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Purpose: PSA is currently the most commonly used screening indicator for prostate
cancer. However, it has limited specificity for the diagnosis of prostate cancer. We aim to
construct machine learning-based models and enhance the prediction of prostate cancer.

Methods: The data of 551 patients who underwent prostate biopsy were retrospectively
retrieved and divided into training and test datasets in a 3:1 ratio. We constructed five PCa
prediction models with four supervised machine learning algorithms, including tPSA
univariate logistic regression (LR), multivariate LR, decision tree (DT), random forest
(RF), and support vector machine (SVM). The five prediction models were compared
based on model performance metrics, such as the area under the receiver operating
characteristic curve (AUC), accuracy, sensitivity, specificity, calibration curve, and clinical
decision curve analysis (DCA).

Results: All five models had good calibration in the training dataset. In the training
dataset, the RF, DT, and multivariate LR models showed better discrimination, with AUCs
of 1.0, 0.922 and 0.91, respectively, than the tPSA univariate LR and SVM models. In the
test dataset, the multivariate LRmodel exhibited the best discrimination (AUC=0.918). The
multivariate LR model and SVM model had better extrapolation and generalizability, with
little change in performance between the training and test datasets. Compared with the
DCA curves of the tPSA LR model, the other four models exhibited better net
clinical benefits.

Conclusion: The results of the current retrospective study suggest that machine learning
techniques can predict prostate cancer with significantly better AUC, accuracy, and net
clinical benefits.

Keywords: prostate cancer, machine learning, prostate-specific antigen, prostate biopsy, prediction models
INTRODUCTION

Prostate cancer (PCa) is the second leading malignancy in men and the fifth leading cause of cancer
mortality in men worldwide (1). Although PSA is still the most commonly used screening tool for
prostate cancer, it has been controversial in recent decades (2). It is suggested that PSA screening
improves the detection rate of localized and less aggressive prostate cancers but also reduces the
July 2022 | Volume 12 | Article 9413491

https://www.frontiersin.org/articles/10.3389/fonc.2022.941349/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.941349/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.941349/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:lu_ji@jlu.edu.cn
https://doi.org/10.3389/fonc.2022.941349
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.941349
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.941349&domain=pdf&date_stamp=2022-07-06


Chen et al. Prostate Cancer Prediction Models
proportions of advanced PCa and PCa-specific mortality (3–5).
However, due to the obvious overlap of PSA levels in various
conditions, such as benign prostatic hyperplasia, prostatitis, and
prostate cancer, the specificity of PSA screening is low, which
leads to a plethora of unrelated diseases for prostate biopsy (2).
These unnecessary prostate biopsies result in not only a
significant waste of medical resources but also an increased
incidence of sepsis, which can be life-threatening to patients
(6). Therefore, there is a need for a new convenient method to
improve the diagnostic ability of PCa.

Machine learning is a branch of artificial intelligence (AI) in
which machines are programmed to learn patterns from data,
and the learning itself is based on a set of mathematical rules and
statistical assumptions. It is widely used in biology because of its
enormous advantages in dealing with large datasets (7, 8). It has
also been rapidly developed and applied in the medical field,
especially in the construction of predictive models (9). Therefore,
using machine learning to construct PCa prediction models
would be a feasible and promising approach.

In this study, we constructed generalizable machine learning
predictive models to improve the accuracy of PCa risk
assessment by using objective parameters present in electronic
medical records and then evaluated their performance.
METHODS

Data Sources
A total of 789 male patients in the First Hospital of Jilin University
who underwent transrectal ultrasound-guided prostate biopsy from
January 2013 to January 2021were included. Indications forprostate
biopsy included serum tPSA >4 ng/ml, abnormal digital rectal exam
(DRE), or imaging findings suggestive of suspected prostate cancer.
All patients underwent systematic biopsy with 10-12 cores. Patients
with one of the following criteria were excluded from the study:
takingmedications that couldaffect serumPSAlevels, unclear results
of the prostate biopsy, and significant abnormal values or missing
data. A final total of 551 patients were included in the study. All
patient data were collected through electronic medical records,
including age, BMI, hypertension, diabetes, total PSA (tPSA), free
PSA (fPSA), the ratio of serum fPSA to tPSA (f/tPSA), prostate
volume (PV), PSA density (PSAD), neutrophil-to-lymphocyte ratio
(NLR), and pathology reports of prostate biopsy. All examinations
were completedwithin oneweek before prostate biopsy. PSAD is the
ratio of tPSA to PV. The calculation of PV was calculated by the
following formula: maximal transverse diameter × maximal
anterior-posterior diameter × maximal superior-inferior diameter
× 0.52.

