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Abstract: We conduct molecular dynamics simulations of model heterogeneous membranes and their
interactions with a 24-amino acid peptide—NAF-144–67. NAF-144–67 is an anticancer peptide that
selectively permeates and kills malignant cells; it does not permeate normal cells. We examine three
membranes with different binary mixtures of lipids, DOPC–DOPA, DOPC–DOPS, and DOPC–DOPE,
with a single peptide embedded in each as models for the diversity of biological membranes. We
illustrate that the peptide organization in the membrane depends on the types of nearby phospho-
lipids and is influenced by the charge and size of the head groups. The present study sheds light on
early events of permeation and the mechanisms by which an amphiphilic peptide crosses from an
aqueous solution to a hydrophobic membrane. Understanding the translocation mechanism is likely
to help the design of new permeants.

Keywords: heterogeneous membranes; anticancer peptide; molecular dynamics simulations; cell-
penetrating peptide

1. Introduction

Biological membranes are thin bilayers with a width of ~40 Å that separate external
solutions from the interior of cells. Further, they partition the cellular medium into com-
partments. They are highly heterogeneous and consist of many types of phospholipids,
numerous protein components, and other embedded molecules, such as cholesterols. This
heterogeneity is necessary for their function, and it extends beyond the molecular scale.
The membrane adapts mesoscopic curvatures and shapes and responds to environmental
changes. The rich behavior of these multiscale bilayers makes them fascinating systems
to study experimentally and theoretically. Computational studies at multiple scales use
atomistic and coarse-grained models [1–5] and continuum theory [6–9].

The spatial and temporal complexity of bio-membranes is a significant computational
challenge. Not only are these systems large and include, in typical simulations, tens to hun-
dreds of thousands of particles, but the equilibration times of their diverse components can
be exceptionally long. Experimentally, estimates of time scales for forming heterogeneous
microdomains in membranes (so-called rafts [10,11]) vary from microseconds to seconds.
Because of their complexity, atomically detailed simulations, which provide comprehen-
sive information on solvent, solutes, and their interactions with membranes, are hard to
converge. Algorithms that mix Monte Carlo (MC) moves with straightforward molecular
dynamics (MD) simulations [12] improve the convergence considerably (e.g., Molecular
Dynamics with Alchemical Steps (MDAS) [13]), but they are limited to membranes with
similar components and small modifications of the hydrocarbon chains. MC moves are less
successful when the phospholipid head groups are modified. The algorithms that mix MD
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and MC steps are more general for coarse-grained models in which the differences between
the phospholipids are reduced [14]. However, the computational gain of the coarse-grained
simulations compared to atomically detailed calculations with MDAS is moderate and
about a factor of three.

In the present manuscript, we study in atomistic details, using MD simulations, three
heterogeneous membranes. Each membrane has two types of phospholipids and a peptide
embedded in it (Figure 1). The membranes are mixtures of (1) DOPC and DOPS, (2) DOPC
and DOPA, and (3) DOPC and DOPE. The full names of the phospholipids are provided in
Figure 1. The selection of the phospholipids leads to membrane heterogeneity that is strictly
in the head groups, while the hydrocarbon chains are the same. Applying the combined
MD and MC approach, which is most effective for rapidly mixing hydrocarbon chains,
is therefore difficult. As a result, we conduct only straightforward MD simulations, and
our sampling is limited. Nevertheless, we can use the MD calculations to learn about the
differences between the membranes and their interactions with a permeating peptide, at
least on the microsecond time scale.
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glycero-3-phosphate, DOPS—1,2-Dioleoyl-sn-glycero-3-phosphoserine. Bottom: Ribbon presenta-
tion of the backbone of the NAF-144–67 peptide. The N terminus is on the right. The positively charged 
residues (lysine and arginine) are shown in blue, non-polar residues in orange, and neutral polar 
residues (tyrosine and glutamine) in green. The N-terminus side of the peptide tends to be helical 
when embedded in the membrane. 

Membranes of a single or a few phospholipid components have been investigated 
extensively using straightforward MD [15–19]. However, exploring alternative membrane 
compositions and their interaction with anticancer peptides is new. We focus on the inter-
action of the peptide NAF-144–67 [20–23] with different binary mixtures of the above phos-
pholipids. NAF-144–67 is a peptide of 24 amino acids in length 
(FLGVLALLGYLAVRPFLPKKKQQK). It is positively charged (+5), and its N terminal 
segment is hydrophobic. It permeates and kills cancer cells; in contrast, it does not perme-
ate or affect normal cells [22]. Therefore, NAF-144–67 is an anticancer agent of considerable 
biomedical interest. It belongs to a large class of molecules called cell-penetrating peptides 
(CPP). However, as discussed below, it is unique in its origin and physical interactions 
with the membrane. 

