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Experimental observation of classical analogy
of topological entanglement entropy
Tian Chen1, Shihao Zhang 1, Yi Zhang 2, Yulong Liu 1, Su-Peng Kou3, Houjun Sun2 & Xiangdong Zhang1

Long-range entanglement is an important aspect of the topological orders, so efficient

methods to characterize the long-range entanglement are often needed. In this regard,

topological entanglement entropy (TEE) is often used for such a purpose but the experi-

mental observation of TEE in a topological order remains a challenge. Here, we propose a

scheme to observe TEE in the topological order by constructing specific minimum entropy

states (MESs). We then experimentally construct the classical microwave analogs of the

MESs and simulate the nontrivial topological order with the TEE in Kitaev toric code, which is

in agreement with theoretical predictions. We also experimentally simulate the transition

from Z2 topologically ordered state to topologically trivial state.
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M any physical phenomena can be understood in terms of
their topological properties. The presence of topological
order in matter is responsible for some fundamental

phenomena, such as fractional quantum Hall effect1, topological
spin liquids2–4, and so on. A topologically ordered phase is an
exotic quantum phase that cannot be explained by conventional
models based on local order parameters and symmetry
breaking5,6. Instead, the topological order describes a phase of
matter whose correlations satisfy an area law while maintaining
long-range entanglement7,8. Nontrivial topological properties can
exist in topological orders, e.g., topological degeneracy9, anyons
with fractional statistics10, topologically protected edge states11,
topological entanglement entropy (TEE)12,13, and so on. Up to
now, topological orders have been simulated using different
experimental approaches, such as photons14,15, nuclear spins16–21,
superconducting quantum circuit22, cold atoms on optical lat-
tice23. Furthermore, since topologically ordered phases are robust
against local perturbations, they are promising candidates for
performing some tasks such as topologically protected quantum
computation24–27. Thus, characterizing topologically ordered
phases and its associated long-range entanglement becomes an
important topic in condensed matter physics. An efficient method
to detect the long-range entanglement in topological ordered
phase is to use TEE12,13,28,29.

The TEE was introduced by Kitaev and Preskill12, and Levin
and Wen13 12 years ago as an unambiguous identifier of topo-
logical order within globally entangled ground states. Subse-
quently, it has been the focus of numerous theoretical and
numerical studies28–33. It has been demonstrated that TEE can
play the crucial role in diagnosing the topological orders
and describing their long-range entanglement28. Because the
TEE always vanishes for the system with trivial topological
properties, a nonzero TEE indicates that the system belongs to a
topological ordered state. However, these phenomena are only the
results of theoretical analyses, they have never been observed in
experiments.

In this work, we propose and experimentally demonstrate a
scheme to observe the classical analogy of TEE. We demonstrate
theoretically that the TEE charactering the topological order for
the toric code model can be obtained by constructing specific
minimum entropy states (MESs)34–37. Furthermore, we construct
experimentally the classical microwave analogs of these states,
which are mathematically equivalent to their quantum counter-
parts, and simulate the nontrivial topological order with TEE that
is in agreement with the theoretical prediction. Based on this
scheme, we also experimentally simulate the transition from Z2
topologically ordered state to topologically trivial phase, which is
also consistent with the theoretical results.

Results
Theoretical scheme for measuring TEE based on MESs. The
two-dimensional toric code model is firstly proposed by Kitaev,
which can exhibit the Z2 topological order in the model without
external fields24,25. The model Hamiltonian is

H0 ¼ �
X
s

As �
X
p

Bp; ð1Þ

where As ¼
Q
i2s

σxi and Bp ¼
Q
i2p

σzi , the subscripts s and p represent

the vertices and plaquettes of a square lattice, respectively. The
schematic diagram for the toric code model is illustrated in
Fig. 1a. The operators AS and Bp containing four-body interaction
of local spin are represented by yellow cross and red square,

respectively. The operator σxðzÞi in the Hamiltonian are the Pauli

operators. Many methods have been proposed to evaluate the
nontrivial topological order in this model12,13,18–20,28,29,30–32.

Since it has been recognized that the topological property of
the model is directly associated with the underlying entanglement
in its ground state |φg〉i(i= 1, 2, …, n), one efficient method of
characterizing topological order is to use the TEE obtained from
ground states of the model. The TEE characterizing the long-
range entanglement in the system is extracted from von
Neumann entropies for different ground states. To evaluate the
von Neumann entropy of the ground state, we need to divide the
model into two subsystems (A and B) and create a boundary
between these two subsystems as shown in Fig. 1b. The boundary
between subsystems A and B is represented by red dashed line.
The von Neumann entropy for the subsystem A is expressed as
SA ¼ �TrρA log ρA, where ρA= TrB(|φg〉ii〈φg|) is the reduced
density matrix. As addressed in refs. 12,13,28, the von Neumann
entropy for the subset A of the lattice is a linear function as the
length of the smooth boundary Lx, that is, SA= αLx−mγ+⋯.
The coefficient α resulting from short wavelength modes near the
boundary is non-universal, the ellipsis represents terms that
vanish in the limit Lx → ∞, m is the number of disconnected
boundaries and γ is the TEE that is a universal additive constant
characterizing the long-range entanglement in the ground state.

