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Abstract

The ability of brewing yeasts (Saccharomyces cerevisiae and Saccharomyces pastorianus) to cope with the toxic 
effects of ethanol during beer fermentation depends on the modulation of lipid and lipid droplets (LDs) biosynthesis, 
which affects membrane fluidity. However, it has been demonstrated that lipids and LDs can modulate different 
biological mechanisms associated to ethanol tolerance, including proteostasis and autophagy, leading to the hypothesis 
that lipid and LDs biosynthesis are integrative processes necessary for ethanol tolerance in yeast. Supporting this 
hypothesis, a transcriptome and systems biology analyses indicated the upregulation of autophagy, lipid biosynthesis, 
and proteostasis (ALP)-associated genes in lager yeast during beer fermentation, whose respective proteins interact 
in a shortest-pathway ALP network. These results indicated a cross-communication between various pathways linked 
to inter-organelle autophagy, lipid metabolism, and proteostasis (ALP) during lager beer fermentation, thus highlighting 
the importance of lipids for beer fermentation.
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Introduction
Nowadays, high gravity (HG) and very high gravity 

(VHG) fermentation technologies are often used in the brewing 
industry for beer production. This reduces the consumption 
of water during the brewing process and increases the ethanol 
yield, thus maximizing the brewing efficiency and reducing 
the production costs and energy demand (Puligundla et al., 
2011; 2019). However, the accumulation of large amounts 
of ethanol (>5% v/v) due to the fermentation of HG/VHG 
wort drastically alters the yeast’s physiology (Hallsworth, 
1998) and promotes an ethanol stress response that induces 
molecular mechanisms associated with the heat shock response 
(Odumeru et al., 1992; Piper, 1995). 

The ability of different yeast strains to cope with the 
toxic effects of ethanol depends on the modulation of cell 
membrane fluidity by alteration of the ratio of incorporated 
saturated and unsaturated fatty acids and the ergosterol content 
(Ding et al., 2009). It is well established that membrane-
associated lipids have a strong influence in beer brewing, 
affecting the fermentative capacity and ethanol tolerance of 
Saccharomyces cerevisiae (ale yeast) and Saccharomyces 
pastorianus (lager yeast) (Ahvenainen, 1982; Mishra and 
Kaur, 1991). In wine yeast strains, the high concentration of 
ergosterol in the cell membrane promotes ethanol tolerance by 
decreasing membrane fluidity (Aguilera et al., 2006); however, 
the increased levels of unsaturated fatty acids in the cell 

membrane increase the membrane fluidity (Alexandre et al., 
1994). It was found that yeast strains that are more ethanol 
tolerant incorporate long-chain fatty acids (C18:0 and C18:1) 
compared with strains that are less ethanol tolerant (Chi and 
Arneborg, 1999). Additionally, high concentrations of ethanol 
induce the fluidification and thinning of membranes, along 
with changing the activity and aggregation of membrane-
associated proteins (Thibault et al., 2012). 