Figure 1. Top: The phospholipids used in the simulations. DOPC—1,2-Dioleoyl-sn-glycero-3-
phosphocholine, DOPE—1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine, DOPA—1,2-Dioleoyl-sn-
glycero-3-phosphate, DOPS—1,2-Dioleoyl-sn-glycero-3-phosphoserine. Bottom: Ribbon presentation
of the backbone of the NAF-144–67 peptide. The N terminus is on the right. The positively charged
residues (lysine and arginine) are shown in blue, non-polar residues in orange, and neutral polar
residues (tyrosine and glutamine) in green. The N-terminus side of the peptide tends to be helical
when embedded in the membrane.

Membranes of a single or a few phospholipid components have been investigated
extensively using straightforward MD [15–19]. However, exploring alternative mem-
brane compositions and their interaction with anticancer peptides is new. We focus on
the interaction of the peptide NAF-144–67 [20–23] with different binary mixtures of the
above phospholipids. NAF-144–67 is a peptide of 24 amino acids in length (FLGVLALL-
GYLAVRPFLPKKKQQK). It is positively charged (+5), and its N terminal segment is
hydrophobic. It permeates and kills cancer cells; in contrast, it does not permeate or affect
normal cells [22]. Therefore, NAF-144–67 is an anticancer agent of considerable biomedical
interest. It belongs to a large class of molecules called cell-penetrating peptides (CPP).
However, as discussed below, it is unique in its origin and physical interactions with
the membrane.

Hundreds of CPPs have been reported with varying properties and significance [24].
Some peptides are highly charged, such as the TAT peptide (+8), and are likely to be
unstructured [25]. However, other peptides can have a partial secondary structure, fre-
quently a helix. The helix in this class is amphiphilic, supporting the permeation into
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biological membranes. The insertion exposes the hydrophilic residues to the aqueous solu-
tion and the hydrophobic residues to the lipid environment of the membrane interior [26].
A permeation mechanism in which the helix orients itself parallel to the membrane plane is
typical in antibacterial peptides [26].

NAF-144–67 is different from these two common classes. It is a fragment of a stable
transmembrane protein that resides in mitochondria [22]. The first eleven residues form an
entirely hydrophobic helix. This observation is not surprising for a peptide derived from a
transmembrane protein but, to our knowledge, is rare in a CPP. Several CPPs are known to
have a leading hydrophobic sequence followed by a charged C terminal segment. These
peptides are obtained by covalently attaching hydrophobic residues to a charged peptide
to make it soluble in membranes and aqueous solutions.

An example of an amphiphilic CPP is MPG (GLAFLGAAGSTMGAWSQPKKKRKV) [27].
A secondary structure predictor (PROTEUS [28])) suggests that the entire MPG sequence is
unstructured. In contrast, the same server predicts the N terminus segment of NAF-144–67 to be
helical. The combined distinctive origin, sequence, and secondary structure make NAF-144–67

a unique CPP.
In the full NAF-1 protein, the hydrophobic helix is found inside the membrane with

negligible exposure to solvent. The remainder of the peptide is soluble and highly charged
(+5). The unexpected observation about NAF-144–67 is not that it permeates membranes,
given its origin. Instead, it is that it selectively permeates into cancer cells but does not
permeate to the plasma membrane of normal cells. We believe that since it is a fragment of a
transmembrane protein, understanding the permeation mechanism of the peptide may shed
light on another and not less complex question of the insertion of transmembrane proteins.

Given the high complexity of membranes of living cells, the study of simplified model
systems that capture essential differences between the membranes is warranted. The
outer layers of plasma membranes of cancer cells are enriched with negatively charged
phospholipids compared to the plasma membranes of normal cells [29–31]. It is therefore
interesting to examine simplified heterogeneous membranes that differ in their charges.
The types of phospholipids that we examined include neutral molecules (DOPC and DOPE)
and negatively charged head groups (DOPS and DOPA). The comparisons of peptide
interactions with different phospholipid mixtures elucidate the molecular mechanism of
permeation selectivity. In the process, we also examine the organization, stability, and
fluidity of each of the membranes.

