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Abstract: Research on the thermal and thermo-oxidative degradation of polyacetals allows for the
development of effective methods of utilization of the waste of these polymers towards the recovery
of monomers. For this purpose, in addition to qualitative analysis, it is necessary to understand the
mechanisms of chemical reactions accompanying the decomposition process under the influence of
temperature. Therefore, in this article, with the experimental results from the thermal analysis of the
POM homopolymer of three various stages of life—POM-P—unprocessed sample; POM-R—recycled
sample, and POM-O—sample waste—we took steps to determine the basic kinetic parameters using
two well-known and commonly used kinetic models: Friedman and Ozawa-Flynn-Wall (OFW).
Knowing the values of the course of changes in apparent activation energy as a function of partial
mass loss, theoretical curves were fitted to the experimental data. The applied calculation models
turned out to be consistent in terms of the nature of the curve changes and similar in terms of Ea in
the entire range of mass loss. Both kinetic models showed a very similar course of the Ea curves. The
samples that decompose under oxidative conditions obtained the best fit for the reaction of nth order
with autocatalysis by product B model and the samples that decompose under inert conditions for
the n-dimensional nucleation according to the Avrami–Erofeev model.

Keywords: polyoxymethylene; thermal degradation; kinetics; chemical engineering; material engineering

1. Introduction

Polyoxymethylene (polyacetal, polyformaldehyde, and POM), is a popular thermo-
plastic engineering polymer due to its good mechanical properties. It has a wide range
of applications mainly in the mechanical industry [1–3]. However, POM is thermally
unstable because its repeating oxymethylene chain units are usually terminated with hemi
formal terminals [2–4]. POM has a tendency to decompose from these unstable end-chain
groups by a chain-cracking process, and in consequence, oxymethylene units are removed
from these terminals. This is mainly the case with the homopolymer, because its degree
of crystallinity, tensile strength, rigidity, softening, and melting points are increased in
comparison with the copolymer.

Various processes of POM degradation have been described in the literature [5,6].
However, they all have one factor in common, degradation, starting on both ends of
the polymer chain by split off formaldehyde, some of which is not stopped by ethylene
oxide units. This formaldehyde has a characteristic sweet odor during high-temperature
processing. Further, the proposed mechanism mainly includes a thermal oxidation process
first in the amorphous phase, and next a random chain scission in the crystalline phase
connected with hydrolysis and acidolysis [4–7]. However, it all depends to a great extent
on the origin of the polyacetal, the thermal history, the content of additives, and even the
heating conditions, as demonstrated in our previous publications [8,9].

Materials 2021, 14, 2281. https://doi.org/10.3390/ma14092281 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0002-7913-0750
https://orcid.org/0000-0002-2604-906X
https://orcid.org/0000-0002-1898-1236
https://doi.org/10.3390/ma14092281
https://doi.org/10.3390/ma14092281
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14092281
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14092281?type=check_update&version=2


Materials 2021, 14, 2281 2 of 26

Therefore, in this publication, we used pure polyacetal (POM-P), recycled polyacetal
(POM-R), as well as waste polyacetal (POM-O), and, using mathematical tools, we tried to
prove the differences and similarities in the kinetics of the POM degradation process with
different life histories in oxidative and inert conditions.

2. Background

The starting point for kinetic analysis of the processes taking place in a polymeric
material in the glass state is thermo-analytical measurements, i.e., those in which the
measured signal, changing in the course of chemical processes, reflects the kinetic na-
ture of the changes taking place [10–13]. For this purpose, it is necessary to perform
several measurements at different sample heating rates [12,14]. As the mechanisms of the
degradation processes of polymeric materials are often unknown or very complicated and
multi-stepped, two complementary methods have been developed to determine funda-
mental kinetic parameters: model-free and reaction model fit [15].

Information obtained from establishing model-independent parameters is generally
used for quick calculations that provide useful information for model-dependent analysis.
The accuracy of isoconversion methods may only be sufficient for single-step reactions as
they do not take into account the relationship between the other steps involved. As a result,
only one value of apparent activation energy (Ea) is determined. When the pre-exponential
coefficient is also determined, it becomes necessary to assume the provision of the func-
tion f (α) [11,12]. Thus, model-less methods are not suitable for characterizing complex
transformations in competitive reactions, where the final result is closely dependent on the
heating rate [11,15].

During kinetic analysis, the heated sample is assumed to undergo irreversible reactions
according to Equation (1).

