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Identification of sarcomatoid 
differentiation in renal cell 
carcinoma by machine learning 
on multiparametric MRI
Asim Mazin1, Samuel H. Hawkins1,7, Olya Stringfield2, Jasreman Dhillon3,6, 
Brandon J. Manley4,6, Daniel K. Jeong5,6 & Natarajan Raghunand1,6*

Sarcomatoid differentiation in RCC (sRCC) is associated with a poor prognosis, necessitating more 
aggressive management than RCC without sarcomatoid components (nsRCC). Since suspected 
renal cell carcinoma (RCC) tumors are not routinely biopsied for histologic evaluation, there is a 
clinical need for a non-invasive method to detect sarcomatoid differentiation pre-operatively. We 
utilized unsupervised self-organizing map (SOM) and supervised Learning Vector Quantizer (LVQ) 
machine learning to classify RCC tumors on T2-weighted, non-contrast T1-weighted fat-saturated, 
contrast-enhanced arterial-phase T1-weighted fat-saturated, and contrast-enhanced venous-phase 
T1-weighted fat-saturated MRI images. The SOM was trained on 8 nsRCC and 8 sRCC tumors, and used 
to compute Activation Maps for each training, validation (3 nsRCC and 3 sRCC), and test (5 nsRCC and 
5 sRCC) tumor. The LVQ classifier was trained and optimized on Activation Maps from the 22 training 
and validation cohort tumors, and tested on Activation Maps of the 10 unseen test tumors. In this 
preliminary study, the SOM-LVQ model achieved a hold-out testing accuracy of 70% in the task of 
identifying sarcomatoid differentiation in RCC on standard multiparameter MRI (mpMRI) images. We 
have demonstrated a combined SOM-LVQ machine learning approach that is suitable for analysis of 
limited mpMRI datasets for the task of differential diagnosis.

Sarcomatoid differentiation in renal cell carcinoma (sRCC) is histologically characterized by anaplastic changes 
of renal cell carcinoma (RCC) subtypes and is associated with a poorer prognosis than RCC without sarcoma-
toid components (nsRCC) 1. In a retrospective analysis of 27,856 subjects with RCC, Liu et al. concluded that 
presence of a sarcomatoid component was associated with poor overall survival (Hazard ratio 1.89) and shorter 
progression-free survival (Hazard ratio 2.04) 2. Age at diagnosis, T stage, N stage, presence or absence of metas-
tases to bone, liver or lung, and nephrectomy have been reported to be independent predictors for overall sur-
vival in sRCC 3. sRCC is managed more aggressively than nsRCC, and there is a clinical need for a non-invasive 
method to detect sarcomatoid differentiation pre-operatively, especially when considering management options 
like active surveillance 4.

Artificial intelligence (AI) is a new paradigm in medical imaging that promises greater productivity, efficiency, 
and accuracy in the practice of Radiology 5. Two AI streams are widely adopted in the field of radiological imag-
ing. The first stream utilizes machine learning on handcrafted features extracted from the image data 6, while 
the second approach uses deep learning algorithms such as Convolutional Neural Networks (CNN) that “learn” 
patterns directly from large amounts of training data 7. Both approaches have been leveraged for the task of dif-
ferential diagnosis to classify images acquired with various modalities such as magnetic resonance imaging (MRI) 
and computed tomography (CT) for a variety of pathologies 6,8,9. Deep learning techniques have gained consider-
able attention in the medical image analysis domain with encouraging results on diverse applications, such as 
differential diagnosis of Alzheimer’s Disease vs. Mild Cognitive Impairment 10, thyroid nodule classification on 
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ultrasound 11, differentiation of liver masses on dynamic contrast-enhanced CT 12, and staging of liver fibrosis on 
gadoxetic acid-enhanced liver MRI 13. Image classification is a core machine learning application that involves 
differentiation between pre-established categories, such as normal versus pathological tissue types. For example, 
Chan et al. used a statistical classifier to detect prostate cancer by combining information from MR images and 
employing a support vector machine (SVM) on handcrafted features to predict the likelihood of tumor pres-
ence in the peripheral zone of the prostate gland 14. Litjens et al. used a random forest classifier on individual 
and combined multiparameter MRI images to generate a probabilistic map of cancer location in the prostate 15.