Model Development
R software (version 4.1.4, https://www.rproject.org/) was used to
developmachine learningmodels. A total offive prediction models
were constructed by dividing the data into a training dataset and a
test dataset at a ratio of 3:1. The pathologic type of PCa or other
benign disease was used as the dichotomous variable, and other
variables were all used as continuous variables. For logistic
regression (LR) model construction, the best predictive variables
Frontiers in Oncology | www.frontiersin.org 2
were first screened in the training dataset using stepwise regression,
associationplots between thevariablesweremade tounderstand the
magnitude of the association between the variables, and the
presence or absence of collinearity between variables was judged
according to the variance inflation factor (VIF). Then, LR models
were constructedusing the “lrm” function in the “rms”package. For
the decision tree (DT) model, we used the “rpart” package for
training, using two hyperparameters, the complexity parameters cp
and spilt. The initial cp value was set to 0.001, and then the best cp
value was found and pruned based on the best cp value. The input
variableswere obtained through the selection of important features,
and the best DT model was then output. The random forest (RF)
model screened the optimal input variables by significant feature
selection. The RF model was trained using the “randomForest”
package in R software, using two hyperparameters, ntree andmtry,
which were set at 500 and 6, respectively. The support vector
machine (SVM) model was filtered by the “caret” package for
important features. Training was performed using the “e1071”
package, using a Gaussian kernel function and setting the two
hyperparameters, cost and gamma, to 1 and 0.1, respectively.

Model Performance Evaluation
The performance of the developed models was validated using a
test dataset in a process that was completely independent of the
algorithm training. The performance of the five models was then
evaluated by comparing four metrics: the receiver operating
characteristic (ROC) curve and its corresponding area under
the curve (AUC) and the accuracy, sensitivity, and specificity.
The calibration curve was used to evaluate the calibration of the
model, the Brier score was used to assess the calibration, the
Hosmer–Lemeshow goodness-of-fit test was used to judge
whether there was a significant difference between the observed
and predicted values, and clinical decision curve analysis (DCA)
was used to assess the net benefit of the model.

Data Analysis
For comparative analysis between two samples, Student’s t test
was used for normally distributed continuous variables, and the
Mann–Whitney U test was used for categorical variables with
nonnormal continuous variables. Continuous variables in the
data were expressed as medians and IQRs or means and SDs,
categorical variables were expressed as frequencies and
percentages, and the bilateral significance level for the left-right
test was set at 5% (p<0.05).
RESULTS

Baseline Patient Characteristics
Table 1 shows the baseline characteristics of the patients. A total
of 302 (54.8%) of the 551 patients were diagnosed with PCa. The
PCa detection rate in patients ≥65 years old was higher than
patients <65. The mean levels of tPSA, fPSA, and PSAD were
significantly higher in the PCa group than in the non-PCa group.
When tPSA>4 ng/ml, the PCa detection rate increased with
increasing tPSA. In the subgroups of 4<tPSA<10, 10≤tPSA<20,
20≤tPSA<100, and tPSA≥100, the detection rates were 18.6%,
July 2022 | Volume 12 | Article 941349
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26.2%, 54.2%, and 97.2%, respectively. The mean neutrophil
count, PV, and BMI were lower in the PCa group than in the
non-PCa group. No significant differences in other variables were
found between two groups.

LR Algorithm-Based PCa Prediction Model
First, the tPSA univariate LR model was constructed in the
training dataset by including only one single factor, tPSA. This
model showed that tPSA was positively correlated with the
diagnosis of PCa (coefficient=0.034). Then, a multivariate LR
model was constructed by including all variables through a
stepwise regression method. When the VIC value reached the
minimum value, a total of seven best predictive variables were
selected, including age, tPSA, fPSA, PV, NLR, peripheral blood
neutrophil count and lymphocyte count. The two LR models are
shown in Supplementary Table 1. In the multivariate LR model,
age, tPSA, and fPSA were positively correlated with PCa, while
PV and neutrophil count were negatively correlated with PCa
(Supplementary Figure 1). In addition, there was a significant
association between peripheral blood neutrophil count and NLR,
tPSA and fPSA, suggesting their respective possible collinearity.
The variance inflation factor (VIF) was subsequently calculated
for verification, and all VIF values were less than 5, indicating no
collinearity between any of the variables.

