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Abstract

Background: Resistance Nodulation Division (RND) efflux pumps of Escherichia coli extrude antibiotics and toxic substances
before they reach their intended targets. Whereas these pumps obtain their energy directly from the proton motive force
(PMF), ATP-Binding Cassette (ABC) transporters, which can also extrude antibiotics, obtain energy from the hydrolysis of
ATP. Because E. coli must pass through two pH distinct environments of the gastrointestinal system of the host, it must be
able to extrude toxic agents at very acidic and at near neutral pH (bile salts in duodenum and colon for example). The herein
described study examines the effect of pH on the extrusion of ethidium bromide (EB).

Methodology/Principal Findings: E. coli AG100 and its tetracycline induced progeny AG100TET that over-expresses the
acrAB efflux pump were evaluated for their ability to extrude EB at pH 5 and 8, by our recently developed semi-automated
fluorometric method. At pH 5 the organism extrudes EB without the need for metabolic energy (glucose), whereas at pH 8
extrusion of EB is dependent upon metabolic energy. Phe-Arg b-naphtylamide (PAbN), a commonly assumed inhibitor of
RND efflux pumps has no effect on the extrusion of EB as others claim. However, it does cause accumulation of EB.
Competition between EB and PAbN was demonstrated and suggested that PAbN was preferentially extruded. A Km

representing competition between PAbN and EB has been calculated.

Conclusions/Significance: The results suggest that E. coli has two general efflux systems (not to be confused with a distinct
efflux pump) that are activated at low and high pH, respectively, and that the one at high pH is probably a putative ABC
transporter coded by msbA, which has significant homology to the ABC transporter coded by efrAB of Enterococcus faecalis,
an organism that faces similar challenges as it makes its way through the toxic intestinal system of the host.
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Introduction

Bacteria that are orally ingested need to survive when exposed

to noxious agents such as toxic bile salts that are present along the

digestive tract (ex: duodenum and colon). Resistance of Gram-

negative bacteria to bile salts has been attributed to the presence of

an efflux pump, which extrudes the agent prior to its reaching

sensitive and lethal targets within the bacterium [1-4]. With

respect to E. coli, extrusion of noxious agents is performed

primarily by the AcrAB efflux pump, although other efflux pumps

may assist in the extrusion process [5]. Collectively, these efflux

pumps are classified as belonging to the Resistance Nodulation

Division (RND) family of transporters [6,7]. RND efflux pumps

are tripartite units that consist of a TolC protein connected to the

transporter protein and provides the conduit for the passage of the

exported agent to the outside of the bacterium [8]. The

transporter component of the pump is anchored to the plasma

membrane of the bacterium by two flanking fusion proteins. The

tripartite pump obtains the necessary energy to power extrusion of

the agent directly from the trans-membrane proton gradient

[9,10]. This gradient provides the protons that are present in the

periplasmic space and, when they enter the transporter at its

PLoS ONE | www.plosone.org 1 August 2009 | Volume 4 | Issue 8 | e6656



plasma membrane base, they energize the pump and the agent

which is believed to be concentrated within the outer leaflet of the

inner membrane is in turn extruded [11]. The proton is then

released to the medial side of the plasma membrane. The fusion

proteins are believed to physically assist the extrusion of the agent

[11].

The proton motive force (PMF) is in part established by protons

generated following the hydrolysis of ATP catalyzed by membrane

bound ATPases [12–16] and by oxidative metabolism [17]. The

generation of these protons takes place at sites medial to the inner

membrane of the Gram-negative bacterium. After the protons are

exported to the periplasm by a variety of transport processes, most

of which are then exported to the surface of the cell, the

distribution of protons between the periplasm and the cell surface

results in a proton gradient that is greatest at the surface of the cell

and least in its periplasm. This distribution establishes a relative

negative charged periplasmic space and positive charged surface of

the cell and results in an electrochemical gradient. The resulting

trans-membrane difference in the electrochemical potential of

hydrogen ions was at first seen to be the driving force behind the

energy consuming enzymes and ATP-synthase and was defined as

the proton motive force (PMF) [18]. However, because of the

largesse of the bulk water phase the dissemination of protons from

the surface of the cell would quickly eliminate the pH gradient

across the cell envelope, and hence, the PMF and the energy it

provides for driving efflux pumps would be eliminated [18].