In this work we have used the terms “training”, “validation”, and “testing” as recommended by Park and Han 
for the use of AI in for medical diagnosis and prediction 16. Training is the process of using a set of observations 
to generate a model. Validation is an initial, unblinded, assessment of the generalizability of the trained model, 
and it is common to loop between the training and validation steps numerous times to refine the model and 
achieve acceptable performance on the validation dataset. Testing refers to the assessment of the performance 
of a single model, finalized at the validation stage, on an unseen (or held-out) dataset. If the model performance 
on testing is unsatisfactory, revision of the model and retesting on the same cohort is not permitted. Rather, the 
previous test data must be relegated to the training and validation data, and new unseen test data must be found 
for subsequent testing of an improved model 17.

Studies that follow the complete training-validation-testing paradigm for the task of differential diagnosis of 
RCC on radiologic images are uncommon in the literature (reviewed in 18). In an analysis of voxel-based whole 
lesion enhancement on MRI, Chandarana et al. identified histogram parameters that could discriminate between 
clear cell and papillary subtypes of renal cell cancer with an accuracy of 94.6%, sensitivity of 96%, and specificity 
of 90%, on a training dataset of 19 papillary RCCs and 55 clear cell RCCs 19. Varghese et al. reported a CT texture 
feature model that achieved an area under the receiver operating characteristic curve of 0.87 for differentiating 
benign from malignant solid enhancing lipid-poor renal masses on training data that comprised 45 benign renal 
masses and 129 malignant RCC tumors of clear cell, papillary and chromophobe subtypes 20. Kocak et al. 21 uti-
lized artificial neural networks (ANNs), support vector machines, and their enhanced variations, to classify RCC 
subtypes based on texture features extracted from unenhanced and corticomedullary phase contrast-enhanced 
CT images. They investigated 4 SVM and 4 ANN models for the task of classifying clear cell RCC (ccRCC) from 
non-ccRCCs and achieved validation accuracies of 64.6–84.9%. They also reported validation accuracies between 
57.6 and 69.2% for the task of classifying individual RCC subtypes (clear cell vs. papillary cell vs. chromophobe 
cell RCC). Zabihollahy et al. 22 used semi-automated majority voting 2D-CNN, fully automated 2D-CNN, and 
3D-CNN to classify RCC from benign solid renal masses on contrast-enhanced computed tomography (CECT) 
images, and achieved validation accuracies of 77.36–83.75%. In a study of 38 low-grade and 11 high-grade ccRCC 
tumors < 4 cm, Schieda et al. 23 investigated the utility of standard pre-operative MRI to differentiate low-grade 
from high-grade clinical T1a ccRCC. They evaluated subjective features including tumor size, as well as appar-
ent diffusion coefficient (ADC) histogram analysis, contrast enhancement wash-in and wash-out rates, and a 
chemical shift signal intensity index related to water/fat content. Corticomedullary phase contrast wash-in rate, 
a chemical shift signal intensity index related to microscopic fat content in the tumor, and tenth-centile ADC, 
were noted to be higher in low-grade compared to high-grade clinical T1a ccRCC. A logistic regression model 
that combined these features produced an accuracy of 98% with a sensitivity of 87.5% and specificity of 100% 
on their training cohort.

In the present study we have sought to develop a machine learning model for the task of differential diagnosis 
of sRCC vs. nsRCC using balanced and tumor volume-matched training, validation and test cohorts. We report a 
combined unsupervised self-organizing map (SOM) and supervised Learning Vector Quantizer (LVQ) machine 
learning approach to classify RCC tumors based on their appearance on T2-weighted (T2W), non-contrast 
T1-weighted fat-saturated (T1W), contrast-enhanced arterial phase T1-weighted fat-saturated (T1W-CEart), 
and contrast-enhanced venous phase T1-weighted fat-saturated (T1W-CEven) MRI images.