DT Algorithm-Based PCa Prediction Model
The optimal cp value for the DT model was 0.008. Based on the
corresponding ranking of important features, the final input
variables for the DT model were age, tPSA, fPSA, PV, PSAD,
Frontiers in Oncology | www.frontiersin.org 3
NLR, f/tPSA, and biopsy results (Supplementary Figure 2A).
The process and results of model classification are shown in
Supplementary Figure 2B. This model correctly classified 87.7%
(363/414) of the cases in the training dataset.

RF Algorithm-Based PCa Prediction Model
After ranking the important features of the RF model, seven
features with the highest predictive accuracy were selected as
the input features, including age, tPSA, fPSA, PV, PSAD, NLR,
and peripheral blood neutrophil count (Supplementary
Figure 3A). The error of the model gradually decreased as
the number of decision trees increased, and the minimum error
value of the RF model was reached when the number of
decision trees was 313 (Supplementary Figure 3B).

SVM Algorithm-Based PCa Prediction Model
The best SVMmodelwas screened by the “rfe” function in the caret
package using a 10-fold cross-validation method. The number of
variables was screened one by one from 1 to 12, and the best model
was obtained when the number of variables was 5. The input
variables at this time were age, PSAD, tPSA, fPSA, and PV.

Performance of the Developed Models
In the training dataset, the RF and DT models performed
particularly well in differentiation with the AUCs of 1.0 and
0.922, respectively (Table 2). The model with the lowest AUC
was the tPSA univariate LR model (0.842). The calibration in all
five models was very good, which suggested that the predicted
values of the models were in high agreement with the actual
TABLE 1 | Characteristics of Patients, stratified by biopsy outcomes.

Total (n=551) Non-PCa (n=249) PCa (n=302) PCa detection (%) p value

Age,year(n,%) < 0.001
<65 157 (28.5) 96 (38.6) 61 (20.2) 38.9
≥65 394 (71.5) 153 (61.4) 241 (79.8) 61.2

BMI,kg/m2(SD) 23.6 ± 3.2 24.0 ± 3.0 23.3 ± 3.4 0.013
Hypertension,(n,%) 0.059

No 416 (75.5) 178 (71.5) 238 (78.8) 57.2
Yes 135 (24.5) 71 (28.5) 64 (21.2) 47.4

Diabetes,(n,%) 0.603
No 511 (92.7) 233 (93.6) 278 (92.1) 54.4
Yes 40 (7.3) 16 (6.4) 24 (7.9) 60.0

Neutrophil count, 109/L(IQR) 3.7 (2.9-4.8) 4.0 (3.1-5.0) 3.7 (2.8-4.6) 0.024
Lymphocyte count, 109/L(SD) 1.8 ± 0.7 1.8 ± 0.6 1.8 ± 0.7 0.798
NLR,(IQR) 2.1 (1.5-3.0) 2.1 (1.5-3.3) 2.0 (1.5-2.9) 0.150
Median tPSA, ng/ml(IQR) 32.0 (14.5-100.0) 16.2 (10.6-26.1) 88.8 (34.0-123.2) < 0.001
tPSA, ng/ml,(n,%) < 0.001

≤4 13 (2.4) 10 (4) 3 (1) 23.1
4<tPSA<10 59 (10.7) 48 (19.3) 11 (3.6) 18.6
10≤tPSA<20
20≤tPSA<100

122 (22.1)
212 (38.5)

90 (36.1)
97 (39)

32 (10.6)
115 (38.1)

26.2
54.2

≥100 145 (26.3) 4 (1.6) 141 (46.7) 97.2
fPSA,ng/ml(SD) 13.6 ± 31.3 3.3 ± 5.8 22.2 ± 39.9 < 0.001
f/tPSA,(n,%) 0.280

<0.16 390 (70.8) 170 (68.3) 220 (72.8) 56.4
≥0.16 161 (29.2) 79 (31.7) 82 (27.2) 50.9

PV,cm3(IQR) 55.3 (37.2-79.0) 65.2 (44.7-91.5) 48.9 (34.3-70.3) < 0.001
PSAD,ng/ml/cm3(IQR) 0.6 (0.3-1.6) 0.3 (0.2-0.4) 1.5 (0.7-2.7) < 0.001
J
uly 2022 | Volume 12 | Article
PV, prostate volume; PSAD, prostate-specific antigen density; BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; tPSA, total prostate specific antigen; fPSA, free prostate
specific antigen; PCa, prostate cancer; Non-PCa, non-prostate cancer.
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values (Figure 1A). The Brier scores of the multivariate LR, DT,
RF, SVM and tPSA LR models were 0.119, 0.122, 0.121, 0.118
and 0.154, respectively. The p values for the Hosmer–Lemeshow
test were all greater than 0.05, indicating that there was no
statistical bias in the near-perfect fit between the predicted and
actual values. Therefore, the models we constructed were valid
and reliable.