The permeation of the anticancer peptide NAF-144–67 into malignant cells but not to
normal cells [22] raises the question of membrane selectivity. What is the phospholipid
composition that supports translocation across cancer but not normal membranes? In
reference [22], we argued that the positively charged NAF-144–67 peptide is attracted to
the more negative cancer membrane. However, biological membranes are complex and
include many components. It can be challenging to pinpoint a single factor of selectivity.
It is therefore of interest to examine simpler compositions and check if, for example, the
membrane’s charge has a dominant effect on binding and permeation. Another suggestive
factor to examine is the size of the phospholipid heads, which may also affect permeability.
We probe simple binary mixtures of charged and neutral phospholipids (e.g., DOPS and
DOPC) to mimic the plasma membranes of malignant cells. We also simulate mixtures
of neutral phospholipids (e.g., DOPC and DOPE) to model membranes of normal cells.
Finally, we looked at charged phospholipids with a small head group (DOPA). We expect
that the results of the current simulations will shed light on the operation of more complex
biological membranes.

2. Methods

The three membrane mixtures: DOPC–DOPS, DOPC–DOPA, and DOPC–DOPE were
prepared with the CHARMM-GUI Membrane Builder online tool [32,33] with a molar
composition of 4:1. The membrane models contain a total of 160 phospholipids and both
the upper layer and lower layer have the same lipid molar composition.
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A model structure for the NAF-144–67, which we built in previous work [23], was
inserted in the water region above the upper layer of the membrane. The system was
solvated with TIP3P water molecules, and potassium and chloride ions were added to the
solution giving a concentration of 150 mM.

All molecular simulations were performed with Gromacs (v.2019.4) [34] using the
CHARMM 36 all-atom force field [35] and the CHARMM TIP3P water model [36]. Periodic
boundary conditions were applied in all directions. The electrostatic interactions were
calculated using the particle mesh Ewald (PME) method [37] with a real space cut-off of
1.2 nm and a mesh size of 0.12 nm. For the van der Waals interaction, a cut-off distance
of 1.2 nm was used, and a switching term was added so the force smoothly decayed to
zero from 1.0 to 1.2 nm. The systems were first energy-minimized using a steepest descent
algorithm. After minimization, the systems were equilibrated for 375 ps using the default
CHARMM membrane builder protocol, in which restraints of different molecular parts of
the membrane system are gradually relaxed. Production simulations were run at the NPT
ensemble with a Nosé–Hoover thermostat [38,39] at 323 K and a semi-isotropic Parrinello–
Rahman barostat [40] at 1 bar. A time step of 2 fs was used for production runs. The
SETTLE [41] and LINCS [42] algorithms constrained the water molecules and the bonds
involving hydrogen atoms, respectively. Production runs were conducted for 3 µs, and
the final 2 µs of the trajectories were used for analysis. These time scales are sufficiently
long such that stable differences between the membranes can be detected. The time scales
are not long enough to probe translocation of the peptide across the membrane, which
can exceed seconds [23], but initial insertion to the upper layer of the membrane can be
observed for all systems. To perform the analysis, we used Gromacs analysis tools [43] and
Plumed [44]. For molecular visualization, we used VMD [45] and Chimera [46].

3. Results and Discussion
3.1. The Phospholipids

In Figure 2, we show the distance correlation functions of the centers of mass of the head
groups of the different phospholipids. We report the correlations separately for the upper
and lower layers. The lower layer correlations are shown in dashed lines, while the upper
layers are in solid lines. We show them both since the peptide is inserted to the upper layer,
which makes the layers’ compositions asymmetric. Comparing the correlations in both layers
provides information on the impact of NAF-144–67 on the structure of the phospholipids. All
correlations flattened out near 1.5 nm, illustrating their limited reach and the insensitivity of
the distance range to the lipid composition or to the presence of the peptide.

The upper and lower layers have similar pair correlation functions at short distances,
suggesting that the peptide perturbation to the overall interactions between the phospholipids
is small. The only exception to this observation is the stronger correlation of DOPS–DOPS
at the upper layer of the membrane. The largest errors in the pair correlation functions are
~0.1, suggesting that the differences between the upper and lower layers of DOPS–DOPS
correlations are significant. The error bars were computed by dividing each of the 2 µs
trajectories into two 1 µs trajectories and estimating the average and the errors from halves.