Because the PMF is maintained by the bacterium when challenged

by changes in the pH of the environment [19,20] the

chemiosmotic theory required revision, and the concept was

extended to include the distribution of protons on the surface of

the cell which due to the components of the outer cell envelope,

would be selectively concentrated and result in a pH of the

medium immediately surrounding the surface of the cell that

would be much lower than the pH of the bulk medium [21]. This

surface distribution of protons therefore assists the bacterial cell in

maintaining a PMF that would not be significantly affected by the

pH of the medium [22]. Consequently, it is widely held that the

pH of the medium should not affect the activity of a RND efflux

pump even though there is no evidence in support of this

conclusion. Exposure of Salmonella to low pH is well known to

activate the PmrA/PmrB two component regulatory system which

not only allows the organism to survive the low pH of the

phagolysosome, but also increases its resistance to antibiotics [23].

Exposure of E. coli to low pH activates a wide spectrum of genes,

some of which code for cell envelope proteins [24,25]. These

studies suggest that low pH readily activates genes of a Gram-

negative bacterium and render the organism resistant. Although

the question of whether pH-induced resistance of a Gram-negative

involves the activation of genes that regulate and code for efflux

pump constituents remains our goal, we have asked the question of

whether pH has a direct effect on the RND efflux pump AcrAB of

E. coli. We herein report that pH significantly modulates the efflux

of the known efflux pump substrate ethidium bromide (EB) and

correlate this modulation to the challenges that the organism faces

when it passes through regions of the intestinal system that differ

significantly in pH and yet present the same toxic challenges.

Results

Because pH affects many activities of the cell envelope surface

that affect the growth of E. coli [26,27], the effect of pH on the

growth of the E. coli AG100 and AG100TET was determined.

Briefly, as evident from Table 1, the calculated slopes depicting

rate of growth, indicate that both strains grow more slowly at pH 5

than at pH 7. However, the rate of growth is twice as slow for the

AG100TET as opposed to that of the parental strain AG100.

Nevertheless, whereas movement through the low acid compo-

nents of the digestive tract does not significantly effect the survival

of the organism, the presence of toxic agents such as bile salts in

the small and large intestine, poses problems of survival if these

agents permeate into the bacterium.

The ability of each strain to extrude different concentrations of

EB were verified by using a 96-well microplate containing Tryptic

Soy broth (TSB) with increasing concentrations of EB as described

by Figure 1. The assay, performed at pH 5 and 8, indicates that

AG100TET begins to fluoresce in medium at pH 8 at a

concentration of 0.6 mg/L of EB, whereas the wild-type AG100

begins to fluoresce at 0.2 mg/L of EB. This difference is in

accordance to the degree of AcrAB efflux pump expression,

namely the AG100TET over-expresses this pump 6-fold over that

of AG100, as shown by real-time quantitative reverse transcrip-

tase-PCR (qRT-PCR) [5]. At the lower pH, the strains require

higher concentrations of EB to fluoresce: 1.5 and 0.6 mg/L for the

AG100TET and AG100, respectively.

Accumulation of EB by AG100 in glucose-free saline and the

effect of pH are shown in Figure 2A. Whereas no significant

accumulation of EB takes place in glucose-free saline pH 5,

accumulation of EB in glucose-free saline at pH 8 takes place

during the first 25 minutes. The need for metabolic energy at

pH 8 for efflux of EB is illustrated with the addition of glucose to

the cells after 25 minutes of accumulation of EB in glucose-free

saline at pH 8, inasmuch as the amount of fluorescence drops and

is maintained at the initial level noted at the beginning of the

accumulation period. The addition of glucose-free saline at pH 8

does not affect the rate of EB accumulation noted during the

accumulation period of the assay. These results clearly demon-

strate the activity of the intrinsic efflux pump system of the wild-

type E. coli AG100 strain that is operating at pH 8. At pH 5, it is

assumed, at this time, that the reason for little or no accumulation

of EB regardless of metabolic energy (glucose) is due to the activity

of the PMF dependent RND efflux pump.