A(s)→ B(s) + B′(g) ↑ (1)

The reaction described in Equation (1) also describes the following Equation (2) as a
function of known parameters.

dp
dt

= U(t, T, e, p) (2)

where p is the concentration of products; e—the initial concentration of the reactants;
t—time; T—temperature.

The right side of this expression is the so-called conversion function that can be written
as the product of two separate functions (Equation (3)):

U(t, T, e, p) = k[T(t)] f (e, p) (3)

The separation of variables in this equation is possible only for single-step reactions. This
is related to the reduction of the term f (e,p) to f (e). The quantities e and p are interdependent:

e = 1 − α, p = α (4)

where the degree of conversion, α, is defined according to Equation (5):

α =
m0 −m

m0 −m∞
(5)

where m0—initial sample mass; m—the mass of the current sample; m∞—final mass.
If multi-stage processes are considered, obtaining an analytical solution of Equation (3)

becomes impossible due to the appearance of a system of differential equations for which
variables cannot be separated [14,16]. The term k(T) in Equation (6) defines the temperature
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dependence of the reaction rate constant, described by the classical Arrhenius equation in
the active collision theory.

k(T) = Aexp
(
−Ea

RT

)
(6)

where R—gas constant.
Substituting Equation (6) into Equation (2), we can obtain the reaction rate equations

(Equations (7) and (8)):
dp
dt

= Aexp
(
−Ea

RT

)
f (e, p) (7)

νj = Ajexp
(−Eaj

RT

)
f j
(
ej, pj

)
(8)

where ν—the reaction rate.
Equation (8) is used for j-step processes where each elemental reaction is described

by a separate kinetic equation. The more the concentrations of the reactants increase,
the greater the number of reactions of a given reagent in a product. Additionally, the
concentrations of the reactants decrease with the increase in the reactions in which this
reagent is a substrate [11].

In the course of research on the geometry of reaction surfaces, a number of kinetic
models were suggested. The selected forms of functions, as well as the kinetic models of
reactions, are summarized in Table 1.

Table 1. The most common types of reactions and the corresponding equations of kinetic models in two equivalent
notation forms [17].

Type of Reaction Designation f (α)

Reaction of 1st order F1 1 − α
Reaction of 2nd order F2 (1 − α)2

Reaction of nth order Fn (1 − α)n

One-dimensional diffusion D1 1/(2α)
Two-dimensional diffusion D2 [−ln(1 − α)]−1

Three-dimensional diffusion—Jander’s type D3 1.5(1 − α)2/3[1 − (1 − α)1/3]
Three-dimensional diffusion—Ginstling-Brounstein D4 1.5[(1 − α)−1/3 − 1]−1

Two-dimensional phase boundary R2 2(1 − α)1/2

Three-dimensional phase boundary R3 3(1 − α)2/3

Prout–Tompkins equation B1 α(1 − α)
Expanded Prout–Tompkins equation Bna (1 − α)nαm

Reaction of 1st order with autocatalysis by product C1-X (1 − α)(1 + KcatX)

Reaction of nth order with autocatalysis by product Cn-X (1 − α)n(1 + KcatX)

Two-dimensional nucleation according to Avrami A2 2(1 − α)[−ln(1 − α)]1/2

Three-dimensional nucleation according to Avrami A3 3(1 − α)[−ln(1 − α)]2/3

n-dimensional nucleation according to Avrami-Erofeev An n(1 − α)[−ln(1 − α)](n−1)/n

In order to correctly define the kinetic model of the degradation reaction, several basic
assumptions were made:

- The reaction is the sum of separate steps in chemical reactions, characterized by a con-
stant value of activation energy and is a mathematical expression of a kinetic model;

- Reactions can take place independently, concurrently, or sequentially;
- The reactions take place in an irreversible manner during the thermal degradation of

polymers, because the volatile degradation products formed during the thermogravi-
metric analysis are continuously removed from the apparatus’ furnace chamber.

After presenting the described assumptions using the Friedman and Ozawa-Flynn-
Wall (OFW) isoconversion equations, it is worth introducing the definition of the heating
rate (β) into Equation (7), which also replaces the p by α.
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Finally, Equation (9) is obtained as:

dα

dT
=

A
β

exp
(
−Ea

RT

)
f (α) (9)

Friedman [18,19] proposed a relationship between the logarithm of the transformation
rate (dα/dt) and the reciprocal of temperature 1/T, providing the possibility to calculate
the activation energy value (Equation (10)):

ln
(

β
dα

dT

)
= ln A + ln f (α)− Ea

RT
(10)

On the basis of the shown linear dependence, a series of straight lines is drawn in the
ln [β·(dα/dT)] system from the reciprocal of the absolute temperature. Each of these lines
corresponds to a specific conversion rate, and the apparent activation energy is read as its
directional factor.