The Kohonen self-organizing map (SOM) is an unsupervised neural network method for mapping high-
dimensional data onto a regular low-dimensional grid, commonly a two-dimensional grid, on which nodes that 
describe more similar data points are closer to each other than nodes that describe more dissimilar data elements 
24

. The node or “neuron” that is most similar to an input is called the best matching unit (BMU), and while BMU 
can function as a simple classifier 25, in general SOM is not a classifier but rather provides an excellent way to 
visualize high-dimensional data. For example, Nattkemper and Wismuller 26 have mapped six-dimensional signal 
features extracted from ROIs in dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) onto a 
two-dimensional space using SOM and used the SOM-based visualization to classify tumor pixels. The neurons 
on a trained SOM represent discrete locations or bins in the continuous multidimensional image intensity 
input space, to which pixels in a test tumor can be assigned based on closest Euclidean distance to produce hit 
maps or “Activation Maps”. Such Activation Maps are suitable for follow-on analyses using supervised learning 
algorithms. SOM analysis has been utilized to enable classification of mouse tumors on MRI images, and for 
classification of subcellular localization, mitotic phases and discrimination of apoptosis in fluorescence micros-
copy images of plant and human cells 27. In a multiparameter diffusion tensor MRI study of glioma, Inano et al. 
first used an SOM to group the multidimensional voxel intensities, then used K-means clustering on the SOM 
outputs to create cluster maps of the images, which were then classified using a Support Vector Machine (SVM) 
for distinguishing between low-grade and high-grade gliomas 28. Singh and Samavedham used SOM followed 
by SVM for differential diagnosis of early stage Parkinson’s disease (PD) vs. subjects without evidence of dopa-
minergic deficit (SWEDD) and healthy controls on T1-weighted MRI images 29. Alirezaie used the Learning 
Vector Quantizer (LVQ) neural network to classify and segment tissues in multiparameter MRI images of the 
brain using pixel intensity values 30.

An attraction of Activation Maps is that they are readily amenable to visual assessment, affording the pos-
sibility of simultaneous interpretation of the dimensionality-reduced image data depicted as 2D Activation Maps 
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by both a machine learning algorithm and the human expert (i.e., Radiologist). Combined SOM-LVQ analysis 
may also require less training data than deep neural network methods, though at the expense of needing greater 
pre-processing of the input data. In the current study we have used SOM analysis to reduce the pixelwise informa-
tion in co-registered and intensity-calibrated T2W, T1W, T1W-CEart and T1W-CEven MRI images, to produce 
2-dimensional Activation Maps that were then used as inputs to train a supervised LVQ classifier for the task of 
identifying sarcomatoid differentiation in renal cell carcinoma on an unseen test dataset.

Methods
We have investigated a combined unsupervised and supervised machine learning approach to classify RCC 
tumors based on their appearance on mpMRI images. In “Study subjects and MRI protocols” section we describe 
the retrospective accrual of human subjects and the MRI imaging. In “Image pre-processing” section we describe 
the pre-processing of the mpMRI images, which entailed (i) the pixel-level spatial alignment of the four MRI 
image sets to each other, (ii) followed by manual delineation of the tumors and semi-automatic delineation of 
the contralateral renal cortex, and, (iii) a method to calibrate the four MRI image sets so as to make pixel inten-
sities on a given scan type comparable across subjects. In “Self-organizing map and activation maps” section 
we describe the process for training the SOM and reducing the four 3D MRI image sets of a given tumor to a 
single 2D “Activation Map” that serves as a “fingerprint” of that tumor. In “Learning vector quantization clas-
sifier (LVQ)” section we describe the process for training an LVQ model to classify tumors as sRCC or nsRCC 
based on their Activation Maps.

Study subjects and MRI protocols. This retrospective study was approved by the Institutional Review 
Board (IRB) of the University of South Florida, Tampa, Florida, USA, which also waived the requirement for 
informed consent since human subjects data were collected retrospectively and analyzed after de-identification. 
All human subjects research was conducted in accordance with relevant institutional and national guidelines, 
including the US Health Insurance Portability and Accountability Act (HIPAA). In this study we identified 32 
subjects belonging to the two classes nsRCC and sRCC that were matched for tumor volumes and sub-divided 
into three cohorts for model training, validation and testing, as in Table 1. Due to the limited sample sizes, the 
training cohort was augmented during certain steps to include a 1.6  cm3 sarcomatoid urothelial-origin kidney 
tumor and a volume-matched 1.4  cm3 non-sarcomatoid clear cell RCC tumor.