In general, the γ is defined to be ln D, where D ¼
ffiffiffiffiffiffiffiffiffiffiffiP
a
d2a

r
is the

total quantum dimension of the medium and the sum is over all
the superselection sectors of the medium, da is the quantum
dimension of a quasi-particle with charge a. For the Z2
topological order, the TEE is γ ¼ ln2 ¼ 0:6932. The TEE has
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Fig. 1 Separation of the toric code model into two subsystems. a the
schematic diagram of the toric code model. A blue sphere stands for a spin,
As and Bp represent two kinds of four-body interactions in the Hamiltonian
H0. b the total system is divided into subsystems A and B. The boundary is
shown by red dashed line. In c–e the yellow region is the subsystem A, and
the pink region is the subsystem B. Each red sphere represents one spin.
c–e the torus geometry for square lattices with 4, 8, and 12 spins. The
periodic boundary conditions are taken. f–h the unfolded forms of the
corresponding torus in c–e, respectively. The shadow spheres are drawn to
show the periodic boundary condition. Here, the operator S represents the
operator As and P represents the operator Bp. Two disconnected boundaries
exist between subsystem A and B, and the lengths for each boundary
between subsystem A and B in f–h are 2, 4, and 6, respectively
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been calculated numerically in the previous study on ground
states of the model using density matrix renormalization group
(DMRG) method28.

Because it has been demonstrated that the toric code model is
equivalent to a square lattice in terms of studying the TEE28, we
consider the equivalent square lattice as shown in Fig. 1c–h,
where the operators σx and σz occupy the vertices instead of
bounds. In fact, different boundary conditions can be chosen to
analyze the physical characteristics of the system. However, if the
boundary condition is not chosen appropriately, the non-
universal term from sharp corner affects the entanglement
entropy for the lattice and the TEE is not directly obtained33.
To avoid this sharp corner contribution, we choose the periodic
boundary condition in the lattice and the system displays the
torus geometry Fig. 1c–e. The schematic representations in
Fig. 1f–h are the unfolded forms of the corresponding torus
geometry in Fig. 1c–e. The operators As and Bp in the toric code
model now sit on alternating plaquettes in the equivalent square
lattice, which are labeled as S and P operators, respectively. As
shown in Fig. 1c–h, we consider the square lattice involving 4, 8
and 12 spins, respectively. One subsystem covered by the yellow
color is the subsystem A, and the other with the pink color
belongs to the subsystem B. Since we choose the periodic
boundary condition in the system, there are two disconnected
boundaries between subsystem A and B. For the lattice with 4, 8,
and 12 spins, the length of each disconnected boundary are Lx=
2, 4 and 6, respectively. The ground state |φg〉i of the square lattice
is given by S|φg〉i= |φg〉i and P|φg〉i= |φg〉i for all plaquettes. Due
to the periodic boundary condition in the square lattice, there
exist four degenerated ground states. The TEE for the lattice can
be extracted from MESs, which are equal superposition of two
degenerated ground states having the same parity of winding
number along one cycle of torus34. Details of obtaining MESs are
presented in Methods for the square lattice with 4 spins and in
Supplementary Note 1 for the square lattices with 8- and 12-
spins. When we choose the non-contractible cut in the torus
geometry (Fig. 1c–e), the TEE can be obtained as a constant (not
Lx-dependence) in the entanglement entropy for MES34. This
TEE value can be extracted from entanglement entropies for
different system sizes. The proof of correspondence between the
square lattice and the toric code model has been given in
Supplementary Note 2. The obtained MESs for the square lattices

with 4, 8, and 12 spins (|ψ〉4, |ψ〉8, and |ψ〉12) are shown below.

