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Abstract: Hepatic encephalopathy is a common complication in patients with liver cirrhosis and
portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features,
including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function,
hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to var-
ious factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the
gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have
focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment
of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several
pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities.
Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver
failure. Here, we review the current evidence describing resveratrol’s effects in neuropathogenesis
and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis
that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are
likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
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1. Introduction

Hepatic encephalopathy (HE) is a type of liver failure affecting up to 40% of all liver
cirrhosis patients [1], and epidemiological studies have shown that the prevalence of
HE is gradually increasing all over the world [2,3]. A recent study identified HE as an
impairment of the brain function caused by liver failure and portosystemic blood shunting,
characterized by emotional impairment, cognitive dysfunction, psychiatric problems, and
neuromuscular dysfunction [4,5]. Moreover, the patients with HE present impaired visual
temporal perception [6] and impaired tactile temporal discrimination [7].

HE pathogenesis is linked to poor glucose utilization, impaired cerebral energy
metabolism, mitochondrial dysfunction, oxidative stress, and high levels of ammonia [8,9].
Clinically, HE is mainly divided into overt HE and minimal HE [10]. Overt HE patients can
be diagnosed through several symptoms and are present in almost 30% of patients with
liver cirrhosis, whereas minimal HE patients can be diagnosed based on impairment in
specialized tests and are considered as patients of a preclinical stage of overt HE [10,11].
Over 60% of patients with minimal HE suffer from cognitive dysfunction, which leads to
poor life quality [10].

Although many researchers have tried to identify natural products with some thera-
peutic effect on HE to reduce the therapeutic side effects, there are still no approved natural
compounds for the treatment of this condition.

Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a natural antioxidant polyphenol and
is synthesized by various plants, including peanuts, berries, and grapes [12,13]. Resveratrol

J. Clin. Med. 2021, 10, 3819. https://doi.org/10.3390/jcm10173819 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-9165-8507
https://doi.org/10.3390/jcm10173819
https://doi.org/10.3390/jcm10173819
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10173819
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10173819?type=check_update&version=2


J. Clin. Med. 2021, 10, 3819 2 of 14

has been reported to exert anti-inflammatory, antiviral, and antioxidant effects in cells
and has been shown to reduce oxidative stress-related cell damage [14–16]. Resveratrol
acts as a reactive oxygen species (ROS) scavenger during oxidative stress and boosts the
antioxidant enzyme activity [17]. Resveratrol regulates multiple cellular activities via
its interactions with silent mating type information regulation 2 homolog 1 (SIRT1) [18].
SIRTs have been shown to be affected by resveratrol and are known to have a relationship
with cellular energy metabolism, mitochondrial function, and cellular longevity [19], and
a neuroprotective response [20]. One study observed that the treatment of embryonic
stem cells with resveratrol resulted in an improved DNA repair when faced with DNA-
damaging conditions [21], suggesting the potential of resveratrol to protect the tissue
against ionizing radiation-induced damage [22]. In the brain, the expression of SIRT1 is
widely observed in diverse neuronal nuclei and is commonly found in glia, neural stem
cells, mature neuron [23], hypothalamus related with mood [24], and a suprachiasmatic
nucleus related with sleep pattern [25]. A recent study mentioned that resveratrol-mediated
SIRT1 activation reduces apical dendrite damage in hippocampal pyramidal neurons and
enhances neurobehavioral impairment in HE rats [26].

In the central nervous system (CNS), resveratrol has been shown to exert neuropro-
tective effects in neurodegenerative disease models such as dementia [27] and depres-
sion [15,28]. Resveratrol, which is a lipophilic compound, crosses the blood-brain barrier
(BBB) and enters the brain after intraperitoneal injection [29,30], ultimately influencing
various neurological mechanisms within these tissues [31]. The resveratrol-mediated ac-
tivation of the SIRT1 gene induces increased ROS scavenging and ultimately improves
cognitive function [32,33]. Although a meta-analysis study suggested that resveratrol
has no significant effect on cognitive function [34], another meta-analysis study indicated
that oral resveratrol treatment improves some cognitive performances in subjects [35].
Based on these reports, the effect of resveratrol on cognitive improvement has so far been
controversial [36].