The second isoconversion method introduced by Ozawa, Flynn, and Wall (OFW), also
for determining activation energy, is based on the following considerations. The principle
of the calculations is analogous to that presented in the Friedman method, but here, the
dependence on the heating rate factor is introduced, and Equation (7) is transformed into
the form of the expression presented in Equation (11).

ln β = −1.0516
Ea

RT
− 5.3305 (11)

If the above equation is plotted in the coordinate system ln (β)—ordinate axis and
1/T—abscissa axis, then for a series of measurements made at different heating rates, for
a given conversion degree α, rectilinear graphs are obtained with a slope of 1.052 E/R.
The temperature Tjk is the temperature at which the degree of conversion αk is achieved at
the heating rate βi (the indexes i, j, and k denote the set of experiments performed under
different heating rates) [16,20,21].

The optimization of the theoretical curve fit to the experimental data is based on the
numerical Runge-Kutta computation algorithm, which is part of the modified Marquardt
iteration procedure [22–24]. It allows the systems of differential equations describing the
various kinetic models presented in Table 1, i.e., the relationships among independent,
subsequent, parallel, and competitive reactions, to be solved. The general symbols used for
these types of reactions are shown in Table 2.

Table 2. Designations of basic types of reactions used in kinetic analysis on the example of two-
stage processes.

Type of Reaction Scheme

One-step A 1→ B

Independent A 1→ B

C 2→ D
Consecutive A 1→ B 2→ C

Parallel

Competitive

3. Materials and Methods
3.1. Materials

POM-P obtained from DuPont Poland (Delrin® 100 NC010, Warsaw, Poland) was a
pure sample (reference sample) of a high-viscosity acetal homopolymer with no thermal
processing history.
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Using a Thermo Scientific HAAKE Rheomex PTW 16/25 XL (Thermo Fisher, Karl-
sruhe, Germany) twin-screw extruder (L/D factor 25), we obtained a sample of recycled
polyoxymethylene (POM-R) according to the following processing conditions:

- Drying temperature: 80 ◦C;
- Drying time: 4 h;
- Temperature of feed zone: 190 ◦C;
- First zone temperature: 200 ◦C;
- Second zone temperature: 200 ◦C;
- Third zone temperature: 210 ◦C;
- Forth zone temperature: 210 ◦C;
- Extrusion zone temperature: 220 ◦C;
- Die temperature: 220 ◦C;
- Screw speed: 120 rpm.

The waste acetal (POM-O) was a cut sample of gear wheel (Cutter for plastics, Rapid
2B, Cracow, Poland) Atlanta 22 10 018 (ATLANTA Antriebssysteme, Bietigheim-Bissingen,
Germany) purchased at the Czescimaszyn24 store (Babice, Poland).

3.2. Differential Scanning Calorimetry (DSC)

Changes in thermal properties were determined by differential scanning calorimetry
(DSC). For this purpose, a Mettler Toledo DSC823e calorimeter (Mettler-Toledo Sp. z o.o.,
Warsaw, Poland) was used. Calorimetric measurements were carried out in an oxidizing
atmosphere. The calorimeter was calibrated with indium and zinc. The samples weighing
~5 mg were placed in an aluminum pan, and sealed in a press. The measurements were
made in accordance with two heating scans, which also allowed for the assessment of
thermal properties after annealing:

- First heating (I) from 25 to 200 ◦C with a heating rate of 10 ◦C/min;
- Cooling from 200 to 25 ◦C with cooling rate 10 ◦C/min;
- Second heating (II) from 25 to 200 ◦C with a heating rate of 10 ◦C/min.

The degree of crystallinity (Xc) of POM was determined by using the following equation:

XC =
∆Hm

∆H0
m
·100% (12)

where ∆Hm is the measured heat of fusion of POM sample, and ∆Hm
0 is the heat of fusion

of 100% crystalline POM.

3.3. Thermogravimetric Analysis

The thermogravimetric analysis was performed under synthetic air as well as inert
atmosphere (Ar), using a Netzsch TG 209 F1 Libra thermogravimetric analyzer (Netzsch
Group, Warsaw, Poland). The measurements were conducted in the temperature range
from 20 to 600 ◦C at a heating rate of 10, 15, and 20 ◦C/min, in the synthetic air atmosphere
with an airflow rate of 15 cm3/min, and also in an inert atmosphere at a heating rate of
10 ◦C/min with a gas flow rate of 15 cm3/min. Samples of ~5 mg mass were placed in
open corundum pans. The raw data were converted into ASCII files.