ψj i4¼ 1=2 j0000i þ j1111i þ j0011i þ j1100ið ; ð2Þ

ψj i8 ¼ 1
4 j00000000i þ j00110011i þ j01010101i þ j01100110ið
þj10011001i þ j10101010i þ j11001100i þ j11111111i
þj00001111i þ j00111100i þ j01011010i þ j01101001i
þj10010110i þ j10100101i þ j11000011i þ j11110000i

ð3Þ

ψj i12 ¼ 1
8 j000000000000i þ j000011000011ið
þj000101000101i þ j000110000110i þ j001001001001i
þj001010001010i þ j001100001100i þ j001111001111i
þj010001010001i þ j010010010010i þ j010100010100i
þj010111010111i þ j011000011000i þ j011011011011i
þj011101011101i þ j011110011110i þ j100001100001i
þj100010100010i þ j100100100100i þ j100111100111i
þj101000101000i þ j101011101011i þ j101101101101i
þj101110101110i þ j110000110000i þ j110011110011i
þj110101110101i þ j110110110110i þ j111001111001i
þj111010111010i þ j111100111100i þ j111111111111i
þj000000111111i þ j000011111100i þ j000101111010i
þj000110111001i þ j001001110110i þ j001010110101i
þj001100110011i þ j001111110000i þ j010001101110i
þj010010101101i þ j010100101011i þ j010111101000i
þj011000100111i þ j011011100100i þ j011101100010i
þj011110100001i þ j100001011110i þ j100010011101i
þj100100011011i þ j100111011000i þ j101000010111i
þj101011010100i þ j101101010010i þ j101110010001i
þj110000001111i þ j110011001100i þ j110101001010i
þj110110001001i þ j111001000110i þ j111010000101i
þj111100000011i þ j111111000000i:

ð4Þ
As the explicit forms of MESs |ψ〉4, |ψ〉8, and |ψ〉12 have been

obtained, we get the reduced density matrix ρA for the subsystem
A (yellow regions in Fig. 1c–e) and present the von Neumann
entropies SA ¼ �TrρA log ρA for these states in Fig. 2 (blue
circles). We can use a line (blue line) to connect these three
entropy values for different lengths of boundary Lx. Following the
linear relation between the von Neumann entropy SA= αLx−
mγ+&hellipsis; and Lx, we extend the line to Lx= 0, and extract
the TEE valueγ ¼ ln2 ¼ 0:6932, which shows the efficiency of
our method. In the following, we explore the experimental
simulation of these phenomena.

Experimental observation of classical analogy of TEE.
According to the above theoretical analysis, a direct experimental
scheme to observe the topological order is to use a quantum-
many body system18–21. However, it is very difficult to experi-
mentally realize such a scheme, e.g., the fidelity of the 12-qubit
states recently prepared on the IBM quantum computer is lower
than 0.4438, yet a 12-qubit state with a high fidelity needs to be
created to complete the above experiment for observing TEE.
Here, we propose a microwave experiment scheme to observe the
classical analogy of the nontrivial topological order. Although
some specific quantum phenomena have been simulated using
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Fig. 2 The von Neumann entropies for the subsystem A of MESs |ψ〉4, |ψ〉8,
and |ψ〉12. Blue solid line is obtained from theoretic results, and red dotted
dashed line represents experimental results. Error bars are defined as s.d.
Source data are provided as a Source Data file
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classical microwaves39, optical beams40–47, electronic signals48 or
hybrid optical-electrical systems49,50, the long-range correlated
characteristics in the topological order have never been explored.
By establishing a mapping between the detection of intensities of
classical signals from an appropriate designed circuit and the
correlation measurements in the quantum photonic experiments,
here we implement a series of microwave experiments with a
different number of receiving antennas and signal channels to
simulate various MESs. Thus, our work opens up a window to
study the topological phase and transition of topological orders.
Our experimental setup is presented in Fig. 3a.

We use a dual-polarized antenna to transmit microwave signals
with vertical and horizontal polarizations to n distant dual-
polarized receiving antennas. The numbers of the receiving
antenna arrays and associated signal channels correspond to the
qubit number in the desired states. Each dual-polarized receiving
antenna includes two channels {hi, vi}, and the induced electric
voltage signals in the hi (vi) channel are denoted as

Phi Pvi

� �
ði ¼ 1; 2; ¼ ; nÞ. Then these multiplex signals pass

through a 2n-channel receiver for frequency down-conversion,
and subsequently an analog-to-digital converter (ADC) for
further digital signal processing (DSP). In the programmable
DSP module, we can design a specific process for constructing
and measuring the desired classical analogy states.