Here, we review significant pieces of evidence relating to the therapeutic effects of
resveratrol in HE. We summarize the therapeutic potential of resveratrol in HE from several
points of view, including its impact on the microbiota, brain edema, and inflammation.

2. Resveratrol and HE

HE is a metabolic brain disorder associated with progressive liver failure and is
characterized by neurological problems including brain edema which result in a variety of
cognitive dysfunctions, such as attention deficit, motor dysfunction, memory impairment,
emotional problems [37–39]. HE pathology is commonly reported in patients with liver
cirrhosis and transjugular intrahepatic portosystemic shunts [40,41]. HE demonstrates
several central features, including elevated levels of ammonia in the circulation and brain
tissues, often referred to as hyperammonemia [42]. This hyperammonemia is a direct result
of the disruption of the ammonia metabolism in the diseased liver [43,44]. HE has also
been linked to imbalances in excitatory and inhibitory neurotransmitters such as GABA
and glutamate and to the inactivation of neurotransmitter receptors [45,46]. In addition,
HE leads to severe neuroinflammation, glial activation, and glial polarization in the brain,
triggering increased oxidative stress [47]. HE aggravates neuronal dysfunction, inhibits the
interactions between the neurons and glia [48,49], and may disrupt the BBB and induce
cerebral edema [50–52] (Figure 1B,C).
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Figure 1. The pathogenic process of hepatic encephalopathy (HE) in the brain and the possible pro-
tective effects of resveratrol. (A) HE in the brain is linked to the development of several specific 
features including hyperammonemia, brain edema, neuroinflammation, and blood-brain barrier 
(BBB). Resveratrol may protect brain endothelial cells, astrocytes, and neurons against hyperammo-
nemia-induced damage, and finally circumvents brain edema. (B) In addition, resveratrol may re-
duce neuroinflammation by suppressing inflammatory cytokine expression, and (C) protects 
against BBB disruption by helping to maintain a tight junction protein density within the BBB. Note 
that the protective effects of resveratrol shown in this figure are hypothetic effects based on the 
current empirical evidence and do not represent the proven effects of resveratrol on patients with 
HE. See text for details. IL: interleukin, TNF: tumor necrosis factor. 

Figure 1. The pathogenic process of hepatic encephalopathy (HE) in the brain and the possible protec-
tive effects of resveratrol. (A) HE in the brain is linked to the development of several specific features
including hyperammonemia, brain edema, neuroinflammation, and blood-brain barrier (BBB). Resver-
atrol may protect brain endothelial cells, astrocytes, and neurons against hyperammonemia-induced
damage, and finally circumvents brain edema. (B) In addition, resveratrol may reduce neuroinflam-
mation by suppressing inflammatory cytokine expression, and (C) protects against BBB disruption by
helping to maintain a tight junction protein density within the BBB. Note that the protective effects
of resveratrol shown in this figure are hypothetic effects based on the current empirical evidence
and do not represent the proven effects of resveratrol on patients with HE. See text for details. IL:
interleukin, TNF: tumor necrosis factor.
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Resveratrol is one of the polyphenols produced by berries and grapes [13] and has
been known to exert several different cellular effects [15,16]. The addition of resveratrol
has been reported to reduce the proliferation of liver myofibroblasts [53] and inhibit the
over-accumulation of triacylglycerols through the activation of the AMP-activated protein
kinase (AMPK) pathway in the liver cancer cell line [54]. It has also been reported that
resveratrol treatment suppresses the growth of hepatic stellate cells [55] and induces the
apoptosis of hepatic cancer cells [56]. Other studies have shown that resveratrol blocked the
hydroquinone-induced cellular apoptosis of primary hepatocytes [57] and inhibited cellular
oxidative stress responses in hepatocytes via its activation of catalase and glutathione
peroxidase in these cells [58].