Accumulation and efflux of EB by the AG100TET strain, that

over-expresses the AcrAB efflux pump, compared to AG100

[5,25], and the need for metabolic energy for efflux at pH 8 and

not at pH 5 is similarly demonstrated by Figure 2B.

The demonstration of an RND type efflux pump of a Gram-

negative is usually conducted with the PMF un-coupler carbonyl

cyanide m-chlorophenylhydrazone (CCCP) at pH 7 and in the

absence of metabolic energy. Given the demonstration that at

pH 8 metabolic energy optimizes efflux, the activity of varying

concentrations of this agent at pH 5 and 8 on the efflux of EB after

the fluorochrome has accumulated in the absence of glucose has

been studied and the results obtained described by Figure 3 for

the AG100TET that over-expresses its AcrAB efflux pump [5,25].

At pH 5 and 8, CCCP immediately prevents efflux and increases

Table 1. The growth rates of E. coli AG100 and AG100TET in
MH at pH 5, 7 and 8.

E. coli strain Slope at pH 5 Slope at pH 7 Slope at pH 8

AG100 0.22 0.40 0.29

AG100TET 0.06 0.22 0.19

Legend: Growth rates are presented as slopes which are calculated from the
number of hours of culture divided into the total optical density (OD at 600 nm)
of the culture. The steeper the slope the faster the growth rate.
doi:10.1371/journal.pone.0006656.t001

pH Modulation of Efflux
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the rate and extent of accumulation of EB in a concentration

dependent manner. However, comparison of the slopes of

accumulation between that at pH 5 and pH 8 indicates that at

pH 8 the effect of CCCP is considerably greater. Because these

assays were conducted at the same time and under the same

conditions other than pH, the lesser effects of CCCP at pH 5 may

be due to the large contribution of protons at pH 5 that exceeds

the proton binding capacity of the CCCP concentration. At pH 8,

due to a far lower concentration of available protons, the

concentration of CCCP essentially binds all of the protons and

thereby it completely inhibits efflux of EB. The same effects were

produced by CCCP and its modulation of EB efflux by the

intrinsic efflux pump system of the AG100 wild-type strain (data

not shown). The observation that CCCP promotes the retention of

EB at pH 5 demonstrates that the much lower accumulation of EB

at this pH is due to efflux as opposed to a decrease of permeability

to EB.

Phe-Arg b-naphtylamide (PAbN) has been used to demonstrate

the presence of an active efflux pump that renders some Gram-

negative bacteria resistant to given antibiotics. This demonstration

involves the reduction of a minimum inhibitory concentration

(MIC) of a given antibiotic over a 16 hour culture. However, our

previous studies suggested that PAbN is not an inhibitor of an

efflux pump but rather a competitor of other efflux pump

substrates for extrusion [25], a suggestion also made by others

[26]. This postulated preferential extrusion of PAbN is believed to

result in the increased concentration of the antibiotic which

eventually reaches a level that inhibits the replication of the

organism. Moreover, if PAbN is an inhibitor of an RND efflux

pump, then it should inhibit the efflux of EB at pH 5 inasmuch as

the efflux of EB at pH 5 is independent of metabolic energy and

dependent upon the PMF. The effect of PAbN on the

accumulation and efflux of EB by the AG100TET at pH 5 is

described by Figure 4. As evident from this figure, the addition of

PAbN has no effect on the efflux of EB at either pH. However,

because PAbN competes with EB, as the concentration of PAbN is

increased, more and more EB would be expected to accumulate.

This anticipated relationship was exploited for the derivation of a

Km for PAbN relative to EB at pH 5 inasmuch as at this pH

metabolic energy is not needed and PAbN has no effect on efflux

of EB. Moreover, the dissociation constant of EB from the AcrB

transporter is lowest at pH 5 [28], a condition that is necessary for

continuous efflux of EB. As described by the composite Figure 5,

as the concentration of PAbN is increased from 1 to 40 mg/L, the

amount of EB accumulation is proportionately increased.