For example, in order to construct the corresponding form of
the 4-qubit state |ψ〉4 in Eq. (2), we arrange eight signals in the set
of channels {h1, v1, h2, v2, h3, v3, h4, v4} fed into the DSP module
to successively pass through a digital down-converter (DDC), the
projection part (PROJ) for realizing projective measurements and
a series of mixing and filtering processes as shown in Fig. 3b

(details are shown in Methods). By assuming Phi ¼ Pvi ¼ Piði ¼
1; 2; 3; 4Þ under the far-field approximation condition, the
corresponding complex amplitude AΩ of the final FFT-filtered
signal in the frequency domain is expressed as

AΩ / P1P2P3P4 � em1
jh1

� �
em2

jh2
� �

em3
jh3

� �
em4

jh4
� �h

þ em1
jh1

� �
em2

jh2
� �

em3
jv3

� �
em4

jv4
� �

þ em1
jv1

� �
em2

jv2
� �

em3
jh3

� �
em4

jh4
� �

þ em1
jv1

� �
em2

jv2
� �

em3
jv3

� �
em4

jv4
� �i

;

ð5Þ

where emi

�
j ¼ c�hi ; c

�
vi

� �
is the conjugate transpose for emi

��� �
¼

chi ; cvi

� �T
as the projective measurement basis arranged in the

PROJ, and jhiÞ ¼ 1; 0ð ÞTi jviÞ ¼ 0; 1ð ÞTi
� �

represents the hor-

izontal (vertical) unit amplitude signal in the hi(vi) channel. Here
the parentheses notation (parent (|and thesis|)) has been used to
describe the cebit states46,47,49,50. The cebit represents the vector
form of a signal pair as the classical counterpart of a single-qubit
quantum state, and these cebits form an inner product space
where the inner product is given by parentheses (|)46,47. Thus, the
signal amplitude in Eq. (5) can be rewritten in the form

AΩ / em1

�
j em2

�
j em3

�
j em4

jψcl
4

� �
, and the ψcl

4

�� �
is

ψcl
4

�� �¼ 1
2 h1j Þ h2j Þ h3j Þ h4j Þ þ h1j Þ h2j Þ v3j Þ v4j Þ½
þ v1j Þ v2j Þ h3j Þ h4j Þ þ v1j Þ v2j Þ v3j Þ v4j Þ�; ð6Þ

which is the microwave analog of the 4-qubit MES |ψ〉4. Such a
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Fig. 3 The experimental set-up to construct and characterize the CMESs as the analogy of quantum MESs. a The overall designed classical microwave
signal processing system, including transmitting and receiving dual-polarized antennas, a 2n-channel receiver array, an analog-to-digital converter (ADC)
and a programmable DSP module. b An example of the work flow to construct the 4-cebit analog ψcl

4

�� �
in the DSP module. All eight signals in the channels

{h1, …, v4} fed into the DSP are arranged by a digital down-converter (DDC) to have their own frequencies as planned. After a measuring process through
the PROJ part followed by several mixing and filtering processes for multiplex signals, the desired signal component AΩ is selected by the FFT-based digital
filter, and we collect its complex amplitude as described in Eq. (5). The red dashed box highlights a unit of the PROJ part as depicted in c, including two
multiplications and an adder, which can be tuned conveniently to perform desired projective measurement settings
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form is called 4-cebit classical minimal entropy states (CMES)
composed of the combination of the basis |hi) and |vi), and the
identification of the term cebit is specifically introduced in
Supplementary Note 3. In short, after the classical analogy of the
projective measurement, we construct specific mixing and
filtering processes for signals by analogy with post-selected fusion
operations on photons in quantum experimental settings51,52,
and the recorded data |AΩ|2 are similar to those multi-fold
coincidence events registered in the quantum set-up51,53–55 at a
purely formal level. Such a way is also similar to our previous
studies on classical microwave graph states56, which are classical
analogies of quantum graph states.

The form jψcl
4

�
in Eq. (6) is the classical correspondence with |

ψ〉4, which can be quantified by a traditional state tomography
method that has been used to characterize quantum states57.
Here, a Hermitian and positive semi-definite matrix ρcl4 with trace
1 corresponding to jψcl

4

�
ψcl
4

� j is introduced by analogy with the
density matrix of a quantum state. In the field of quantum
information, the fidelity is commonly used to judge the quality of
a produced state compared with the desired one. Similarly, here
we use this notion to measure the degree of similarity between
our experimental simulation results ρ̂cl4 and the target analogy
state jψcl

4

�
, which can be quantified as ψcl

4 jρ̂cl4 jψcl
4

� �
similar to those

used in quantum experiments51–57. From the projective measure-
ment data, we obtain its fidelity of 0.9977 ± 0.0009 in the
present case, which reflects good reliability of our experimental
simulation. The detailed descriptions of the experiment results
and the reconstructed method for the density matrix are given in
Supplementary Note 3.