Pre-operative MRI scans of all subjects were acquired at 1.5 T on scanners manufactured by Siemens (Siemens 
Healthineers, Erlangen, Germany), GE (GE Healthcare, Chicago, IL), or Toshiba (Canon Medical Systems USA, 
Tustin, CA). T2W images were acquired using single-shot fast spin echo sequences (HASTE/SS-FSE/FASE), 
and T1W images were acquired using spoiled gradient echo sequences. Contrast media used in these studies 
was gadobutrol (Bayer, Whippany, NJ, USA) administered intravenously at 0.1 mL/kg body weight. Gadobutrol 
was injected at 1.5 mL/s followed by 35 mL Normal Saline. Arterial phase T1-weighted imaging was performed 
30 s following contrast injection, and venous phase T1-weighted imaging was performed 90 s post-injection.

Image pre-processing. For each subject, tumors were segmented by manual contouring on all applicable 
slices of the axial T2W scan by an experienced Radiologist (DKJ). Next, the T1W, T1W-CEart and T1W-CEven 
images were resampled and spatially co-registered to the T2W image for each subject using in-house MATLAB 
(MathWorks, Natick, MA) software as previously described 4,31. Global rigid registration was performed to cor-
rect for gross differences in slice planning between sequences, followed by local affine registration to achieve fine 

Table 1.  Training, validation and test cohorts for SOM and LVQ analyses.

Cohort

Tumor class non-sarcomatoid Tumor volume,  cm3 Tumor class sarcomatoid Tumor volume,  cm3SOM Phase LVQ Phase

Training Training

Clear cell RCC 15.4 Clear cell RCC 13.7

Clear cell RCC 55.6 Clear cell RCC 106.6

Clear cell RCC 196.6 Clear cell RCC 187.9

Clear cell RCC 306.4 Clear cell RCC 305.9

Clear cell RCC 501.8 Chromophobe RCC 459.7

Clear cell RCC 610.8 Clear cell RCC 611.0

Clear cell RCC 1135.0 Clear cell RCC 731.1

Clear cell RCC 1425.0 Clear cell RCC 953.5

Not used Validation

Clear cell RCC 410.3 Clear cell RCC 442.9

Clear cell RCC 683.8 Clear cell RCC 866.4

Clear cell RCC 1184.7 Papillary RCC 1440.7

Not used Testing

Clear cell RCC 175.2 Clear cell RCC 182.0

Clear cell RCC 263.3 Clear cell RCC 269.3

Clear cell RCC 380.6 Clear cell RCC 372.6

Clear cell RCC 509.0 Chromophobe RCC 490.9

Clear cell RCC 1258.8 Clear cell RCC 1291.1
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co-registration between the sequences in a volume-of-interest around the tumor. Following co-registration, the 
contralateral normal kidney cortex was semi-automatically segmented on all applicable slices of the T1W-CEart 
images using the “magic wand” function of the ImageJ software (imagej.net), and the resulting mask was applied 
to the other 3 co-registered MRI sequences as shown in Fig. 1.

Due to the retrospective nature of this study, the MRI acquisition parameters varied from subject to subject, 
which we accounted for by calibration of pixel intensities as follows. Raw tumor voxel intensities on T2W images 
were calibrated by dividing them by the mean intensity of the contralateral normal kidney cortex on T2W of 
the same subject. Raw tumor voxel intensities on T1W, T1W-CEart and T1W-CEven images were calibrated 
by dividing them by the mean intensity of the contralateral normal kidney cortex on unenhanced T1W of the 
same subject. Calibrated voxel intensities from tumors belonging to the training and validation cohorts were 
variance-normalized to the means and standard deviations of pooled training + validation tumor voxels on each 
respective scan type; these same means and standard deviations were then used to variance-normalize intensities 
of voxels in tumors from the test cohort.

Self-organizing map and activation maps. After calibration and variance-normalization each voxel 
had 4 “channels” of mpMRI intensities associated with it 32–34. We reasoned that each mpMRI “channel” may 
be adequately described by 3 intensity levels (low, medium, high), for a total of  34 = 81 levels across the 4 chan-
nels. We therefore computed a 9 × 9 Kohonen Self-Organizing Map 24 on the 18 training cohort tumors using 
the MiniSom 35 library. The SOM was trained using the following parameters: a lattice size of 9 × 9, “bubble 
function” as the neighborhood function, a learning rate of 0.2, and 1,000,000 iterations. The reader is referred 
elsewhere 24 for a detailed understanding of the process of training a SOM. In our case the output at the end of 
the SOM training process was a 9 × 9 map of 81 “neurons”, with each neuron representing a discrete location in 
the 4-dimensional calibrated and variance-normalized continuous mpMRI intensity space. Thus, each neuron 
represents a 4-parameter mpMRI “phenotype” to which a given voxel in a test tumor could potentially belong. 
By assigning each voxel in a given tumor to the neuron in the trained SOM having closest Euclidean proximity, 
34 “Activation Maps” were generated from the 34 training (augmented), validation and test tumors in our study.