Unfortunately, little is known about how lipids modulate 
various biological mechanisms in yeast cells during beer 
fermentation besides affecting membrane structure and/or 
permeability. However, it is known that membrane fluidification 
by ethanol can activate the endoplasmic reticulum (ER)-linked 
unfolded protein response (UPR) (Navarro‐Tapia et al., 
2018) and lipids may have other roles in proteostasis, such 
as the removal of unfolded proteins from the ER by lipid 
droplets (LDs) (Vevea et al., 2015). LDs are important and 
highly dynamic cytoplasmic organelles that connect different 
parts of the cell, including the ER (Jacquier et al., 2011), 
mitochondria (Pu et al. 2011), peroxisomes (Kohlwein et al., 
2013), and vacuoles (Barbosa et al., 2015). Interestingly, ER 
stress induces the formation of LDs (Fei et al., 2009) and 
stimulates lipid biosynthesis, which are associated with ER 
membrane expansion during UPR (Cox et al., 1997; Schuck 
et al., 2009). Additionally, lipid biosynthesis coordinates the 
proteotoxic response of both mitochondria and the cytosol 
(Kim et al., 2016). Thus, it can be hypothesized that LD-
associated processes and lipid biosynthesis are integrative 
processes necessary for proteostasis in different organelles. 
In fact, regulation of inter-organellar proteostasis is an 
important mechanism underlying stress tolerance and it 
was recently shown that beer fermentation in lager yeast 
cells promotes a so-called “inter-organellar/cross-organellar 
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communication/response” (CORE mechanism). This involves 
a series of signaling-associated protein networks that regulate 
inter-organellar proteostasis, which includes the ER and 
mitochondria UPRs, chaperone and co-chaperone activity, and 
N-glycosylation quality control pathway proteins (Telini et al., 
2020). A major aspect of the inter-organellar proteostasis 
mechanism induced by ethanol stress is the coordination and/or 
activation of organellar-linked microautophagy responses, such 
as mitophagy (Carmona-Gutierrez et al., 2012) and lipophagy 
of LDs (Vevea et al., 2015). Moreover, macroautophagy can 
also be induced by reactive oxygen species (ROS) generated by 
damaged mitochondria due to ethanol stress (Jing et al., 2018). 

Thus, the purpose of this study was to evaluate how 
lipid metabolism interacts with different mechanisms linked 
to inter-organellar proteostasis and autophagy in lager 
beer yeast during beer fermentation. Publicly available 
DNA microarray gene expression datasets obtained from 
lager beer yeast at various time points during industrial 
beer fermentation and yeast biomass propagation were 
selected and two transcriptome analyses were performed. 
The differentially expressed genes that were upregulated in 
both analyses (Pan-DEGs) were used to generate a protein–
protein interaction (PPI) network. This was followed by local 
and global topological analyses as well as a gene ontology 
(GO) analysis of major clusters within the PPI network. 
The results of the transcriptome and PPI network analyses 
indicated cross-communication between various pathways 
linked to inter-organelle autophagy, lipid metabolism, and 
proteostasis (ALP) during lager beer fermentation.

Material and Methods

DNA microarray gene expression dataset selection 
and analysis 

DNA microarray gene expression public datasets 
(GSE9423, GSE10205, and GSE16376) containing 
transcriptome data obtained from the lager yeast strain CB11 
(Saccharomyces pastorianus) at various time points during 
industrial beer fermentation and yeast biomass propagation 
were selected from the Gene Expression Omnibus (GEO) 
database (http://www.ncbi.nlm.nih.gov/gds) (Table S1). The 
GSE9423 dataset contains the transcriptome data of strain 
CB11 during both beer fermentation (time points: 8, 30, and 
60 h) and yeast biomass propagation (time points: 0, 8, and 
30 h) (Gibson et al., 2008), and the analysis based on these 
data was designated the “single-analysis”. The GSE10205 
and GSE16376 datasets contain the transcriptome data of 
strain CB11 during beer fermentation (time points: 8, 30, 
60, 80, and 102 h) and yeast biomass propagation (time 
points: 0, 4, 8, and 30 h), respectively. They were combined 
for an analysis designated the “meta-analysis” (Figure 1).  
It is important to note that both the GSE10205 and GSE16376 
datasets evaluated the same lager yeast strain (CB11) in 
identical fermentation and propagation conditions used in 
GSE9423 dataset. Moreover, the number of high-throughput 
(RNA-seq) studies involving S. pastorianus in conditions of 
yeast biomass propagation and beer fermentation are virtually 
nonexistent until now. In this sense, the presence of a high 
number of orthologous sequences and the closest phylogeny 

of Saccharomyces cerevisiae and Saccharomyces eubayanus, 
which composes the hybrid genome of S. pastorianus, allows 
to apply DNA microarray platform available for S. cerevisiae 
for S. pastorianus transcriptome analysis. Horinouchi et al. 
(2010) discuss the use of a tailor-made DNA microarray for 
S. pastorianus and show a strong correlation between the 
expression levels of S. cerevisiae and S. bayanus orthologous 
genes during fermentation (Horinouchi et al., 2010). 