The experimental setup for the 8- and 12-cebit CMESs can be
obtained by a modified extension of the 4-cebit scheme in Fig. 3b.
The advantages of the present microwave scheme, including good
controllability and reliability, make it convenient to be expanded
to construct larger CMESs with more cebits. For the 8-cebit
scheme, we need 8 dual-polarized receiving antennas and a 16-
channel receiver followed by an ADC. Correspondingly, 12 dual-
polarized receiving antennas and a 24-channel receiver are
needed for the 12-cebit scheme. The detailed experimental setups
for 8- and 12-cebit CMESs are provided in Supplementary
Note 4. Based on these experimental setups, the corresponding
classical analogy of |ψ〉8 and |ψ〉12 can be obtained. Similar to the
verification of the 4-cebit CMES, we can also judge the qualities of
the 8- and 12-cebit cases by verifying their reconstructed density
matrices.

However, the state tomography technique seems experimen-
tally prohibitive for dealing with the 8− and 12-cebit CMESs,
since the number of measurement settings required grows
exponentially with the number of qubits (cebits). Fortunately,
the low rank property of the desired density matrices allows us to
employ compressed sensing method to reduce the number of
measurements dramatically. The theory of compressed state
tomography58 claims that if the targeted density matrices are low-
rank, then one can stably reconstruct these matrices from highly
incomplete Pauli measurements via some effective convex
recovery procedures. The detailed compressed sensing method
for state tomography is included in Supplementary Note 5. Based
on this approach, we obtain the fidelity of 0.9855 ± 0.0045 and
0.9702 ± 0.0056 for 8- and 12-cebit cases, respectively. The high
fidelity of our experimental results, demonstrates good reliability
of our scheme in constructing CMESs, and also has numerous
advantages for exhibiting the topological order with the
extraction of TEE from these states.

From the above experimental data of density matrices, we can
obtain the corresponding von Neumann entropies. The results for
4-, 8-, and 12-cebit cases are shown by red dotted line in Fig. 2.

Note the two disconnected boundaries between subsystems A and
B, from the experimental results we obtain the TEE value as γ=
0.7537, which is basically identical with the prediction of
quantum theory. The experimental errors can be further reduced
by improving the efficiency of the microwave signal collection
and the control accuracy of the electrical signal. This means that
we have provided a good experimental platform for demonstrat-
ing the classical analogy of topological order with the TEE. Based
on such an experimental platform, we can exhibit not only the
nontrivial topological order but also the transition from Z2
topological order to trivial spin polarized phase in Kitaev toric
code model. In the following, we study the experimental
simulation on such a transition based on CMESs.

Classical analogy of transition from Z2 order to trivial phase.
The toric code model undergoes the transition from topologically
ordered phase to topologically trivial phase with the change of
external fields28. The Hamiltonian for the toric code model with
external fields is

Ht ¼ H0 þH1; ð7Þ
with

H1 ¼ �g
Xn
i¼1

σ ix þ σ iz
� �

; ð8Þ

where the coefficient g represents the strength of symmetrically
external fields. Similar to the lattice without external fields, the
study of TEE in the toric code model is equivalent to the square
lattice when external fields exist. Details of equivalence between
the toric code model and the square lattice in such a case has been
provided in Supplementary Note 7. Therefore, in the following we
study the transition from Z2 topological order to trivial phase
based on the equivalent square lattice with the change of the
external field. Since the topological order can be described from
the TEE associated with the MESs, we can observe the transition
from topologically ordered phase to trivial phase if we obtain the
MESs of the model belonging to different phases. However, there
does not exist the analytic expression for the ground state of the
Hamiltonian in Eq. (7). By using numerical methods, we can get
the ground states for the model with external fields and obtain the
MESs based on these ground states. We take the system involving
4 spins as an example, when the system belongs to Z2 topological
order, there exists four nearly degenerated ground states. We do
the linear combination for these four nearly degenerated ground
states and obtain the MES. When the strength g equals to 0.1, the
system belongs to Z2 topological order and the MES is

Ξj i4¼ a4;1j0000i þ a4;2j0001i þ ¼ þ a4;16j1111i: ð9Þ
Here, the coefficients a4,i(i= 1,…,16) are a4,1=−0.5386,

a4,4= a4,13= 0.5072, a4,6= a4,11= 0.006, a4,7= a4,10=−0.0157,
a4,16=−0.4415, and other coefficients take zero. When the
strength g equals to 0.2, the system remains in the topologically
order phase, and we can obtain the MES of system as above. The
calculation details can be found in Supplementary Note 6. When
the coefficient g increases to a certain value, the transition from
Z2 topological order to trivial phase emerges in the system. In this
case, there are no nearly degenerated ground states and the
topological properties can be revealed from its unique ground
state. In order to describe the topological properties of system
with the external fields, we need to obtain the corresponding
ground states of systems. Here, we provide the ground state when
the strength g equals to 10:

Φg

��� E
4
¼ a4;1j0000i þ a4;2j0001i þ ¼ þ a4;16j1111i; ð10Þ

with a4,1= 0.7408, a4,2= a4,3= a4,5= a4,9= 0.2883, a4,4= a4,6=
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a4,7= a4,10= a4,11= a4,13= 0.1303, a4,8= a4,12= a4,14= a4,15=
0.0615, and a4,16= 0.0412. The explicit forms of ground states
with the strength g= 0.9, 1, 2, 5 and the MESs for the system
involving 8 spins are also given in Supplementary Note 6.