The phospholipids we examine differ in their overall charge and size of the head groups.
Consider the uncharged phospholipids, DOPC and DOPE. The phospholipid DOPC is the
major component in all membrane mixtures. Its distance distributions are roughly the same,
regardless of the type of the other lipid or the presence of the peptide (Figure 2). The heights of
DOPC first peaks are ~1.2 in the three panels. DOPE, the other neutral phospholipid, shows a
more variable structure and has a higher first peak than that of DOPC in the presence of the
peptide (~1.4, solid green line, Figure 2C). In the absence of the peptide, the first peak of DOPE
is slightly reduced to ~1.2, the same height as that of DOPC. The smaller polar head of DOPE
(NH3

+) carries a higher charge density and is influenced by the charged peptide more than
DOPC (N(CH3)3

+) with a lower charge density (Figure 1). As a rule of thumb, a smaller head
group implies stronger short-range interactions between the polar entities, which can be either
attractive or repulsive. In the case of DOPE, it is attractive and leads to a higher first peak.
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DOPC–DOPA, and panel (C) is for DOPC–DOPE. The solid lines show the distributions at the upper 
layer of the membrane in which the peptide NAF-144–67 is embedded and the dashed lines show the 
distributions at the lower layer. DOPS tends to attract other DOPS molecules. In contrast, DOPA 
molecules tend to repel each other. For clarity, the error bars (obtained by dividing the trajectory 
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Figure 2. Radial distribution functions in the membrane plane of the phospholipid head groups
in the three mixtures: panel (A) is for the membrane mixture of DOPC and DOPS, panel (B) is for
DOPC–DOPA, and panel (C) is for DOPC–DOPE. The solid lines show the distributions at the upper
layer of the membrane in which the peptide NAF-144–67 is embedded and the dashed lines show the
distributions at the lower layer. DOPS tends to attract other DOPS molecules. In contrast, DOPA
molecules tend to repel each other. For clarity, the error bars (obtained by dividing the trajectory into
two blocks) are only shown for the autocorrelations of DOPS, DOPA, and DOPE. The errors of the
other correlations (not shown) are smaller.
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The correlation functions of the charged phospholipids are more complex. The self-
correlations of DOPS and DOPA display opposite behaviors. The height of the first peak
of DOPS–DOPS is close to 1.5 in the upper layer, indicating enrichment of DOPS in the
neighborhood of the peptide. In contrast, DOPA distance correlations shows significant
depletion at shorter distances with a peak height of about 0.9–1.0. This is perhaps not
surprising given that the head groups that carry the same electric charges repel each other.
However, it is less intuitive considering that DOPS–DOPS attract each other. The smaller
head group of DOPA emphasizes direct interactions (in this case electrostatic repulsion),
which lead to a reduction in short-range pairs compared to bulk. DOPS–DOPS charge
repulsion is reduced by the bulkier head group and the pair is more comfortable in the
presence of the positively charged peptide (Figure 2, panel A).

Another measure of the phospholipid structures is provided by the order parameter
SCD; SCD = 1

2
〈
3 cos2(θ)− 1

〉
where the bracket 〈· · · 〉 denotes ensemble averaging and the

angle θ is between the C-D (in our case, C-H) bonds and the normal to the membrane.
Perhaps the most remarkable observation from Figure 3 is the insensitivity of the order
parameter to the phospholipid identity, at least on average. The phospholipids differ in
their head groups but not in their tails, which partially explains these observations. The
last differences do not seem to impact the orientational ordering of the hydrocarbon chains.
The similarity of the plots between the upper and lower layers also demonstrates that the
presence of the peptide NAF-144–67 in the upper layer does not significantly impact the
order parameters of the acyl chains.
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Figure 3. Deuterium order parameters for the lipid tails for the lower layers (A–D) and the upper
layers of the membranes (E–H): (A,E) for the sn1 acyl chain of DOPC; (B,F) for the sn1 of the smaller
component in the mixture; (C,G) for the sn2 acyl chain of DOPC; (D,H) for the sn2 chain of the lower
component. Note the small differences between membranes of alternate mixtures. Note also that the
upper layer (with the peptide) is slightly more ordered. The error bars are about the width of the
lines in the plots and are not shown explicitly.