The transcriptome analyses were performed using 
the R platform (https://www.r-project.org) with various 
packages downloaded from Bioconductor 3.13 (https://www.
bioconductor.org) (Figure 1). For data matrix importing, 
processing, and array quality analysis, the GEOquery, affy, and 
arrayQualityMetrics packages, respectively, were employed 
(Gautier et al., 2004; Davis and Meltzer, 2007; Kauffmann 
et al., 2009). DEG analysis was performed using the limma 
package (Ritchie et al., 2015). The false discovery rate (FDR) 
algorithm, implemented in the limma package (Ritchie et al., 
2015), was used to assess the significance level of the DEGs. 
DEGs from the single-analysis (GSE9423) and meta-analysis 
(GSE10205 versus GSE16376) with mean |log(fold change 
[FC])| ≥2.0 and FDR <0.05 were selected and the ALP-
associated genes were identified using Saccharomyces cerevisiae 
annotation data from the Saccharomyces Genome Database 
(https://www.yeastgenome.org). For the further analyses, only 
upregulated DEGs (i.e., DEGs that were upregulated during 
beer fermentation compared to yeast biomass propagation) that 
were common to both the single-analysis and meta-analysis 
were selected. For each Pan-DEG, meta-log2FC ± standard 
deviation (SD) were calculated, and the ALP Pan-DEGs were 
used for ALP network design and analyses (Figure 1). Pan-
DEGs associated with LDs in yeast were also selected using 
data reported by Grillitsch et al. (2011). 

Network design and topology analyses
Initially, PPI and chemical-protein interaction (CPI) 

networks for Saccharomyces cerevisiae were designed using 
S. cerevisiae interactome data downloaded from STRING 
11.0 (https://string-db.org) and STITCH 5.0 (http://stitch.
embl.de), and processed in the R environment (Figure 1). 
The S. cerevisiae interactome data were filtered by selecting 
the subscore information variables labeled “experiments” and 
“curated databases”, followed by the generation of a combined 
score from the two channels using the equation described by 
(von Mering et al., 2005). From PPI interactome network, an 
ALP network was obtained by selecting the shortest pathways 
among the Pan-DEGs using the R package igraph (Csardi and 
Nepusz, 2006). By its turn, the CPI network was applied to 
select the shortest pathways among LDs-associated proteins 
and lipid molecules in yeast (Figure 1) and to generate a 
multilayered network containing both transcriptome and 
proteome data (LDP network). In this sense, the proteome 
data was obtained from Casanovas et al. (2015) and used to 
evaluate the expression of LDs-associated proteins during the 
fermentation-to-respiration transition (Figure 1). Chemical 
data of interacting lipid molecules was obtained from Lipid 
Maps® Lipidomics Gateway (https://lipidmaps.org). ALP and 
LDP network were visualized in Cytoscape 3.7.2 (Shannon 
et al., 2003) using the RCyc3 package (Gustavsen et al., 
2019) (Figure 1). 
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Figure 1 - Experimental design used in DNA microarray single- and meta-analyses and systems biology analysis. DEGs: differentially expressed genes; 
GO: Gene Ontologies; SGD: Saccharomyces Genome Database.
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Regarding the centrality analysis of the ALP network  
(Figure 1), the node degree and betweenness values were 
calculated using the R package igraph (Csardi and Nepusz, 
2006). Node degree indicates the number of connections 
that a specific node has, while betweenness indicates the 
number of shortest paths that pass through a specific node. 
All nodes that had a degree value above the mean for the 
network were designated “hubs”, while all nodes that had 
a betweenness value above the mean of the network were 
designated “bottlenecks” (Yu et al., 2007). Finally, the node 
degree and betweenness values were used to group the nodes 
into four major groups: (i) hub-bottleneck (HB), (ii) nonhub-
bottleneck (NHB), (iii) hub-nonbottleneck (HNB), and (iv) 
nonhub-nonbottleneck (NHNB). The HB group represents 
all nodes that potentially control the flow of information 
through the network and act as key regulators in the cell 
(Yu et al., 2007).