Learning vector quantization classifier (LVQ). The LVQ is a supervised learning method for defining 
classes in the input space that uses class information (sRCC or nsRCC) to move decision boundaries known as 
Voronoi cells to maximize classifier performance 36. The inputs for training the LVQ were vectors of dimension 
81 × 1 that were obtained by reshaping the 9 × 9 Activation Maps from each of the 18 tumors in the augmented 
training cohort (Table 1). Trained LVQ models were evaluated for generalizability by assessing their diagnostic 
performance on vectors of dimension 81 × 1 corresponding to the 9 × 9 Activation Maps from each of the 6 
tumors in the validation cohort (Table 1). In addition to training and validation on separate cohorts in this 
manner (“simple validation”), we also explored leave-six-out cross-validation on the combined 24 training and 
validation tumors; this process is illustrated in Fig. 2.

The sample size for cross-validation comprised a total of 3,293,112 voxels from 24 tumors with known labels 
(sRCC or nsRCC). In the first phase of leave-six-out cross-validation there were 134,596 training-validation 
combinations, of which 8 combinations produced ≥ 83% accuracy on both the training and validation cohorts. 
Of these eight models, three models resulted from combinations of tumors that were balanced between the tumor 
classes in both the training and validation sets. All three of these final three models yielded validation accuracies 
that were identical to the performance of the model initially identified during “simple validation” on separate 
training and validation cohorts. We therefore decided to select the LVQ model from simple validation for further 
optimization; the SOM and the LVQ models were thus trained on exactly the same set of 18 tumors. The selected 
LVQ model was further optimized for learning rate and number of training epochs on the 6 validation tumors 
prior to testing on an independent set of 10 tumors (Table 1). Throughout the entire process we sought to match 
the distribution of tumor volumes between the nsRCC and sRCC classes in all three cohorts, on the hypothesis 
that this would minimize the influence of tumor volume as a confounding covariate.

Results
Activation maps from SOM analysis. Every voxel in a given tumor was assigned to that neuron in the 
trained SOM to which it was closest in Euclidean proximity, after which the total number of “hits” per neuron 
was normalized between 0 and 1 and the results depicted as a 9 × 9 Activation Map for that tumor. Activation 
Maps corresponding to all 34 tumors in our analysis are shown in Fig.  3. Each neuron represents a unique 
mpMRI “phenotype”, making each Activation Map a 2D representation of that tumor’s composite mpMRI phe-
notype.

Training and validation of the LVQ classifier. The individual Activation Maps became inputs for train-
ing the LVQ classifier. The LVQ model selected after simple validation was further optimized for the learning rate 
and the number of training epochs to minimize the loss function versus the training epochs for three different 
learning rates as shown in Fig. 4. The model with 0.001 learning rate and 1000 training epochs achieved 83.33% 
accuracy on the validation cohort and 94.44% on the augmented training set as illustrated in Fig. 4. Following 
the complete training-validation-testing paradigm 16,17, this model was advanced to final testing on an unseen 
cohort of 5 nsRCC and 5 sRCC tumors.