The classical analogy of these MESs and ground states can be
obtained in the microwave experiment as shown in Fig. 3a.
Unlike the case without the external fields, the DSP module needs
to be redesigned. Figure 4 shows the experimental setup of the
DSP module for the 4-cebit cases with a small g(=0.1, 0.2), which
is similar to the scheme presented in Fig. 3b. Firstly, the eight
signals from the set of channels {h1, v1, h2, v2, h3, v3, h4, v4} are
injected into the DSP module. After the digital down-conversion
and PROJ, we obtain four recombined signals {S1(t), S2(t), S3(t),
S4(t)} and then send them in pair into two multipliers {M1, M2}
for mixing processes, respectively.

In order to simulate the state |Ξ〉4, we let the output mixing
signals pass through four appropriate filters {F1, F2, F3, F4} and
two adders in parallel to output two summed signals S12 and S34,
followed by a multiplier M3 for mixing and a collection of FFT-
based digital filters {FFT1, …, FFT6}. When the required
frequency components are filtered, we use five modulators {d1,
…, d5} to adjust the amplitudes of these components respectively

to obtain the corresponding expanded coefficients in Eq. (9). The
final recorded amplitudes A in the frequency domain corresponds
to the projective measurement results of |Ξ〉4. For the case with a
large g(= 10, 5, 2, 1, 0.9), only certain mixing, filtering and
amplitude modulation in the DSP module are adjusted in a
similar way to those with small g, and the final recorded
amplitudes A in the frequency domain corresponds to the
projective measurement results of |Φg〉4 (details are shown in
Supplementary Fig. 16). This means that we have experimentally
obtained the classical analogy of the corresponding ground states
in Eq. (10).

The experimental setup for obtaining the classical analogy of
the 8-qubit state in the cases with a small g(= 0.1, 0.2) or a large g
(= 10, 5, 2, 1, 0.9) can be regarded as an extension of the
corresponding 4-cebit case with external fields. That is to say, the
experimental elements in Fig. 4 need to be doubled with
additional processes to achieve desired 8-cebit classical analogs
of the states |Ξ〉8 and |Φg〉8. The designed processes for these 4−
and 8-cebit cases with detailed descriptions are presented in
Supplementary Note 8.

After obtained experimental results of the classical analogy of
density matrices for various g, we get the reduced density
matrix ρA for the subsystem A and calculate the von Neumann
entropies SA ¼ �TrρA log ρA for these states. Then we can
extract the TEE at various external fields. Red circles in Fig. 5
are experimental results for g = 0.1, 0.2, 0.9, 1, 2, 5, 10, and
black squares represent theoretical calculation results. The
agreement between the experimental results and theoretical
calculations is verified. Both experimental and theoretical
results show that when g is small (g= 0.1,0.2), the TEE γ has
larger values which reveal the Z2 topological order; while, when
g is large (g= 0.9, 1, 2, 5, 10), the TEE γ is close to zero which
indicates the trivial phase. This means that the transition from
topologically ordered phase to topologically trivial phase
emerges with the increase of g. These phenomena disclosed
by our experiments coincides with the exact numerical study of
TEE based on DMRG in ref. 28.
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Fig. 4 The designed work flow to obtain the classical analogy of the state
|Ξ〉4 in the DSP module. All eight signals in the channels {h1, v1, …, h4, v4}
fed into the DSP are digitally down-converted to their own frequencies as
planned. After a measuring process through the PROJ part followed by
several mixing and filtering processes for multiplex signals, the desired
frequency components selected by a collections of FFT-based digital filters
{FFT1, …, FFT6} are adjusted by five modulators {d1, …, d5}, respectively, and
we collect their joint complex amplitude denoted as A. Also, this procedure
can be conveniently adjusted to simulate the state |Φg〉4
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when the model belongs to Z2 topological order, the long-range
entanglement in the MES indicated as the TEE is γ = ln2; the model belongs
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γ= 0. Error bars are defined as s.d. Source data are provided as a Source
Data file
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Discussion
In this work, we have exploited multiple microwave beams and
signal processing techniques to observe an analogy of the TEE
extracted from the 4−, 8−, and 12-qubit systems. In fact, in the
past years many simulations (or emulations) of quantum multi-
partite systems have been performed by using multiple classical
optical beams46,47,49,50, microwaves39 or electronic signals48 with
in-depth discussions of the cost of classical resources. Inspired by
this area of research, we have investigated how to employ a
specific classical system to observe an analogy of topological
phases in the toric code model and also the transition from Z2
topologically ordered state to topologically trivial phase, and thus
obtained enlightening results in agreement with theoretical
predictions.