All characteristics of samples were comparable in the training
and test datasets (Supplementary Table 2). In the test dataset,
the specificity of the tPSA LR model was highest, reaching 93.2%;
however, the sensitivity and accuracy were relatively low, at
63.9% and 77.1%, respectively (Table 2). The sensitivity and
accuracy of the multivariate LR model were improved
significantly in the test dataset compared with the training
dataset, although there was a slight decrease in specificity. The
diagnostic performance of the SVM model was not outstanding
in either the training or the test dataset, but most outcomes were
improved in the test dataset. Thus, the multivariate LR model
exhibited the best discrimination, and the extrapolation and
generalization abilities of the multivariate LR and SVM models
were relatively strong. In contrast, although the DT and RF
models performed well in the training dataset, their
performances in the test dataset decreased significantly. The
corresponding ROC curves for the five models are shown in
Figure 1B. To further evaluate the potential clinical benefits of
these prediction models, we performed DCA curves using the
test dataset (Figure 1C). All models demonstrated significant net
benefits. Compared with the tPSA LR model, the other four
models showed significantly higher net clinical benefits.
Frontiers in Oncology | www.frontiersin.org 4
To evaluate the performance of constructed models in the
subgroups of PSA of 4-10 ng/ml and 4-20 ng/ml, we used these
two subgroups as the test datasets, and evaluated their AUCs,
sensitivities, specificities, and accuracies (Supplementary
Tables 3, 4). The diagnostic performances of the RF
algorithm-based machine learning prediction model showed
best in both subgroups. The AUCs were 0.856 and 0.94
respectively. Although the sensitivity decreased compared with
it in the training dataset, the specificity and accuracy were still
relatively high. The performance of other algorithms-based
developed models were not outstanding.
DISCUSSION

In the past decade, PSA has been widely used as the most
valuable diagnostic and prognostic marker for PCa (10).
However, some studies have shown that less than 30% of
men with PSA levels in the gray zone (4-10 ng/ml) have
pathologically confirmed PCa, indicating that a large
proportion of patients have undergone unnecessary biopsies
and been overdiagnosed (11). In our study, the detection rate of
PCa with tPSA in the gray zone was only 18.6%. Similar
detection rates were reported in other studies (12–15). Even if
PSA is not in the gray zone, for example, between 10 and 20 ng/
ml, the detection rate in our study was only 26.2%. In recent
years, DRE, PSAD, PSAV, 4Kscore, f/tPSA ratio, prostate
health index (PHI) and age-specific PSA have been proposed
TABLE 2 | Diagnostic performance of different machine learning models.

Outcome Dataset tPSAlogisticregression Multivariate logisticregression Decision Tree Random Forest SupportVectorMachine

AUC Training 0.842 0.910 0.922 1.00 0.884
Test 0.846 0.918 0.886 0.898 0.895

Sensitivity(%) Training 69.2 70.5 91.2 100 86.8
Test 63.9 88.0 86.7 84.0 86.7

Specificity(%) Training 88.8 95.2 83.4 100 70.6
Test 93.2 87.1 69.4 79.0 85.5

Accuracy(%) Training 78.0 81.6 87.7 100 79.5
Test 77.1 87.6 78.8 81.8 86.1
July 2022 | Vo
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FIGURE 1 | Performance of machine learning models. (A) Calibration curves of five prediction models in the training dataset. The predicted probabilities are plotted
on the X-axis, and the actual probabilities are plotted on the Y-axis. (B) The ROC curves of the tPSA LR, multivariate LR, DT, RF, and SVM models in the test
dataset. (C) Clinical decision curve analysis (DCA) of the five models in the test dataset.
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as predictors for PCa (3, 16–18). However, it may be difficult to
achieve good predictive results with any single factor.

In this study, we constructed prediction models of PCa based
on machine learning algorithms. Four algorithms were used, and
a total of five models were constructed. First, we constructed a
univariate logistic regression model using tPSA. As shown in
Table 2, in the test dataset, although the specificity of the tPSA
LR model reached 0.932, its sensitivity was decreased to only
0.639. The AUC of this model was only 0.846, which was
significantly lower than that of the other models, showing the
limitations of using tPSA alone as a predictor of PCa. Among
them, the multivariate LR model had higher specificity,
sensitivity, accuracy, and AUC in the test dataset, showing
good predictive ability. Therefore, the shortcomings of low
sensitivity and accuracy of the tPSA LR model were
complemented very well by the inclusion of more variables. In
our study, the multivariate LR model also had outstanding
extrapolation and generalization ability due to the small
number of changes between the training and test datasets. As a
model similar to traditional statistical analysis methods, the
results of the LR model had strong interpretability, which
could help clinicians predict PCa based on relevant factors.
The output of the DT model was similar to the clinical
pathway. It is a clinician- and patient-friendly model and has
strong clinical operability. Anyone can follow the predicted
model from the root node to the leaf node to make decisions.
However, in our study, the performance of the constructed DT
model decreased significantly when it was validated in the test
dataset and had very low specificity. The RF and SVM models
had average diagnostic performance in our study, and their
“black box” style reduced the clinical interpretability slightly.