Testing of the LVQ classifier. On the test cohort the final model produced an overall accuracy of 70%, 
with a false negative rate of 20% for misclassifying the sRCC as nsRCC, and a false positive rate of 10% for mis-
classifying nsRCC as sRCC, as depicted in Table 2.
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Figure 1.  Example axial mpMRI images of two subjects, one with an nsRCC tumor (contoured in purple in 
(A–D) and another with an sRCC tumor (contoured in purple in (E–H)). (A,E) T2W; (B,F) non-contrast T1W 
fat-saturated; (C,G) contrast-enhanced T1W fat-saturated arterial-phase; (D,H) contrast-enhanced T1W fat-
saturated venous-phase images. The semi-automatically drawn contours of the contralateral normal renal cortex 
are shown in green in all panels.
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sRCC vs. nsRCC mpMRI phenotypes. An examination of the Activation Maps corresponding to the 
sarcomatoid and non-sarcomatoid tumors that are presented in Fig. 3 suggests some broad differences in the 
patterns of activations of the 81 neurons by tumors belonging to the two classes. To enhance these differences, 
in Fig. 5 we have shown two Activation Maps: one produced by analyzing pooled voxels from all sRCC tumors 
(Fig. 5a), and another produced from analysis of pooled voxels from all nsRCC tumors (Fig. 5b). The grayscale 
in Fig. 5a goes from zero hits in a neuron (white) to a maximum of 410,024 hits/neuron (black). The grayscale in 
Fig. 5b goes from zero hits in a neuron (white) to a maximum of 190,605 hits/neuron (black). The pooled Activa-
tion Map of nsRCC tumors has a “busier” appearance compared with the sparser pattern of activated neurons 
in the pooled Activation Map of sRCC tumors. All 81 neurons in each Activation Map would be analyzed by the 
LVQ. For illustrative purposes, we have marked on Fig. 5 the five neurons that were most frequently activated 
by voxels in sRCC tumors compared with nsRCC tumors (green X’s), and the five neurons that were most fre-
quently activated by voxels in nsRCC tumors compared with sRCC tumors (red diamonds).

To understand the mpMRI phenotypes underlying each neuron, the calibrated and variance-normalized 
intensities on T2W, T1W, T1W-CEart and T1W-CEven images that are associated with each neuron are depicted 
in Fig. 6. In each panel of Fig. 6, a grayscale value of zero corresponds to the average calibrated and normal-
ized intensity computed from all tumor voxels in the pooled training and validation tumors on that particular 
MRI scan type. Negative values represent hypointensity, with a value of − 1 corresponding to an intensity that 
is one standard deviation below the mean computed from all tumor voxels in the pooled training and valida-
tion tumors. Positive values represent hyperintensity, with a value of + 1 corresponding to an intensity that is 
one standard deviation above the mean computed from all tumor voxels in the pooled training and validation 
tumors. Also marked in Fig. 6 are the 10 neurons from Fig. 5 that are among the most discriminative between 
the two classes of tumors.

Figure 2.  Cross-validation and model selection process.
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We have listed the mpMRI characteristics of these 10 neurons in Table 3. Neurons 15, 22, 41, 55, and 52 are 
more representative of sRCC tumors than nsRCC tumors, and they are characterized by negative normalized 
intensity values (i.e., hypointensity) on T1W, T1W-art and T1W-del MRI. Neurons 1, 36, 53, 66 and 79, which 
are more representative of nsRCC tumors than sRCC tumors, are characterized by mostly positive normalized 
intensity values (i.e., hyperintensity) on T1W, T1W-art and T1W-del MRI.

Discussion
Activation maps as 2D fingerprints of mpMRI phenotypes. It is common to acquire multiparameter 
MRI images in several pathologies, especially renal cell cancer. We have presented an approach that combines 
image registration and pixel intensity calibration with two machine learning techniques, SOM and LVQ, that is 
useful for analyzing mpMRI datasets for the task of differential diagnosis. An intermediate step in this process 
is the reduction of multiple co-registered 3-dimensional mpMRI volumes to 2-dimensional “Activation Maps” 
(Fig. 3). Broadly speaking, Activation Maps of nsRCC tumors appear busier in comparison to Activation Maps 
of sRCC tumors, which look sparser. The potential for such visual pattern recognition on Activation Maps by 
a human expert, to augment the LVQ machine learning analysis of the Activation Maps, may make the process 
less of a “black box” and increase interpretability of the machine diagnosis. While the performance of our final 
model is not sufficient for immediate clinical utility, our results on an independent test dataset do point to the 

Figure 3.  Activation maps for each tumor generated by assigning hits from every voxel in a given tumor to the 
81 neurons in the trained SOM based on closest Euclidean proximity.
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promise of the proposed approach with limited sample sizes. Deep learning algorithms such as CNN have been 
reported to achieve high accuracy on testing but require large data sets for model training 7.