Employing Michaelis-Menten formulae, the Km for PAbN

representing competition between PAbN and EB was calculated

to be 4.21 mg/L.

Figure 1. Fluorescence of the strains E. coli AG100 and AG100TET in EB containing media at pH 5 and pH 8. From the left to the right,
the fluorescence emitted by the bacteria grown in decreasing concentrations of EB during 16 hours. The controls of the media (TSB with or without
EB) at pH 5 and pH 8 are presented in the last four rows of the plate.
doi:10.1371/journal.pone.0006656.g001
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Verapamil inhibits ABC transporters of Staphylococcus aureus

[29] and mycobacteria [30]. However, there is little information

regarding the effects of verapamil on efflux activity of a Gram-

negative such as E. coli. Considering the possibility that the study

of agents for inhibitory activity against efflux pumps is always

conducted at neutral or near neutral, and because at pH 8 efflux

of EB by the E. coli strains employed in this study is dependent

upon metabolic energy, suggesting the involvement of an ABC

type transporter, we have evaluated the effects of concentrations

of verapamil on efflux of EB. As evident by Figure 6, and

consistent with previously presented data, at pH 8 efflux of EB

is dependent upon the presence of metabolic energy. The

addition of verapamil in the absence of metabolic energy,

promotes a concentration dependent inhibition of efflux which

causes proportional increases in accumulation of EB. The

inhibitory effect on efflux by verapamil is significantly decreased

when metabolic energy is present. These results suggest that at

pH 8, efflux of EB is at the very least, partially conducted by an

Figure 2. The effect of pH and the need for metabolic energy for efflux of EB by E. coli AG100 (Fig. 2A) and AG100TET (Fig. 2B).
Accumulation of EB in glucose-free saline at pHV5 and 8 for 25 minutes. Instrument is stopped and glucose-free and glucose-saline pHV5 and 8,
respectively, is added and the instrument restarted. A slight drop of recording takes place when the instrument is stopped and when restarted
measurement of fluorescence continues. Note. Whereas the addition of glucose-saline at pH 8 to the tube containing glucose-free saline at pH 8
causes an immediate drop of fluorescence, the addition of glucose-free medium does not, and the slope representing the increase of fluorescence
remains equal to that exhibited during accumulation in glucose-free saline at pH 8. Accumulation of EB in glucose-free saline at pH 5 is minimal (just
above background) and remains unaltered with the addition of either glucose-free or glucose-saline at pH 5.
doi:10.1371/journal.pone.0006656.g002

pH Modulation of Efflux
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ABC type transporter. Similar results were obtained with the

AG100TET strain (data not shown).

Discussion

The results presented in this study demonstrate that the pH of

the milieu modulates the over-all activity of the intrinsic and over-

expressed efflux pump system of E. coli. pH modulation of genes

that code for ion transporters of E. coli has been previously

demonstrated by others [31]. However, this is the first time that

pH is shown to modulate the accumulation and extrusion of an

efflux pump substrate such as EB.

The effect of pH on the cell envelope, its constituents, genes that

regulate growth and metabolism has been reported and reviewed

in detail [31]. As also shown in the current study, low and high pH

reduces optimum growth demonstrable at pH 7. However, low

pH is not a problem for E. coli inasmuch as its survival, regardless

of a slower growth rate, is not significantly affected as evident from

Figure 3. Effect of CCCP concentrations on efflux of EB by E. coli AG100TET at pH 5 and 8. The same protocol of accumulation was
followed as for Figure 2. After 25 minutes, saline with glucose and CCCP was added to the tubes. The control without CCCP and without glucose is
also presented.
doi:10.1371/journal.pone.0006656.g003

Figure 4. Effects of PAbN on efflux of EB by AG100TET at pH 5 and 8. The same protocol of accumulation was followed as for figure 2. After
25 minutes media with glucose and PAbN was added to the tubes.
doi:10.1371/journal.pone.0006656.g004
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the success of an orally consumed E. coli reaching and successfully

colonizing the colon. The survival of the organism is dependent

upon its ability to extrude noxious agents present in the digestive

system of the host. Clearly, the ability to extrude a noxious agent is

intrinsically present in wild-type E. coli. The extrusion capability

when over-expressed, make therapy of multi-drug resistant (MDR)

E. coli infections problematic.

The selection of pH affords the distinction between an efflux

pump system immediately dependent on the PMF, such as a RND

efflux pump, and one that is dependent upon metabolic energy

and inhibited by verapamil. Because the msbA gene of E. coli is

similar to the ABC transporter gene efrAB of E. faecalis [32,33], we

believe that the glucose dependent efflux at pH 8 noted in our

study may be conducted by the putative MsbA transporter.