Community analysis of ALP network was performed 
in the R environment using the walktrap community (WTC) 
finding algorithm described by (Pons and Latapy, 2005), and 
the analysis was fully implemented using the igraph package 
(Csardi and Nepusz, 2006). Communities were selected on 
the basis of two criteria: (i) presence of HB nodes and (ii) 
presence of Pan-DEGs (Figure 1). The selected clusters were 
visualized in Cytoscape 3.7.2 (Shannon et al., 2003) using 
the R package RCyc3 (Gustavsen et al., 2019) (Figure 1).

GO analysis
The GO biological process and cellular component 

categories associated with the selected communities from 
the ALP network were determined using the R package 
clusterProfile (Yu et al., 2012) (Figure 1). The degree of 
functional enrichment for each biological process and cellular 
component category was quantitatively assessed (p < 0.01) 
using a hypergeometric distribution. Multiple testing correction 
was also implemented using the FDR algorithm (Benjamini 
and Hochberg, 1995) with a significance level of p < 0.05. 
Semantic comparison of the biological processes and cellular 
components associated with the node clusters was conducted 
using the R package GOSemSim (Yu et al., 2010) (Figure 1) 
using FDR < 0.01 and q < 0.05. Heatmaps combining 
GO categories (columns) and selected clusters from the 
ALP network (rows) were designed using the R package 
ComplexHeatmap (Gu et al., 2016) (Figure 1), with columns 
and rows both being grouped using the k-means distance-
based method.

Data sharing repository
All files, tables and figures generated in this study can 

be freely downloaded from https://github.com/bonattod/
Lipid_stress_data_analysis.git.

Results

Transcriptome single- and meta-analyses of ALP-
associated genes in lager yeast strain CB11 during 
beer fermentation

The initial comparison of upregulated and downregulated 
DEGs in strain CB11 (during industrial beer fermentation 

compared to yeast biomass propagation) identified in the 
GSE9423 dataset analysis (single-analysis; Figure 1) and 
the GSE10205 versus GSE16376 dataset analysis (meta-
analysis; Figure 1) indicated similar patterns of upregulated and 
downregulated DEGs. There were a total of 5,134 upregulated 
and 4,954 downregulated DEGs in the single-analysis, 
while there were a total of 10,258 upregulated and 9,342 
downregulated DEGs in the meta-analysis. The high frequency 
of total upregulated and downregulated DEGs was due to 
gene redundancy across the various comparisons in both the 
single- and meta-analyses. After removing the redundant genes 
from both analyses, there were 1,315 upregulated and 1,209 
downregulated non-redundant (unique) DEGs in the single-
analysis, and 1,727 upregulated and 1,502 downregulated 
non-redundant DEGs in the meta-analysis. The next step was 
to evaluate the expression profile of ALP-associated genes. 
For this purpose, the gene information in the Saccharomyces 
Genome Database regarding ALP mechanisms (Figure 1) was 
used to select the ALP-associated DEGs.

This initial transcriptome data evaluation was followed 
by a specific analysis of the absolute frequencies of ALP 
DEGs in each pairwise comparison of beer fermentation and 
yeast biomass propagation at various time points (Figure S1). 
The absolute frequencies were low when beer fermentation 
was compared to early propagation time points (0 h in the 
single-analysis; 0 and 4 h in the meta-analysis) (Figure S1). 
On the other hand, the absolute frequencies increased when 
beer fermentation was compared to advanced propagation 
time points (8 and 30 h in both the single- and meta-analyses) 
(Figure S1). For the subsequent transcriptome and systems 
biology analyses, only the upregulated non-redundant 
(unique) ALP DEGs observed in all pairwise comparisons 
were considered.

ALP Pan-DEGs in lager yeast strain CB11 during 
beer fermentation

The frequency of non-redundant upregulated ALP DEGs 
for each of the three ALP processes was similar between the 
single-analysis and meta-analysis (Figure 2A). Regarding 
autophagy, there were 27 upregulated DEGs for the single-
analysis and 42 for the meta-analysis (Figure 2A). Regarding 
proteostasis, there were 76 upregulated DEGs for the single-
analysis and 88 for the meta-analysis (Figure 2A). Regarding 
lipid metabolism, there were 121 upregulated DEGs for the 
single-analysis and 138 for the meta-analysis (Figure 2A). 