Resveratrol reverses the ethanol-induced impairment of energy homeostasis in the
liver by increasing the ATP production in cellular mitochondria [59]. One study suggests
that a resveratrol injection contributes to a normal liver function in liver-transplanted
rats [60]. Another study reported that resveratrol improves hepatic glucose metabolism and
insulin activity in the liver through the activation of several signaling pathways, including
insulin receptor substrate 1 signaling, AKT phosphorylation signaling, and the peroxisome
proliferating activation receptor-γ coactivator 1α pathway [61]. In addition, resveratrol
supplementation reduced lipid peroxidation and increased the antioxidant enzyme activity
in the liver [62], and a previous study mentioned that resveratrol treatment prevents
cholestatic liver injury and induces hepatic regeneration after bile duct ligation [63]. One
experimental study indicated that resveratrol reduces the amount of superoxide anions
and the expression of inflammatory mediators while increasing antioxidant enzymes in
response to lipopolysaccharide-induced hepatotoxicity [64].

Taken together, these reports suggest that resveratrol improves various liver dys-
functions. Although there are many types of liver failure, the discovery of efficient HE
treatments has been particularly difficult because the onset and progression of HE are
broad, systemic, and gradual, and largely facilitated by the brain–liver axis. This means
that it is critical to identify an effective treatment for HE, and the current data suggest that
resveratrol may be a promising candidate for these therapeutic interventions. Below, we
discuss this point with a focus on the effects of resveratrol on the gut microbiota, brain
edema, and neuroinflammation associated with HE.

3. Resveratrol and the Microbiome in HE

There are over 100 quintillion microorganisms in the gut, including bacteria and
viruses, and its epithelium is considered the primary immune barrier against bacterial
toxins [65,66]. The gut microbiome is a complicated system with a mass of approximately
1 kg per person [67]. In general, the human gut microbiota is divided into four main
categories, including Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria [68]. The
gut microbiota act as protectants against pathogens and maintain a healthy immune
homeostasis while also helping to facilitate digestion [69–71].

The gut and liver are connected via the portal vein, biliary tract, and systemic blood
circulation [72]. Abnormal gut microbiota influence liver function via their connected
network [73]. Patients with liver cirrhosis have presented a reduction in the expression
of genes associated with the metabolism of various nutrients, such as amino acids and
nucleotides [74]. Endotoxins and toxic molecules from the gut are transferred to the
portal vein and may ultimately trigger the activation of inflammatory signaling in the
liver [67]. Plasma endotoxin levels are increased in association with the progression of liver
cirrhosis [75].

Breakdowns in the gut barrier function contribute to liver failure by worsening the
intestinal mucosal damage [76,77]. Dysbiosis, described by changes in the microbial
community, is often caused by changes in the number and composition of the microbial
communities in the gut [78]. Dysbiosis results in gut barrier impairment through the inacti-
vation of the epithelial mucosal repair system and is common to a variety of inflammatory
diseases [78,79]. The alteration of the gut microbiome is known to be a critical component
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in the pathogenesis and progression of liver cirrhosis, hepato-renal diseases, and HE [80,81]
(Figure 2).
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the pathogenesis of HE. HE reduces the integrity of the gut barrier, allowing for a systemic distri-
bution of these toxic compounds, and increases inflammation and systemic disruption. However, 
the treatment with resveratrol may facilitate the recovery of the beneficial bacterial populations and 
improve the integrity of the gut barrier. It is also noted that the therapeutic effect of resveratrol 
shown in this figure is an assumption based on the current empirical evidence and not proven in 
patients with HE. See text for details. 

Several studies have demonstrated that the gut microbiome in liver cirrhosis patients 
presents with a decreased abundance of autochthonous bacteria such as Subdoligranulum 
and an increased abundance of pathogenic bacteria such as Enterococcus, Dialister, and 
Prevotella compared to the normal gut [82,83]. In addition, a recent study mentioned that the 
increase in ammonia accumulation associated with HE is strongly linked to the imbalances 
in the gut microbiota of these patients [84]. Interestingly, one study suggested that specific 
microbiota-based biomarkers could be used as a diagnostic factor for liver cirrhosis [85]. 