3.2. The Peptide and the Phospholipids

In Figure 4, we show the distance of the alpha carbon of the first residue of the peptide
(F1) from the center of the membrane. The first half of the peptide is primarily hydrophobic
(Figure 1), permeating early into the membrane. The least significant permeation is to the
uncharged membrane (DOPC–DOPE), presumably due to the resistance of the positively
charged residues of the C terminus of the peptide to approach the hydrophobic core of the
membrane. The zwitterionic phospholipids DOPC and DOPE are neutral, while DOPS and
DOPA are negatively charged, reducing the impact of the peptide charges.

The difference between the permeation to the mixed membranes of DOPC–DOPA
and DOPC-DOPS is relatively small. Hence, the headgroup charges significantly impact
permeation even in the relatively short time scale of the simulations (µs). This observation
about the impact of charges is similar to the assumed difference in NAF-144–67 permeation
to normal and malignant cells [22].

Further analysis of the interactions of the peptide with charged and uncharged phos-
pholipids is provided in Figure 5. We show the distributions of the lateral distances between
the head groups of the phospholipids and the center of masses of the N and C terminal
segments of the NAF-144–67 (residues 1 to 11 for the N terminus and residues 12 to 24 for
the C terminus). In panels C and F, we illustrate that the neutral phospholipids do not
form significant structure near the peptide. Excluded volume prevents the peptide and the
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DOPC or DOPE molecules from approaching closer than ~0.5 nm. However, beyond the
excluded volume, the distributions are flat, indicating a lack of long-range correlation.
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Figure 4. The distribution of the distances of the Cα of F1 from the membrane center. The N terminus
segment of the peptide is in the hydrophobic region of the membrane for the two mixtures containing
the negatively charged lipids (DOPS and DOPA). In contrast, the peak of the Cα distribution for
DOPE–DOPC is just below the average phosphate location in the membrane (~1.8 nm). Error bars
are obtained by dividing the trajectory data into two blocks.
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Figure 5. Radial distribution functions in the x–y plane of the membrane for the distances between
NAF-144–67 and the headgroups of the lipids in the three membrane mixtures. Panels (A–C) show the
pair correlation functions of the phospholipid heads with the N terminus of the NAF-144–67 peptide
(residues 1 to 11) and panels (D–F) with the C terminus of the peptide (residues 12 to 24). Note the
significant first peak in the distributions of the proximate DOPA, both to the C and N terminus. In
contrast, DOPS’s proximate presence is large only near the C terminus of NAF-144–67. Note also
that the C terminal can be off the membrane plane; therefore, the distances may not reach zero
(e.g., panel D). Error bars are obtained by dividing the trajectory data into two blocks.
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More structure is observed in panel A, in which the charged phospholipid DOPS is
closer to the peptide than the neutral DOPC. Significant first-neighbor peaks are shown in
panels B, D, and E. The presence of charged phospholipids, DOPA, and DOPS is significantly
enriched near the peptide compared to the bulk distribution. The phospholipid with the
smaller head, DOPA, is found more frequently close to the N and the C termini. DOPS has
a larger head, and its presence is significantly enriched compared to the bulk distribution
near the C terminus. The C terminal segment carries the peptide charges. Hence, the
specific rearrangements of the membranes’ phospholipids near NAF-144–67 are a significant
deviation from a uniform flat (bulk) distribution. The organization near the peptide can be
considered a microdomain enriched with charged phospholipids such as DOPA or DOPS.
It can be classified, perhaps, as an example of a small raft [47].

In Figure 6, we display molecular dynamics snapshots of the peptide embedded in
the membranes. For clarity, the water molecules and solvating ions are not shown. The
charges of the peptide (red spheres) remain close to the membrane surface. As we indicated
in our previous studies [23,48–50], significant membrane distortions are required to allow
the charges to pass the hydrophobic core and to switch to the other side of the membrane.
These events did not occur in the relatively short simulations we conducted here. Visual
inspection (Figure 6, panel B) supports the increase in the number of DOPA molecules
near the peptide, as suggested in Figure 5, panels B and E. Overall, the peptide retains the
helical structure of the N terminus throughout the simulations (Figure 7, panels A and B)
and the helix axis is parallel to the membrane surface. The hydrophobic helix is less stable
in an aqueous solution, and its retention depends on permeation to the membrane. In the
DOPC–DOPE membrane, the peptide permeation is less deep, and the helical content is
reduced (Figure 7, panels A and B). In contrast, DOPC–DOPS and DOPC–DOPA, both
charged membranes, are more successful in preserving the helical segment. Figure 7A,B
shows that the helix is best retained in the DOPC–DOPS mixture. This is perhaps due to the
amphiphilic peptide. The hydrophobic part is well solvated in the lipid and the hydrophilic
part in an aqueous solution. The binary mixture of DOPC–DOPS successfully separates the
two segments (Figure 7, panel C), leading to efficient initial permeation.
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Membranes are highly viscous fluids with strong interactions between their components
and significant dynamic and static correlations. The findings of the formation of spatial and
temporal microdomains in membranes demonstrate those correlations [10,11,49,51,52]. To
examine correlations beyond pairs (Figure 5) we plotted distributions of three body distances
from the phospholipids to the center of mass of the peptide (Figures 8 and 9).