Next, the frequency of non-redundant upregulated ALP 
DEGs that were common to both transcriptome analyses was 
evaluated (Figure 2B). There were 117, 71, and 26 common 
DEGs for lipid metabolism, proteostasis, and autophagy, 
respectively (Figure 2B and C). These common ALP DEGs 
were designated ALP Pan-DEGs and their expression patterns 
were evaluated. 

Regarding the expression patterns of the ALP Pan-DEGs 
(Figure 2D), the median meta-log2FC value was similar for 
autophagy (2.39), lipid metabolism (2.57), and proteostasis 
(2.68). Additionally, the minimum and maximum meta-log2FC 
values were similar, from 2.13 to 4.39 for autophagy, 2.09 to 
4.45 for proteostasis, and 2.04 to 4.17 for lipid metabolism 
(Figure 2D). 

https://github.com/bonattod/Lipid_stress_data_analysis.git
https://github.com/bonattod/Lipid_stress_data_analysis.git
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Figure 2 - In (A), Frequency of non-redundant (unique) upregulated differentially expressed genes associated with autophagy, lipid metabolism, and 
proteostasis (ALP DEGs) in the transcriptome single-analysis (GSE9423) and meta-analysis (GSE10205 versus GSE16376). The numbers inside the squares 
show the frequency of upregulated DEGs associated with a specific ALP process. The frequencies of ALP DEGs common to both transcriptome analyses 
(designated ALP Pan-DEGs) are indicated in the (B) Venn diagram and (C) bar chart. In (D) Expression values of ALP Pan-DEGs in log2(fold change).
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The similar expression patterns of the ALP Pan-DEGs 
lead to evaluate how the ALP Pan-DEGs are connected to 
each other in terms of PPIs using a top-down systems biology 
approach involving S. cerevisiae interactome data (Figure 1). 
Moreover, the importance of the ALP Pan-DEGs in the local 
and global PPI network topologies was also assessed, and the 
overrepresented biological processes and cellular components 
associated with the PPI network were identified.

Top-down systems biology analysis of ALP Pan-DEGs

The ALP Pan-DEGs obtained from the transcriptome 
analyses were selected as seeds to generate a shortest-
pathway PPI network using publicly available S. cerevisiae 
interactome data (Figure 1). The subnetwork, designated the 
“ALP network”, contained 1,705 nodes and 22,806 edges 
and included almost all ALP Pan-DEGs with the exception 
of FAT3, IZH2, IZH4, MZM1, OPI10, PPX1, and TMA17, 
which could not be mapped using the currently available S. 
cerevisiae interactome data. Following the generation of the 
ALP network, a node centrality analysis was performed to 
identify all nodes that exert a local influence in the network 
and, consequently, may have roles in ethanol stress tolerance 
in lager yeast cells during beer fermentation. For this purpose, 
two centrality parameters commonly used for PPI network 
analyses were selected: node degree and betweenness. The 
node degree evaluates the potential of a protein to connect with 
other proteins, thus forming functional complexes (Yu et al., 
2007). All proteins with node degree values above the mean 
value of the network were defined as hubs (Yu et al., 2007). 
Betweenness evaluates the ability of a node to connect to 
nodes in different clusters/communities, thus serving as a 
“bottleneck” for biological information to traverse from one 
community to another (Yu et al., 2007). By combining the 
node degree and betweenness results, nodes that display high 
values for both parameters (HB nodes) can be selected. HB 
nodes are critical elements within a network as they concentrate 
the highest numbers of shortest pathways and connections 
with other nodes, so they are important components for signal 
transduction among protein clusters/communities (Yu et al., 
2007). The centrality analysis of the ALP network indicated 
the presence of 423 HB nodes, 221 HNB nodes, 59 NHB 
nodes, and 1,002 NHNB nodes. Once the centralities in the 
ALP network were defined, whether they were organized into 
communities was determined. In general, a community can 
be defined as a specific network topology that contains highly 
connected nodes that have low degree values with respect to 
nodes outside the community. Moreover, communities can 
potentially be associated with specific biological processes 
(Ravasz et al., 2002; Pons and Latapy, 2005). To identify the 
communities in the ALP network, the WTC algorithm was 
applied (Pons and Latapy, 2005), which allows communities to 
be efficiently identified by using the random walk technique. 
By using the WTC algorithm, 36 communities were identified 
in the ALP network. For further analysis, it was necessary 
to select the major communities in the ALP network by 