However, the difference between a quantum simulator and our
classical analogy is the scaling behavior of the resources required
in simulating the target quantum many-body system. A well-
designed genuine quantum system (e.g. superconducting quan-
tum circuits) usually owns good scalability in terms of the
resources used59,60, while a classical analog system does not for
most cases. For example, for the case of the analogs of the 8-qubit
states |Ξ〉8 and |Φg〉8 with external fields, each superposed term in
the target state is identified with a frequency component and
selected by the use of an associated FFT-based filter followed by a
modulator. Thus, the total number of filters required scales as 2n

with the qubit number n. That is to say, the whole bandwidth
required for the filtering process would grow exponentially with
the number of qubits in a general state to be simulated, similar to
the conclusions drawn in previous work48. In contrast to these
analogies of general states, it is also interesting to note for the
analogy of certain specific states (e.g. the 4-, 8-, 12-cebit CMES),
the amount of employed classical resources can be reduced to
some extent by appropriate designs. In particular, in our design
the numbers of receiving antennas, signal channels {hi, vi} fed into
the DSP module, and digitally down-converted signals
fBhi

ðtÞ;Bvi
ðtÞg grow linearly with the number of cebits (details

can be found in Fig. 3b, Supplementary Figs. 9 and 10), while the
number of FFT-based filters at the bottom of each designed cir-
cuit in the DSP module usually depends on the number of
superposed terms in the target state.

In summary, we have proposed a way to simulate topological
order with TEE based on classical analogies of certain quantum
states. We have verified theoretically that TEE charactering the
topological order for the toric code model can be obtained by
constructing the minimal entropy states. The corresponding
microwave experiments have been performed and the CMESs
have been observed. Based on these classical analogs, we have
obtained the von Neumann entropy and the nontrivial topolo-
gical order, which are agreement with the theoretical predictions.
Moreover, we have extended this scheme to the case with the
external fields and simulated experimentally the transition from
topologically ordered phase to topologically trivial phase, which is
also identical with the theoretical results. Our studies not only
represent an important advance in the study of TEE, but also
open up an avenue to explore some intriguing topological
properties based on high-fidelity microwave analogies.

Methods
Finding MESs for the square lattice. To extract the universal constant TEE for
the square lattice, we need to find the MESs which are a linear combination of
degenerated ground states. For the square lattice with 4 spins, there exist four
degenerated ground states. By using the numerical diagonalization to the system
Hamiltonian, we can obtain them. The Hamiltonian for the square lattice with
4 spins H0,4 is expressed as

H0;4 ¼ �2 σ1xσ
2
xσ

3
xσ

4
x þ σ1zσ

2
zσ

3
zσ

4
z

� � ð11Þ

Corresponding to such a system, there are four degenerated ground states,

φg;1

��� E
4
¼ 1ffiffi

2
p j0000i þ j1111ið Þ; φg;2

��� E
4
¼ 1ffiffi

2
p j0011i þ j1100ið Þ; φg;3

��� E
4

¼ 1ffiffi
2

p j1010i þ j0101ið Þ; φg;4

��� E
4
¼ 1ffiffi

2
p j1001i þ j0110ið Þ:

ð12Þ

Now, we define the string operators as

eFx ¼ σ1xσ
2
x ; eFy ¼ σ1xσ

3
x ;
fTx ¼ σ1zσ

2
z ;

eTy ¼ σ1zσ
3
z : ð13Þ

The operators eFx and eFy represent the magnetic charge loop operators, the

operators fTx and eTy are the electric charge loop operators. Applying these string
operators to the degenerated ground states, we have

eFx φg;1

��� E
4
¼ φg;2

��� E
4
; eFx φg;2

��� E
4
¼ φg;1

��� E
4
; eFx φg;3

��� E
4
¼ φg;4

��� E
4
; eFx φg;4

��� E
4

¼ φg;3

��� E
4
; eFy φg;1

��� E
4
¼ φg;3

��� E
4
; eFy φg;2

��� E
4
¼ φg;4

��� E
4
; eFy φg;3

��� E
4

¼ φg;1

��� E
4
; eFy φg;4

��� E
4
¼ φg;2

��� E
4
;fTx φg;1

��� E
4
¼ φg;1

��� E
4
;fTx φg;2

��� E
4

¼ φg;2

��� E
4
;fTx φg;3

��� E
4
¼ � φg;3

��� E
4
;fTx φg;4

��� E
4
¼ � φg;4

��� E
4
; eTy φg;1

��� E
4

¼ φg;1

��� E
4
; eTy φg;2

��� E
4
¼ � φg;2

��� E
4
; eTy φg;3

��� E
4
¼ φg;3

��� E
4
; eTy φg;4

��� E
4
¼ � φg;4

��� E
4
:

