702 and non-

treated soybean, a choice in our experiment that resulted in a larval infestation that was 5.9

fold greater on the non-treated soybean than on the NST-treated MON 88702 seedlings; and

presence of NST-treated soybean and non-treated MON 88702, which in our choice experi-

ment resulted in larval infestations on NST-treated soybean that were 1.0-fold lower than on

MON 88702 seedlings (Table 2). These differences suggest that the pest’s interaction with dif-

ferent combinations of crops and insecticidal treatments may drive meaningful variation in

the development of F. fusca populations across the agricultural landscape that have the poten-

tial to influence emergence of resistance to MON 88702. However, the effects we report need

to be validated at the scale of commercial fields nested within a mosaic of other crops in the

cotton production system.

Potential implications for MON 88702 resistance management

To address resistance development, the MON 88702 resistance management plan will likely

depend on natural (unstructured) refuge given the history of refuge design for GE cotton [27].

In practice, unstructured refuges are non-toxic habitat patches in the surrounding landscape

that generate susceptible individuals to mate with resistant individuals that have developed in

the Bt crop [28–30]. Abundant alternate crop or natural host plants in the landscape are often

a predictable source of susceptible pest individuals in the southeastern U.S. [31, 32]. However,

treatment of refuges with insecticides is one confounding factor that can reduce the overall via-

bility of these host patches for pest reproduction [33]. The negative impact of widespread

insecticide-treatment of alternate host crops could be amplified in intensive agricultural pro-

duction systems that have limited non-crop plant hosts available. In lepidopteran systems,

researchers have shown that insecticide treatment of non-Bt crop refuge can undermine its

overall productivity, thereby reducing the efficacy of the structured refuge system as a whole in

delaying resistance onset [33, 34]. In the case of MON 88702 cotton, the designated refuge

would include soybean, and the effects of ongoing NST in soybean use would negatively

impact refuge viability. The value of NSTs in soybean production is unclear; a series of studies

has documented little or no benefit of NST use in protecting soybean from yield losses [22,

35]. In the absence of a yield cost, reduction in NST use on soybean would not only reduce

grower inputs and potential environmental impacts of the soybean system itself but also

increase the effective refuge area for MON 88702; thereby providing similar benefits in the cot-

ton system as well.

At the landscape scale, numerous studies have demonstrated that the spatiotemporal

structure of these toxic and non-toxic patches can play an important role in the rate of

resistance development over time [36–38]. Although neonicotinoids and MON 88702 have

very different modes of action against F. fusca, the intensity of cotton and alternate crop

production in the U.S. Cotton Belt could provide insight into the potential for MON 88702

resistance development in the region. We know that selection for neonicotinoid resistance

in F. fusca was driven in part by widespread NST use in both cotton and soybean, two key

host plants for this pest [39, 40]. The importance of this cross-crop resistance selection

between NST cotton and NST soybean was not entirely clear until the emergence of neoni-

cotinoid resistance throughout the region [40]. In contrast to the F. fusca neonicotinoid

resistance situation, the absence of thrips-active Bt toxins in soybean may provide an

important constituent of an unstructured refuge for MON 88702 susceptible thrips. How-

ever, the widespread use of NSTs in soybean may effectively reduce the role of soybean as

an abundant refuge patch and compromise the functional value of unstructured crop ref-

uges for MON 88702 cotton.
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