CT and MRI biomarkers for diagnosis of sRCC . Schieda et al. 37 investigated 10 sRCC and 12 non-
sarcomatoid clear cell RCC on pre-operative triphasic renal CT that included images from unenhanced CT 

Figure 4.  The main plot shows loss (misclassification ratio) as a function of step size (learning rate) and 
number of training epochs of LVQ model. The insert shows individual Activation Maps of the six Validation 
Cohort tumors.

Table 2.  Overall performance of the LVQ classifier on the training, validation and test cohorts.

Cohort Accuracy (%) False positive rate (%) False negative rate (%)
Positive predictive value 
(%)

Negative predictive 
value (%)

Training 93.75 6.25 0 88.89 100

Validation 83.33 16.67 0 75 100

Test 70 10 20 75 66.67

Figure 5.  Activation Maps of voxels pooled from (a) all sRCC tumors, and, (b) all nsRCC tumors. The green X’s 
in (a) correspond to the five neurons with the greatest number of hits from sRCC tumors relative to hits from 
nsRCC tumors. The red diamonds in (b) correspond to the five neurons with the greatest number of hits from 
nsRCC tumors relative to hits from sRCC tumors.
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Figure 6.  Calibrated and variance-normalized intensities on T2W, T1W, T1W-CEart and T1W-CEven images 
corresponding to each neuron. Zero values represent average intensity, negative values represent hypointensity 
(− 1 = one standard deviation below the mean), and positive values represent hyperintensity (+ 1 = one standard 
deviation above the mean).

Table 3.  Calibrated and variance-normalized mpMRI intensities of neurons with the greatest differences in 
hits from sRCC vs. nsRCC tumors.

Neuron # T2W T1W T1Wart T1Wven

sRCC–nsRCC 

22  − 0.41  − 1.72  − 1.31  − 1.44

15 0.60  − 1.43  − 1.15  − 1.25

41  − 1.10  − 1.76  − 1.32  − 1.45

55  − 0.12  − 1.36  − 0.84  − 0.61

52 1.74  − 1.11  − 1.04  − 0.92

nsRCC–sRCC 

79  − 0.09 0.17 1.83 1.16

36  − 0.46  − 0.31 1.43 0.64

53 0.07 0.55 0.18 0.40

1 0.05 0.61 1.21 0.26

66 1.04 0.92 0.36 0.43
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and the corticomedullary and nephrographic phases of contrast-enhanced CT. The CT images were assessed by 
two Radiologists for qualitative features that included tumor heterogeneity, tumor margin, calcification, intra-
tumoral and peritumoral neovascularity, and invasion of the renal sinus, renal vein and adjacent organs. In this 
exploratory study they reported that a large tumor size, the presence of peritumoral neovascularity, and larger 
peritumoral vessels were features that are more commonly associated with sRCCs than with clear cell RCCs. 
On unenhanced CT images of 14 sRCC and 17 non-sarcomatoid clear cell RCC tumors they also computed 
texture features pertaining to gray-level co-occurrence and run-length matrix within manually defined regions-
of-interest (ROIs) drawn on 3 selected slices per tumor. The extracted texture features were divided into subsets 
and used to train a SVM classifier as well as a logistic regression predictor. On the training dataset the SVM 
achieved an average accuracy of 55–68%, while the logistic regression model produced an accuracy of 55–81%.

mpMRI images have been reported to be informative for the task of identifying sRCC. In an analysis of 11 
sRCC tumors, Takeuchi et al. 38 divided the intratumoral region into two regions, one in which pixels were 
hypointense on T2W relative to the contralateral renal cortex (T2LIA), and another in which pixels were iso- 
or hyper-intense on T2W relative to the contralateral renal cortex (T2HIA). They evaluated mean ADC and 
DCE-MRI signal intensity normalized to paraspinal muscle in these two intratumoral regions. Although they 
did not have access to whole mount post-resection specimens, they performed a radiologic-pathologic assess-
ment of histopathologic specimens and hypothesized that the T2LIA regions corresponded to tumor areas with 
sarcomatoid differentiation. They proposed that the presence of regions in clear cell RCC tumors that were 
T2LIA with restricted ADC and low contrast enhancement on DCE-MRI might be characteristic of sRCC. In 
a follow-up study of 10 sRCC and 131 nsRCC tumors, Takeuchi et al. 39 analyzed the T2LIA content of tumors 
and their invasive nature on MRI images. Although their samples were unbalanced between sRCC and nsRCC, 
in a blinded assessment by two radiologists they achieved sensitivity, specificity and accuracy values of 90–95%, 
with a positive predictive value of 56% and a negative predictive value of 99%, for the task of diagnosing sRCC. 
Our findings (Table 3) are in agreement with a previous report by Takeuchi et al. 38 who noted that when these 
“T2LIA” regions in clear cell RCC tumors presented with low contrast enhancement on DCE-MRI it was more 
characteristic of sRCC than nsRCC. While this level of agreement between our findings and those of Takeuchi 
et al. is reassuring, it should be reiterated that all 81 neurons, representing 81 distinct combinations of calibrated 
intensities on the 4 mpMRI image types, inform the classification of individual tumor Activation Maps by the 
trained LVQ in our analysis.