ð14Þ
The MESs for the square lattice with 4 spins can be obtained by the linear

combination of these degenerated ground states30, which are expressed as:

Ξ1j i ¼ 1ffiffi
2

p φg;1

��� E
4
þ φg;2

��� E
4

� �
; Ξ2j i ¼ 1ffiffi

2
p φg;1

��� E
4
� φg;2

��� E
4

� �
; Ξ3j i

¼ 1ffiffi
2

p φg;3

��� E
4
þ φg;4

��� E
4

� �
; Ξ4j i ¼ 1ffiffi

2
p φg;3

��� E
� φg;4

��� E
4

� �
:

ð15Þ

In fact, these results can also be obtained by another way31. We assume that the

MES takes the form Ξj i ¼ k1 φg;1

��� E
4
þeiϕ1k2 φg;2

��� E
4
þeiϕ2k3 φg;3

��� E
4
þeiϕ3k4 φg;4

��� E
4
,

here ki(i= 1, 2, 3, 4) represents the coefficient with k21 þ k22 þ k23 þ k24 ¼ 1. By
numerically traversing the parameter spaces for ki(i= 1, 2, 3, 4) ∈ [0, 1] and φj(j=
1, 2, 3) ∈ [−π, π], we can obtain the same results with those in Eq. (15). When
applying electric flux operator eFx and magnetic flux operator fTx to MESs (|Ξ1〉, …,
|Ξ4〉), the following relations are obtained,

eFx Ξ1j i ¼ Ξ1j i;fTx Ξ1j i ¼ Ξ1j i; eFx Ξ2j i ¼ � Ξ2j i;fTx Ξ2j i ¼ Ξ2j i; eFx Ξ3j i
¼ Ξ3j i;fTx Ξ3j i ¼ � Ξ3j i; eFx Ξ4j i ¼ � Ξ4j i;fTx Ξ4j i ¼ � Ξ4j i;

ð16Þ

which means that there is no quasi-particle excitation in state |Ξ1〉. Thus, we choose
one MES for the square lattice with 4 spins as

ψj i4 Ξ1j i ¼ 1ffiffiffi
2

p φg;1

��� E
4
þ φg;2

��� E
4

� �
: ð17Þ

Eq. (17) is identical with Eq. (2). Similar to the above process, we can also
obtain the MESs for the square lattices with 8 and 12 spins (details are presented in
Supplementary Note 1).

Experimental realization of 4-cebit CMES. Here we describe the details of the
process illustrated in Fig. 3b, which shows the arrangements in the DSP module to
reproduce the results corresponding to those for the 4-qubit state |ψ〉4. Eight signals
in channels {hi, vi}(i= 1, 2, 3, 4) are down-converted to their own frequencies as
planned, and the corresponding signals output from the {hi, vi} channel of the DDC
are denoted by fBhi

ðtÞ;Bvi
ðtÞg. Then the following procedure PROJ comprised of

four units performs the desired projective operations on these signals. Each unit

includes two multiplications ´ c�hi ; ´ c
�
vi

� �
in parallel and an adder to transform the

signal pair fBhi
ðtÞ;Bvi

ðtÞg into the resultant signal Si(t). Next, the output signals
{S1(t), S2(t)} are sent to a multiplier (×) and a digital finite-impulse-response (FIR)
filters F12, yielding a signal amplitude S12(t). The procedure from {S3(t), S4(t)} to
S34(t) is similar. Finally, these two summed signals S12(t) and S34(t) continue to go
through mixing by a multiplier followed by a FFT-based digital filter. We record
the complex amplitude of the desired output frequency signal AΩ as described in
Eq. (5), which corresponds to the projection probability amplitude of |ψ4〉 onto a
measurement basis setting. Note the modular square data |AΩ|2 lead to similar
multi-fold coincidence events registered in the quantum set-up. A more detailed
description of these processes is presented in Supplementary Note 3.

Data availability
Any related experimental background information not mentioned in the text are
available from the corresponding author upon reasonable request. The source data
underlying Figs. 2, 5, and Supplementary Fig. 8 are provided as a Source Data file.
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