Further studies have to be performed in order to identify the ABC

transporter in this study. Nevertheless, an ABC type transporter

system that has the capability to extrude the efflux pump substrate

EB has now been demonstrated for the first time in E. coli.

The current study utilizes a modification of the semi-automated

fluorometric method previously described [34]. Firstly, whereas in

the initial method a pH of 7 was maintained for the entire study,

the current method utilizes a range of pH and glucose-free saline

for the EB accumulation phase. Secondly, whereas the initial

method employed a wash for the removal of EB, the medium

replaced with EB free-saline, and the efflux of EB was then

followed, in the current method after the accumulation phase,

glucose-saline of matching pH is added and, in accordance to the

criteria governing the source of energy driving the pump, efflux of

EB is followed. This simple change in the method makes it far less

cumbersome, eliminates the possibility of leakage of EB due to the

washing procedures and the large variation between replicates due

to the wash, and perhaps of greatest importance, the rate of efflux,

almost from the very beginning can be noted. We say ‘‘almost’’

because the stopping of the instrument after the EB accumulation

phase, the additions and their number, the return of the samples to

the instrument and restarting the instrument introduce a variable

of time during which the addition of glucose is immediately

followed by efflux of EB. However, in our hands, this time variable

did not exceed 2.5 minutes when as many as 12 individual

additions were made, and did not produce any qualitative

variation between replicate runs.

Our results also indicate that the widely used efflux pump

substrate PAbN is not an inhibitor of the efflux pump as previously

suggested by others [26], and that the initial evidence provided in

support of this contention [32] has now been verified by the

current study. Furthermore, the degree of competition between

Figure 5. Competition between EB and PAbN: calculation of Km for PAbN relative to EB. Increasing concentrations of PAbN from 1 to
40 mg/L caused increase of fluorescence (A). This data was then used for the derivation of the PAbN Km initially plotted by (B) and data employed in
the Michaelis-Menten (C).
doi:10.1371/journal.pone.0006656.g005
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PAbN and EB for extrusion by wild-type E. coli AG100 has been

demonstrated and has resulted in a Km for PAbN relative to EB of

4.21 mg/L.

Our study supports the contention that the survival of a

bacterium as it makes its way through the digestive system and

eventual colonization of the colon, is assured by the activity of two

types of efflux pump systems: one that operates directly from PMF

derived energy and the other from a putative ATP binding

transporter. It is supposed that when the bacterium reaches the

duodenum, the toxicity presented by high concentrations of bile

salts must be obviated and this is accomplished by the extrusion of

these toxic substances by an RND efflux pump such as the AcrAB

of E. coli. Because our study demonstrates that the intrinsic efflux

pump system of wild-type E. coli is perfectly capable of extruding

EB in glucose-free saline at pH 5, and this extrusion can be

eliminated by a un-coupler of the PMF, it should be this PMF

dependent pump system which protects the bacterium while

passing through the duodenum. There is no need for an over-

expressed PMF dependent efflux pump system. When the

organism reaches the colon, bile salts, as well as many secreted

agents produced by the normal flora, are present and are toxic to

the organism. The pH of the colon is near 7 and because of the

scarcity of protons in this bulk medium the concentration of

surface bound protons must be affected, and is probably much

lower than that at pH 5. If the RND pump is to operate under

these conditions, the PMF must be maintained and the protons

needed to activate the RND efflux pump must be available in the

periplasm [11]. Subsequent to the extrusion of the noxious agent

the protons are released to the cytoplasm. Two general situations

are expected from the activity of the RND efflux pump at pH 7 or

higher: firstly, the consumption of protons from the periplasm

reduces the PMF unless protons are replaced from the surface of

the cell. The process of replacement is probably limited and

inadequate for the maintenance of an RND efflux system under

these conditions; secondly, the release of protons to the medial side

of the cytoplasm membrane will decrease the pH and the synthesis

of ATP by ATP-synthase is favoured [34,35]. The utilization of

protons for the synthesis of ATP insures that the pH gradient

between the periplasm and cytoplasmic side of the plasma

membrane is maintained. The ATP generated is then bound by

the ABC transporter, hydrolyzed and the energy from this process

activates the ABC transporter to extrude the noxious agent.