determining the presence of HB nodes and ALP Pan-DEGs 
within the communities. Thus, 13 communities were selected 
by applying the criteria above indicated. 

Following the community identification, a GO analysis 
was applied to each of the 13 selected clusters in order to 
identify the major overrepresented biological process categories 
(Figure 3) and cellular component categories (Figure 4). 
Regarding biological processes, three superclusters and 
seven biological process groups were identified by applying 
a k-means distance-based method (Figure 3). Supercluster 1 
(clusters 3, 23, and 24) was associated with major biological 
processes concerning mitochondria structure and organization 
(Figure 3), while supercluster 2 (clusters 2, 9, and 31) was 
associated with lipid, ergosterol, and alcohol metabolism 
(Figure 3). Both superclusters 1 and 2 also contained proteins 
involved in the oxidation-reduction process (Figure 3). On 
the other hand, supercluster 3 (clusters 1, 4, 5, 6, 12, 10, 
and 14) was associated with autophagy and autophagosome 
assembly, response to ER stress and protein folding, piecemeal 
microautophagy of the nucleus (PMN) and mitochondria 
autophagy, vesicle-mediated transport, and other biological 
processes (Figure 3). Next, the major cellular components 
associated with the clusters were identified. Again, three 
superclusters were observed (Figure 4). Supercluster 1 (clusters 
1, 4, and 31) mainly contained proteins associated with ER 
membrane and LDs, while supercluster 2 (clusters 2, 3, 5, 9, 
and 23) contained proteins found in the mitochondria envelope 
and matrix, Golgi apparatus, membrane protein complexes, 
and organelles such as peroxisomes (Figure 4). Finally, 
supercluster 3 (clusters 8 and 12) contained proteins that 
are mainly found in cytoplasmic vesicles and at phagophore 
assembly sites (Figure 4).

Evaluation of ALP Pan-DEGs linked to LD structure 
and function

Using the available data on the various proteins 
associated with LD (Grillitsch et al., 2011) and the ALP 
Pan-DEGs identified in this study, 17 ALP Pan-DEGs linked 
to LD structure were identified as being upregulated in lager 
yeast cells during beer fermentation compared to during 
yeast biomass propagation (Table S2). Of these 17 LD-
associated ALP Pan-DEGs, 11 are directly involved with lipid 
metabolism and six are related to proteostasis (Table S2). 
This result was supported by a proteome and transcriptome 
multilayered chemical-protein interaction network of the 17 
LD-associated ALP Pan-DEGs (LDP network; Figure 5), 
where it could be observed that ERG6, ERG27, POX1, FAA4, 
YJU3, GPT2, ERG1, DPL1, and PDI1 were found to be 
overexpressed in transcriptome and also in publicly available 
yeast proteolipidome data from Casanovas et al. (2015) (Figure 5 
and Table S3). Additionally, the LDP network also contains 
lipid metabolism-associated nodes that were exclusively 
found to be expressed in proteolipidome data, like TGL4, 
FAA1, FAS1, ERG4, ERG7, and ERG9, which are connected 
with LD-associated ALP Pan-DEGs (Figure 5 and Table S3).
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Figure 3 - Heatmap showing the clustered biological processes based on the gene ontology (GO) analysis of autophagy, lipid metabolism, and proteostasis 
(ALP) network-associated communities/clusters. Heatmap rows and columns were grouped using the k-means distance-based method. Horizontal and 
vertical dotted lines indicate the cut-off point used to define the numbered rows and column groups.
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Figure 4 - Heatmap showing the clustered cellular components based on the Gene Ontology (GO) analysis of autophagy, lipid metabolism, and proteostasis 
(ALP) network-associated communities/clusters. Heatmap rows and columns were grouped using the k-means distance-based method. Horizontal and 
vertical dotted lines indicate the cut-off point used to define the numbered rows and column groups.