The PCa detection rate in patients with PSA<20 ng/ml was
relatively low in our study. Thus it is important to predict PCa in
this population. The RF model performed best in both subgroups
PSA of 4-10 ng/ml and 4-20 ng/ml. This suggested that the
machine learning models we constructed based on overall
population might also be applicable in patients with PSA
ranged 4-10 or 4-20 ng/ml. In the training dataset, the RF
model outperformed other models with the AUC of 1.0, while
its performance decreased significantly in the test dataset. But in
these two PSA subgroups, about 72% of samples overlapped with
the samples in the training dataset, and were involved in the
construction of models. That may lead to the outperformance of
RF model rather than other models in PSA subgroups. Future
study should focus on this population and develop more accurate
machine learning models.

In recent years, some studies on the prediction of PCa by
machine learning models have been published. In the study of
Peter Ka-Fung Chiu et al., four variables, PSA, DRE, PV and
transrectal ultrasound findings, were included, and SVM, LR,
and RF models were constructed. All models were shown to have
better prediction for PCa and clinically significant PCa than PSA
and PSAD alone (19). Similarly, Nitta et al. suggested that
compared to the AUCs of the PSA level, PSAD, and PSAV
alone, the AUCs of artificial neural network (ANN), RF, SVM
machine learning models were all improved when age, PSA level,
Frontiers in Oncology | www.frontiersin.org 5
PV, and white blood cell count in urinalysis were incorporated
(20).In a study including patients with tPSA<10 ng/ml, a PSA-
based machine learning model was constructed based on dense
neural network with an AUC of 0.72, which was improved
compared to PSA alone, age, fPSA and f/tPSA alone (21). In
another study, multiparametric MRI (mpMRI) combined with
other characteristics of patients was included to construct a
machine learning model. The SVM and RF yielded similar
diagnostic accuracy and net benefit and spared more biopsies
at 95% sensitivity for the detection of clinically significant PCa
compared with logistic regression (15).

Recently, a meta-analysis showed that the performance of
selectMDx test in urine was comparable to that of mpMRI with
regards to PCa detection. The AUC of selectMDx only was 0.854,
and the AUC of one or both positive finding with selectMDx
and/or mpMRI could reach 0.909. However, the multivariate LR
model in our study still shows strength with AUC of 0.918 in test
dataset (22). The integrative machine learning model was
constructed to predict negative prostate biopsy utilizing both
radiomics and clinical features. Although that model got high
performance with negative predictive value of 98.3%, the AUC,
sensitivity, and specificity were 0.798, 83.3%, and 75.2%,
respectively, which were relatively lower compared with those
in our models (23). Considering that all variables in our models
are objective indicators, reducing possible errors of manual
evaluation, we believe that the advantages of our models are
more obvious.

Although machine learning-based models for PCa prediction
have been constructed and validated, there are several limitations
in our study. First, our study is retrospective in nature and may
be potentially biased, and the sample size may not be adequate
for some machine learning algorithms. Second, both the training
and test datasets were from the same hospital, so further external
validation at other centers is needed to confirm the findings.
Third, some important factors or variables were not included in
our models. For example, it has been shown that mpMRI
provides more imaging information than conventional
ultrasound, not only improving the detection of PCa but also
helping to distinguish clinically significant PCa (24). Limited by
insufficient data, mpMRI and its PI-RADS data were not
included in our study. It is hoped that incorporating mpMRI
into machine learning models may help to further improve the
diagnostic performance of models in the future.
CONCLUSION

In conclusion, by retrieving electronic medical records, we
developed, validated, and compared machine learning models
to predict PCa in the biopsy population. All models showed
clinical benefits based on DCA. Multivariate LR, DT, RF, and
SVM models were better than tPSA univariate LR. Among these
models, multivariate LR performed best, with an AUC of 0.918 in
the test dataset. Constructing machine learning-based models
and predicting PCa is feasible. This could enhance the detection
of PCa and help to avoid unnecessary prostate biopsy.
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