Metabolic energy also contributes to this process. In the toxic

environment of the colon, we suppose the organism receives

protection from the ABC type efflux pump system that relies

primarily on metabolic energy, energy that is derived from the

richness and practically unlimited supply of carbohydrates

continuously replenished by the digestive processes of the human

host.

The demonstration of pH modulated efflux pump activity is

extremely significant for the design of agents that are to serve as

efflux pump inhibitors (EPIs). If the agent is to be an effective

adjuvant to antibiotic therapy for the management of a food-borne

infection caused by an efflux mediated MDR Gram negative

bacterium such as an E. coli strain, it must be active against the

ABC transporter that is protecting the bacterium from the toxic

agents of the colon, and during antibiotic therapy. EPIs whose

effectiveness is shown against RND type efflux pump systems may

not be effective in the environment in which the offensive

bacterium resides. Consequently, an EPI that is to serve as an

adjunct to antibiotic therapy aimed at an efflux mediated MDR

coliform infection should be evaluated for activity under

physiological conditions, namely at a pH that favours the activity

of ABC type efflux pump systems.

Materials and Methods

Materials
Media. Mueller-Hinton (MH) and Tryptic Soy in powder

form for the preparation of broth and agar were purchased from

Oxoid Ltd. (Basingstoke, UK). Phosphate buffered saline, glucose.

tetracycline, EB, CCCP, PAbN and verapamil, purchased from

Sigma-Aldrich Quı́mica SA (Madrid, Spain).
Bacteria. Wild-type E. coli K-12 AG100 strain (argE3 thi-1

rpsL xyl mtl delta (gal-uvrB) supE44) [24], was kindly offered by

Figure 6. The effects of concentrations of verapamil (VP) on the efflux of EB by AG100 at pH 8.
doi:10.1371/journal.pone.0006656.g006
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Hiroshi Nikaido, Department of Molecular and Cell Biology and

Chemistry,University of California, Berkely, California, USA.

This strain, sensitive to tetracycline (MIC of 2 mg/L) was exposed

to increasing concentrations of tetracycline. The resulting strain

AG100TET is resistant to 8 mg/L tetracycline (MIC of 12 mg/L)

and to other antibiotics of unrelated classes [5,25]. This strain

subsequently transferred to drug free medium or to medium

containing 8 mg/L tetracycline and the EPI PAbN assumes initial

susceptibility to tetracycline of 2 mg/L [5,25].

Methods
The effect of pH on the growth of E. coli AG100 and

AG100TET. MH medium at pH 5, 7 and 8 (10 mL) was

inoculated with 0.1 mL of an overnight culture and incubated at

37uC with shaking at 220 rpm until stationary phase. The OD of

the culture at the end of incubation was divided by the number of

hours for that culture to reach stationary phase. This calculation

provides a ‘‘Growth Rate’’, reflected by the slope of the growth

curve: the steeper the slope (higher rate) the faster the growth.
Determination of minimum inhibitory concentrations