Discussion
The transcriptome and systems biology results obtained 

in this study suggest that, during lager beer fermentation, 
various ALP-associated genes are upregulated and their 
products cooperate in a shortest-pathway PPI network that is 
composed of multiple communities of proteins in order to deal 
with the nutritional and ethanol stress observed during beer 
fermentation (Gibson et al., 2007; 2008). The GO analysis 
of these clusters showed that they are associated with a large 
number of processes related to autophagy, mitochondria 
organization and activity, ER stress and Golgi organization, 
lipid/ergosterol metabolism, cytoplasmic vesicles, LDs, and 
phagophore assembly sites (Figure 3). All these processes are 
known to be modulated by the stressful conditions that yeast 
cells are exposed to during beer fermentation, including ethanol 
toxicity (Telini et al., 2020) and nitrogen and carbohydrate 
starvation (Gibson et al., 2007). Nitrogen starvation is a key 
condition that promotes autophagy in yeast cells (Cebollero 

and Reggiori, 2009), and despite this mechanism being 
well characterized in yeast strains during wine fermentation 
(Piggott et al., 2011), autophagy studies in lager yeasts 
are virtually absent. Interestingly, malt-derived wort used 
for beer fermentation contains different types of nitrogen 
sources that can prevent the activation of autophagy (Gibson 
et al., 2007); however, many autophagy-associated genes are 
upregulated during wine fermentation even in the presence 
of nitrogen sources (Piggott et al., 2011). In this study, the 
transcriptome data indicated the upregulation of various 
autophagy-related (ATG) genes during lager beer fermentation 
(Table S3). Among the ATG genes that were upregulated 
during beer fermentation, three (ATG1, ATG8, and ATG18) 
are part of the so-called “autophagy core machinery”, which 
is important for both micro- and macroautophagy (Lynch-
Day and Klionsky, 2010). The transcriptome and systems 
biology data indicate that, during beer fermentation, the 
cytoplasm-to-vacuole targeting (Cvt) mechanism, mitophagy, 
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Figure 5 - Shortest-pathway chemical-protein interaction (CPI) network of lipid droplets-associated proteins and molecules linked to lipid metabolism 
(LDP network). Expression data from proteome (Casanovas et al., 2015) and transcriptome (this study) analyses were added to network and are indicated 
as pie charts inside the nodes in different colors. Each pie slice is proportional to proteome and/or transcriptome expression values for a given node.
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and PMN are potentially activated (Figure 3), all three of 
which depend on the activity of Atg1p, Atg8p, and Atg18p 
(Krick et al., 2008; Lynch-Day and Klionsky, 2010; Kanki et 
al., 2015). Although the importance of Cvt, mitophagy, and 
PMN to brewing yeasts strains is unknown in the context 
of beer fermentation, it has been reported that all three of 
these microautophagy processes are important for yeast cell 
adaptation in fermentative environments (Cebollero and 
Gonzalez, 2006; Kurihara et al., 2012). 

Another fundamental aspect of micro- and 
macroautophagy mechanisms that should be considered is 
the formation of autophagosomes, which are membranous 
vesicular structures that deliver various cargo components for 
degradation in vacuoles (Lamb et al., 2013). The formation 
of autophagosomes strongly depends on the biosynthesis 
of lipids such as triacylglycerols and sterol esters, which 
originate from ER membranes in the form of LDs (Velázquez 
et al., 2016). In fact, low levels of nitrogen sources and the 
presence of glucose in yeast stimulate lipogenesis and increase 
the number of LDs, which, in turn, are required for efficient 
autophagy (Li et al., 2015). 