Probiotics, prebiotics, and natural compounds could promote the growth of benefi-
cial microbes and the reduction of harmful microbes [86] in the gut of patients with liver 
failure [87–90]. One recent study tried to use a mixture of probiotics to treat HE pathogen-
esis by improving the health of the gut microbiota [91]. Several HE studies have shown 
that there are a number of probiotics and prebiotics, including lactulose, which can mod-
ulate the gut microbiota by reducing the intraluminal pH and decreasing the ammonia 
concentration, leading to improvements in the gut epithelium [92–94]. 

Resveratrol can modulate the gut microbiota by decreasing the levels of Bacteroides, 
Alistipes, Odoribacter, and Parabacteroides and improving the gut epithelial protection 
against the metabolic imbalances associated with dysbiosis in diabetes knock-out mice 
[95]. Another study showed that resveratrol treatment reduced the proportion of harmful 

Figure 2. The pathogenesis of hepatic encephalopathy (HE) in the gut and possible therapeutic effects
of resveratrol treatment. The gut microbiome is altered in response to hepatic encephalopathy, which
increases the amount of toxins from harmful microorganisms within the system, exacerbating the
pathogenesis of HE. HE reduces the integrity of the gut barrier, allowing for a systemic distribution of
these toxic compounds, and increases inflammation and systemic disruption. However, the treatment
with resveratrol may facilitate the recovery of the beneficial bacterial populations and improve the
integrity of the gut barrier. It is also noted that the therapeutic effect of resveratrol shown in this
figure is an assumption based on the current empirical evidence and not proven in patients with HE.
See text for details.

Several studies have demonstrated that the gut microbiome in liver cirrhosis patients
presents with a decreased abundance of autochthonous bacteria such as Subdoligranulum
and an increased abundance of pathogenic bacteria such as Enterococcus, Dialister, and
Prevotella compared to the normal gut [82,83]. In addition, a recent study mentioned that the
increase in ammonia accumulation associated with HE is strongly linked to the imbalances
in the gut microbiota of these patients [84]. Interestingly, one study suggested that specific
microbiota-based biomarkers could be used as a diagnostic factor for liver cirrhosis [85].

Probiotics, prebiotics, and natural compounds could promote the growth of bene-
ficial microbes and the reduction of harmful microbes [86] in the gut of patients with
liver failure [87–90]. One recent study tried to use a mixture of probiotics to treat HE
pathogenesis by improving the health of the gut microbiota [91]. Several HE studies have
shown that there are a number of probiotics and prebiotics, including lactulose, which can
modulate the gut microbiota by reducing the intraluminal pH and decreasing the ammonia
concentration, leading to improvements in the gut epithelium [92–94].

Resveratrol can modulate the gut microbiota by decreasing the levels of Bacteroides,
Alistipes, Odoribacter, and Parabacteroides and improving the gut epithelial protection against
the metabolic imbalances associated with dysbiosis in diabetes knock-out mice [95]. An-
other study showed that resveratrol treatment reduced the proportion of harmful bacteria



J. Clin. Med. 2021, 10, 3819 6 of 14

such as Desulfovibrio and Lachnospiraceae in the guts of animals with hepatic steatosis [96],
and Bilophila and Ruminococcus in the guts of animals with high fat diet-induced metabolic
imbalance conditions [97]. Other studies mention that resveratrol helps the gut to maintain
the gut barrier integrity and function and inhibits inflammation in the gut [98,99] (Figure 2).

Based on these findings, we assume that resveratrol could help to reduce harmful gut
microbes in patients with HE, thus supporting the suggestion that resveratrol has thera-
peutic potential for HE and that its therapeutic effect might be mediated by improvements
in the gut microbiome and gut barrier function following metabolic imbalance.