There are four times more DOPC molecules than other lipids in the mixtures. The
distributions, even with a lack of interactions, reflect the larger number of DOPC molecules
in the systems. Indeed, all the panels in Figure 8 suggest that far away from the peptide
(e.g., distances of 20 Å), there is a higher probability of observing a DOPC molecule than
the other lipid. Moreover, the overall shape of the contour lines tends to follow the axes
and suggests a lack of correlation between the two distances from the phospholipids to the
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peptides. Since the fraction of all other lipids is the same (20 percent), comparing the panels
can further assess the attraction between the phospholipid and the peptide and supplants
Figure 5. DOPA is found mostly near the peptide, while DOPS and DOPE are more likely
to be found at larger distances.
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Figure 7. (A): The probability density for the number of residues in a helical state for NAF144–67

for the three different membrane mixtures. The highest content of helical residues is for the DOPC–
DOPS membrane. The smallest helical content is in the membrane mixture of DOPC–DOPE as is
also observed in Figure 6. Error bars are obtained by dividing the trajectory data into two blocks.
(B) Changes in the helical content of NAF144–67 for the last 2 µs of the trajectories for the three
membrane systems. The helical N terminus is inserted in the hydrophobic region of the membrane for
the DOPC–DOPA and DOPC–DOPS systems, but not for the DOPC-DOPE membrane (see Figure 4).
(C) The distance between the center of mass of the C terminal and the N terminal segments of the
peptide as a function of time in the three membranes. This distance provides a measure of the
peptide compactness.

In Figure 9, we show the self-correlation of the distances of DOPC from the peptide in
the three membranes. Panel (A) is for the mixture of DOPC and DOPA, panel (B) for DOPC–
DOPS, and panel (C) for DOPC–DOPE. Panels (B) and (C) are quite similar, suggesting
similar membrane–peptide interactions for DOPC–DOPS and DOPC–DOPE, regardless
of the molecular differences (i.e., DOPS is charged and DOPE is not). In contrast, DOPA,
which is charged, is enriched with DOPC in a larger area than the two other mixtures. This
enrichment happens because DOPA is closer to the peptide (Figure 8, panel A) Note that
the correlation plots are computed in three dimensions, and binning is over two different
spherical shells, so it supplants the two-dimensional analysis of Figure 5.
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4. Conclusions

We have illustrated that alternate heterogeneous membranes interact differently with
a novel anticancer peptide. The peptide is derived from a transmembrane protein and
includes a purely hydrophobic N terminal segment and a significantly charged C terminus
(+5). The hydrophobic part permeates first, overcoming a head-group barrier, as we illus-
trated in a recent paper [23]. Therefore, variations in the composition of the head groups
are of significant interest. We identified the strong reorganization of the phospholipid dis-
tribution near the permeating peptide. The preferences can be interpreted as microdomains
(or rafts) [10]. Overall, the peptide’s perturbation on the phospholipid characteristic is
minimal. No significant reordering of the hydrocarbon chains was observed as probed by
the SCD order parameters. Furthermore, we did not detect large-scale correlations between
the phospholipid molecules with or without the peptide. Hence, a reasonable picture of the
peptide–membrane interaction is of short-range adjustments of phospholipid compositions
near the peptide and the loss of significant correlations beyond the first interaction shell. In
the future, it will be interesting to consider more complex mixtures and other inserts to the
membrane, such as cholesterol.

Based on the permeation selectivity of the different membranes, the membrane that
most resembles the plasma membranes of normal cells is DOPC–DOPE. This neutral binary
membrane is the least permeable. DOPC–DOPS, which is charged, better separates the two
segments of the amphiphilic peptide and supports initial permeation; this resembles the
plasma membrane of cancer cells.
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