The transcriptome and systems biology data demonstrated 
the upregulation of several genes linked to neutral lipid 
and ergosterol biosynthesis in lager yeast cells during beer 
fermentation (Table S3). Moreover, the GO analysis of 
cellular components linked to clusters 1, 4, and 31 indicated 
associations with ER membrane structure, the ER association 
with the nuclear outer membrane, and LDs (Figure 4). 

Besides the importance of lipid biosynthesis for 
autophagy, lipids may be key regulators of proteostasis and 
modulators of the permeability to ethanol of the cell membrane 
(Chi and Arneborg, 1999; Aguilera et al., 2006; Ma and 
Liu, 2010). In fact, lipid metabolism and LDs are important 
factors in proteostasis, as it has been shown that yeast cells 
exhibiting defective biosynthesis of neutral lipids and LDs 
have chronic ER stress (Velázquez et al., 2016; Graef, 2018). 
In addition to being important during proteostasis, LDs are 
essential for macroautophagy (Velázquez and Graef, 2016; 
Velázquez et al., 2016), helping to assemble autophagosomes 
and induce mitophagy (Carmona-Gutierrez et al., 2012) and 
microlipophagy (Vevea et al., 2015). Notably, six upregulated 
proteostasis-associated genes identified in this study that 
are linked to the inter-organellar proteostasis mechanism 
(CPR5, KAR2, PDI1, PMT1, RPL5, and SSA1) (Telini et al., 
2020) are also found in LD structures (Table S3).Interestingly, 
ER stress can induce the formation of LDs (Fei et al., 2009) 
and LDs interact with mitochondria and peroxisomes via 
Erg6p (Pu et al., 2011), a protein encoded by ERG6, which 
was found upregulated in this study (Table S3). A supporting 
proteome and transcriptome multilayered chemical-protein 
interaction network (LDP network) using the proteolipidome 
data of Casanovas et al. (2015) pointed that many of the 
overexpressed LD-associated genes found from meta-
transcriptome analysis are proteomically expressed during 
the transition of fermentation to respiration in yeast cells, 
including genes linked to synthesis of LD-associated fatty 
acids and triacylglycerols, like FAA4 (Figure 5 and Table S3). 
The fermentation-to-respiration transition is also observed 
in yeast cells during brewing, with the exception that the 

anaerobiosis and nutrient depletion in beer avoid the use of 
ethanol as carbon source by yeast cells (Gibson et al., 2007). 
Interestingly, Erg6p, Erg27p, Pox1, Faa4p, Yju3, Gpt2p, 
Erg1p, Dpl1p, and Pdi1p were also found to be differentially 
expressed in the proteome data of industrial wine yeast 
strains during wine fermentation (Rossouw et al., 2010). 
Additionally, Erg6p, Erg27p, Faa4p, and Yju3p were found 
in high resolution proteome analysis of purified LD fraction 
from yeast (Currie et al., 2014), also including Fat1p, Tgl3p, 
and Tgl4p, which are present in the LDP network (Figure 5). 
Thus, the systems biology data gathered in this work support 
the idea that beer fermentation promotes lipid biosynthesis 
in yeast cells, specially unsaturated fatty acids (UFAs) and 
ergosterol, which can be related to the composition of LD’s 
membrane. In fact, it has been reported that the levels of 
UFAs and ergosterol increased during fermentation in order 
to antagonize the membrane fluidity induced by ethanol (Ding 
et al., 2009) and LD-associated triacylglycerols and sterol 
esters can differentially change during the fermentation-to-
respiration transition (Casanovas et al., 2015). 

Finally, lipid metabolism and LDs have a central role 
in inter-organellar communication and the promotion of 
autophagy and proteostasis; however, comparative proteome 
and transcriptome studies that focuses on lipid and LD 
metabolism from different ale and lager brewing strains 
are virtually non-existent until now. Thus, it is essential to 
determine how lipids and LDs are produced and regulated in 
the context of different ale and lager strains in order to design 
new yeast strains resistant to high ethanol concentrations 
during HG/VHG beer production.
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