4. Resveratrol and Brain Edema in HE

Brain edema is defined as an excessive accumulation of water in the intra- and extra-
cellular spaces in the brain and is a common feature in HE [100]. Vasogenic edema leads
to the breakdown of the BBB via the loss of tight junction proteins and raises the intracra-
nial pressure [101], while cytosolic edema increases BBB permeability via the intracellular
swelling of the astrocytes and also increases brain volume [102]. Cytotoxic edema triggers
an increase in the water permeability of the cell membrane via changes in the expression of
water transport membrane proteins such as aquaporins [103]. This is especially true for
aquaporin 4 (AQP4), which is the most common water channel protein in the CNS and is
found in high quantities in both the perivascular area and astrocyte end-feet [103].

Astrocytes function as a component of the BBB and exhibit a higher capacity for water
permeability than the other parts of the BBB [104]. Their swelling is commonly associated
with the regulation of osmo-intracellular pathways such as calcium signaling and the alter-
ation of aquaporin protein expression in the water transport and ion channels [104–107].
Increases in the expression of aquaporins, such as AQP4, correlate with the progression
of brain edema [108,109]. The majority of HE-associated brain edema cases can be de-
scribed as cytosolic edema and are closely associated with astrocyte swelling [110,111].
Many acute HE patients demonstrate brain edema accompanied by intracranial pressure
increases [110,111], and some studies have linked the excessive brain edema associated
with liver failure models to changes in the regulation of the brain tissues [100,112,113].

Therefore, the modulation of the water permeability in HE brains is an important
consideration for therapeutic intervention, as this edema often determines the degree of
neuropathological damage in these tissues. Resveratrol has been known to ameliorate
ischemic brain edema through the inhibition of AQP4 expression [114] (Figure 1A). In
addition, resveratrol suppresses cerebral edema by inhibiting the Na+ channel-related
SUR1 expression in the brain and subsequently influences osmotic cell swelling [115].
Further, SIRT1 activation following the addition of resveratrol decreased BBB breakdown
by protecting against the loss of tight junction proteins through improved SIRT1/p53
signaling and ultimately decreased brain edema [116]. Another study showed that the
intra-arterial administration of resveratrol exerted a beneficial effect on cerebral ischemic
edema in rats [117].

A recent study demonstrated that resveratrol could alleviate astrocyte swelling in
response to ammonia-induced oxidative stress [118]. In this study, however, it was also
shown that resveratrol can enhance ammonia-induced cell swelling under certain concen-
trations. Thus, caution is recommended when resveratrol is used for the treatment of the
neurological conditions associated with brain edema. Therefore, more studies are required
to confirm the beneficial role of resveratrol on brain edema.

Matrix metalloproteinase (MMP) is a key extracellular matrix component responsible
for the maintenance of the BBB [119,120]. Resveratrol suppresses the increased expression
of MMP linked to the occurrence of cerebral edema events [121]. Resveratrol was also
shown to maintain BBB integrity by controlling the MMP-9/TIMP-1 balance after cerebral
ischemia-reperfusion in rats [122]. This protective effect was then confirmed again in
an additional study using an animal model of cerebral ischemic injury [123]. It was
also reported that resveratrol reduces the level of MMP-9 in the BBB and blocks BBB
disruption [124,125]. In addition, resveratrol pre-treatment improved BBB breakdown
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via its interactions with the YAP/TAZ signaling pathway in the brain [126], Moreover,
resveratrol protected BBB integrity and improved cognitive function in AD rats [127]. A
recent study demonstrated that resveratrol restores the tight junction protein expression in
the BBB and helps to inhibit severe neuropathology in response to hyperammonemia in
mice with liver cirrhosis [128].

Given these data, we surmise that resveratrol may prevent brain edema by protecting
the BBB and facilitating the maintenance of its integrity. Although more studies are required
to prove the safety of using resveratrol for the treatment of brain edema, many studies
emphasize the fact that resveratrol could be used as an inhibitor of brain edema in response
to HE.