(MICs). MICs of PAbN, CCCP and verapamil against the

strains employed in this study was conducted in MH medium

adjusted to pH 5, 6, 7 and 8 by the broth microdilution method as

per CLSI guidelines [5]. These MICs were performed for the

purpose of selecting concentrations of these agents that have no

significant effect on the growth of the strains used. The

concentration of each agent employed did not exceed J of its

MIC.
Evaluation of efflux activity by a 96-well microplate

screening method. The method that evaluates the ability of

a bacterial strain to handle EB, that is, extrude EB, has been

previously described [36] via an EB agar method. The principles of

this method have been retained in a new assay that assesses the

ability of a bacterial strain to extrude EB. This new assay employs

a 96-well microplate in the manner employed for the

determination of MICs. Briefly, varying concentrations of EB in

TSB of varying pH were added to the wells after which time an

inoculum of bacteria corresponding to a 0.5 McFarland was

added. The plates were incubated for 16 hours and the lowest

concentration of EB that promotes fluorescence of the contents of

the well recorded and the plates photographed under UV light in a

Gel-doc XR transiluminator (Bio-Rad, Hertfordshire, UK).
Assessment of putative efflux pump activity of E. coli

AG100 and AG100TET by a semi-automated fluorometric

method. Detection of efflux pump activity in E. coli AG100 and

AG100TET was conducted by a semi-automated fluorometric

method, previously described by us [34]. However, we have

introduced a modification that affords the evaluation of efflux

without the need to centrifuge for the removal of EB. This

modification is described in the section that evaluates efflux of EB

after addition of glucose or of agents that are being evaluated for

activity against efflux of EB.

For the assessment of accumulation of EB and conditions that

affect it the following was performed. Briefly, strains were cultured

in MH broth medium until they reached an OD of 0.6 at 600 nm

and aliquots of 1.0 mL were centrifuged twice at 13,000 rpm for 3

minutes. The pellets were re-suspended in saline and the OD

adjusted to 0.6 in saline of pH 5, 7 and 8. Aliquots of 0.045 mL

were transferred to microtubes of 0.2 mL and 0.045 mL of EB in

glucose-free saline of pH 5, 7 and 8 added to the respective tubes

(same pH). The final concentration of EB for all experiments was

1.0 mg/L. Concentrations of EB much greater than 1.0 mg/L

exceed the ability of the cell to extrude the agent, the level of

intracellular agent rapidly increases and results in its intercalation

between the nucleic bases of DNA. EB when bound to DNA is no

longer available for extrusion [25]. The tubes were transferred to

the Rotor-GeneTM 3000 thermocycler (Corbett Research, Sydney,

Australia) programmed for 30–40 cyles of 1 minute (approximately

30–40 minutes) at a constant temperature of 37uC. Accumulation

of EB of each tube was followed on a real-time basis by the

assessment of fluorescence emitted. Excitation and emission

wavelengths were 530 nm (bandpass) and 585 nm (highpass),

respectively. Whereas the medium containing 1.0 mg/L of EB

does not appreciably fluoresce, as the concentration of EB builds

up in the periplasm of the Gram-negative bacterium, fluorescence

is readily detected by the instrument [34].

The assessment of efflux of EB at pH 5, 7, and 8 was conducted

as follows: accumulation of EB at pH 5, 7 and 8, as described

above, was first conducted for up to 25 minutes, after which time

the instrument was stopped and 0.010 mL of saline at pH 5, 7 and

8 lacking and containing glucose to yield a concentration of 0.4%

was added to the respective tubes. The tubes were then transferred

to the instrument and the instrument re-started. The total amount

of time between this addition and the time the instrument was re-

started did not exceed 2.5 minutes. Fluorescence was followed for

a minimum period of 10 minutes. Data presented is for pH 5 and

8; at pH 6 and 7 data is intermediate between the ranges of pH

and is not shown.

The effects of varying concentrations of CCCP, PAbN and

verapamil on the efflux of EB was carried out as follows:

accumulation of EB in glucose-free saline at pH 5, 7 and 8 was

conducted as described above and when the plateau of

accumulation was reached, the instrument was stopped and

0.045 ml of glucose-saline at pH 5, 7 and 8 containing varying

concentrations of CCCP, PAbN and verapamil was added to the

respective tubes. The tubes were placed into the instrument, the

instrument re-started and fluorescence followed for up to 15

minutes. The total time for these additions did not exceed 2.5

minutes. For some experiments, the addition of CCCP at varying

concentrations was in matched pH glucose-free medium. This

component of the experiment afforded an additional control that

would define any role of metabolic energy in conjunction with any

effect produced by given concentrations of CCCP on efflux of EB

and the modulation of efflux at a given pH.
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