Study limitations. A strength of our study is that we have reported the performance of our classifier on 
unseen test data. A limitation of our study was the small sample size, though our sample size of 16 sRCC tumors 
is similar to those in radiologic studies published by other groups. This was a constraint imposed by the relatively 
low incidence of sRCC, and by our requirement for availability of pre-operative T2W, T1W, T1W-CEart, and 
T1W-CEven MRI images for each study subject. Additionally, based on the limited availability of sarcomatoid 
tumors at the time of data collection, the sRCC group had heterogeneous background subtypes which included 
mainly clear cell, but also chromophobe and papillary RCC. Future larger studies would benefit from examining 
sarcomatoid involvement arising within a single RCC subtype. In future work we will also include diffusion-
weighted MRI in the SOM-LVQ analysis, as DW-MRI has been reported to be useful for this particular diagnos-
tic problem 38,39. There is also scope for further improvements in model performance through optimization of 
the SOM order and tuning of other SOM-LVQ hyperparameters. We will also explore this SOM-LVQ method 
for other classification problems, such as for differential diagnosis of RCC subtypes on mpMRI. Additionally, 
future studies could evaluate the performance of the SOM-LVQ method in conjunction with other clinical and 
quantitative imaging measures that are suggestive of sRCC.

Another limitation of this initial work is that we have utilized manual contouring of tumors in our analysis. 
Kocak et al. have demonstrated that variability of manual delineation of RCC tumors on single 2D CT slices 
affects the reproducibility of radiomic features computed within the ROI 40 and the robustness of any diagnos-
tic model built upon those features 41. In our current work we have sought to decrease variability stemming 
from ROI delineation by contouring both the tumor and the contralateral renal cortex on multiple slices rather 
than just a single 2D slice. Our analysis uses input data from multiple co-registered scans, and the goodness of 
co-registration between the T2W, T1W-unenhanced, T1W-CE-arterial, and T1W-CE-delayed images will also 
impact the robustness of our analysis. In this work we have used local registration around the tumor to improve 
alignment of voxels across the four MRI sequences, to reduce this potential source of variability. In future work 
we will systematically vary all three major interacting factors, namely co-registration between sequences, manual 
contouring of the tumor, and semi-automatic contouring of the renal cortex, to characterize the reproducibility 
and robustness of the final model prediction.

Conclusions
We have demonstrated a Self-Organizing Map based approach for analysis of standard multiparametric MRI 
images to aid in the task of identifying sarcomatoid differentiation in renal cell carcinoma. Sarcomatoid differen-
tiation is noted in approximately 5–10% of all RCCs, and this relatively uncommon presentation, combined with 
our requirement for the availability of pre-operative MRIs, restricted the current study to relatively small sample 
size. The performance of our final model on an independent test dataset, while leaving much room for improve-
ment, points to the promise of this machine learning approach with limited sample sizes. The 2-dimensional 
“Activation Maps” that are produced as an intermediate output can be visually assessed by the human expert (i.e., 
Radiologist), which may increase interpretability and acceptability of the machine diagnosis. Our ongoing work 
is focused on increasing the sample size as well as on increasing the number of mpMRI “channels” to increase the 
information available to the SOM-LVQ model. Looking ahead, one can envision a hybrid diagnostic approach 
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that combines the objective output of the LVQ classifier on the Activation Map of a given patient’s tumor, with a 
radiologist’s assessment of T2LIA content 38,39 and peritumoral vascular features 37, to achieve a combined power 
that is high enough to be clinically useful for diagnosis of sRCC on pre-operative mpMRI images.
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