5. Resveratrol and Ammonia-Induced Neuroinflammation in HE

Ammonia (NH3 and NH4
+) is a critical factor in several important cellular functions

in the CNS, including the secretion of excitatory and inhibitory neurotransmitters [129],
mitochondrial permeability [130,131], ion homeostasis [132], inflammatory responses [133],
and oxidative stress [134,135]. Ammonia is the critical factor in the development of HE,
and a high level of these ions (hyperammonemia) leads to astrocyte swelling [107], BBB
breakdown [136], high levels of ROS [137], neuronal cell death [138], energy deficits [139],
glutamine synthetase inactivity [132,140], nitrogen species production [141], and impaired
cognition [142]. The redox imbalance caused by a high level of ammonia induces the
oxidation of many biomolecules and the inactivation of the antioxidant enzymes [141].
In HE, hyperammonemia triggers oxidative stress and the excessive generation of ROS,
inducing various neuroinflammatory responses [143,144], accelerating the activation of the
microglia and astrocytes, and amplifying neuroinflammation [142,145,146] (Figure 1B).

Resveratrol has been shown to alleviate the brain damage associated with hepatic
ischemic stress by decreasing the activity of aminotransferase [147] and reducing the
expression of interleukin (IL)-1 beta and IL-6 [148]. Recent studies also suggest that a sup-
plementation with resveratrol inhibits mitochondrial dysfunction in response to increased
levels of ammonia and improves cellular redox in astrocytes affected by ammonia-mediated
toxicity [149,150]. Another study showed that resveratrol suppresses ammonia levels in
the brain and prevents the severe exacerbation of HE from increased liver cirrhosis [128].
Some studies mention that resveratrol inhibits DNA damage in the neurons and protects
against cell death in response to ammonia toxicity [151,152]. Another study suggested that
resveratrol promotes DNA repair in response to oxidative stress [153].

Additionally, resveratrol treatment improved the antioxidant capacity and induced mi-
tochondrial biogenesis during oxidative stress [154]. Resveratrol can also prevent neuronal
damage during ammonia-induced oxidative stress [8]. Given these data, we can conclude
that resveratrol has strong potential as a treatment for HE and that this therapeutic effect is
likely mediated, at least in some part, by its inhibition of the inflammatory response and
the inhibition of neuronal damage.

6. Conclusions

Here, we reviewed the therapeutic potential of resveratrol in the treatment of HE,
focusing on gut microbiota, brain edema, and neuroinflammation. Our review supports the
assertion that resveratrol is beneficial in reducing harmful gut microbes and maintaining
the gut barrier integrity in response to metabolic imbalances. It also demonstrates that
resveratrol reduces brain edema via the regulation of both water permeability in the BBB
and astrocyte swelling. Finally, these data clearly show that resveratrol alleviates neuroin-
flammatory responses by activating antioxidant enzymes and inhibiting DNA damage in
response to oxidative stress. Given the fact that previous clinical studies have tried to use
resveratrol supplementation as a treatment in liver injury [155–157], we also emphasize
the therapeutic potential of resveratrol in liver failure and suggest that resveratrol therapy
may be a promising clinical approach for HE. A recent study demonstrating the improve-
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ment in the neuropathology of HE patients treated with resveratrol further supports these
observations [158].

However, we also note that there are still debates on the use of resveratrol for thera-
peutic purposes. One of the issues is the low bioavailability of resveratrol [159]. Moreover,
there is another issue related to ammonia-induced cell swelling under certain concentra-
tions, as described above [118]. Moreover, there were meta-analyses suggesting that the
effect of resveratrol on the cognitive effects of the human brain may be limited [35,36].
Although more studies are required to scrutinize these points, resveratrol is still expected
to be a promising candidate for the treatment of HE, according to its diverse effects related
to HE described in this review.

Taken together, this review emphasizes that resveratrol has multiple therapeutic
potentials for the treatment of HE. Since the effects and mechanisms of resveratrol in HE
patients are not fully elucidated, further studies need to be undertaken to help explain the
specific mechanism underlying the therapeutic effects of resveratrol in HE patients. Given
that resveratrol is a natural compound, we suggest that resveratrol may be a promising
agent with fewer side effects for the treatment of HE.
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