3.4. Kinetic Modelling of Thermo-Oxidative Degradation Process

Kinetic analyses were carried out using in-house software and a Netzsch Thermoki-
netic Software (v. 99/10) (Netzsch Group, Warsaw, Poland). These analyses included the
determination of apparent activation energy and the lg(A/s−1) factor by the Friedman and
OWF method. Based on the obtained data, simulations of the best fit of kinetic models
to experimental data were performed. Then, knowing the kinetic model for which the
factor F-test is equal to 1 and determining the remaining theoretical kinetic parameters
of the degradation process, it was possible to predict the thermo-oxidative degradation
rate in the temperature range 300–370 ◦C. The temperature range was dictated by the
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fact that in our previous publication [8,9], we suggested that the thermal degradation
of POM should be carried out at least at 400 ◦C and the combustion process could be
performed at a temperature as low as 350 ◦C. When performing computer calculations,
a procedure was used that was developed taking into account the examples given in the
literature [13,15,16,22–28].

4. Results and Discussion
4.1. Differential Scanning Calorimetry (DSC)

Figure 1 shows the curves recorded during heating at 10 ◦C/min, and Figure 2 shows
the curves noted during cooling at 10 ◦C/min. Based on the analysis of DSC curves,
the glass transition temperature, the maxima corresponding to the melting points of the
crystalline phases present in the samples, changes in the melting enthalpy, changes in
specific heat, and changes in the crystallization temperature were determined. The degree
of crystallinity was determined according to the procedure published in [29,30].

Figure 1. DSC heating curves for POM-P, POM-R, and POM-O samples.

Figure 2. DSC cooling curves for POM-P, POM-R, and POM-O samples.
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The above-mentioned properties are summarized in Table 3. All curves were charac-
terized by the dominant phenomenon of energy absorption by the system. Throughout
the entire study cycle, the samples showed an endothermic effect. It was observed that
samples of pure POM and its waste were characterized by an increased endothermic effect.
In the cases of the recycled (processed) sample, it remained slightly smaller, even after
being heated twice.

Table 3. Melting temperature (Tm), enthalpy of fusion (∆Hm), changes in specific heat (∆cp), the
degree of crystallinity (Xc), and temperature of crystallization (Tcr).

Sample Tm/
◦C ∆Hm/J·g−1 ∆Cp/J·(g·K)−1 Xc/

%
Tc/r
◦C

POM-P 167 ± 3 153.29 0.260 47 145 ± 2
POM-R 166 ± 3 161.14 0.219 49 147 ± 3
POM-O 167 ± 4 139.39 0.224 43 145 ± 2

In order to calculate the degree of crystallinity, the value of 326.3 J/g was assumed as
∆H of 100% crystalline POM [31]. The calculations showed that material recycling slightly
increased the degree of crystallinity in relation to the unprocessed sample. On the other
hand, multiple processing and long-term use reduced the degree of crystallinity to 43%.
With regard to the material, its potential and constant exposure to atmospheric, mechanical,
thermal, or environmental factors is minimal. Observing these slight changes in the values
of the degree of crystallinity, one may be tempted to say that POM is an extremely durable
polymer for operational conditions.

The change in POM-specific heat accompanying melting process decreased after its
processing by nearly 16%. A smaller decrease was noted for the waste sample (POM-O,
14%). This means that both the processing and use of the POM detail facilitates the melting
of the material, i.e., the easy transition from a glassy to a plastic state, because less energy
must be supplied to the system to reach the transition point between these states. This
might be due to, inter alia, a reduction in the content of crystalline phases caused by
high-temperature processing combined with rapid cooling of the system. The samples
showed a comparable change in the slope of the base curves. Another change observed was
the melting of the samples. All the curves showed a single characteristic peak, although
accentuated curve inflection was observed for the POM-P reference sample at 145 ◦C.
This might indicate the existence of a small amount of unstable crystalline phase in pure
polyoxymethylene, which disappears after processing the sample (POM-R). In the case of
the POM-O sample, the presence of additives (dyes and stabilizers) probably emphasized
the side peaks reflecting the overlapping of other energy effects in the range of 130–170 ◦C.
The presence of a broad and flat peak in this temperature range can be interpreted as
the melting process of the less stable phase, which in this case had an insignificant share.
Unfortunately, neither the processing nor the use of POM influenced the melting point
of the produced stable crystalline phase observed during both the first and the second
heating, and slight shifts were not within the apparatus error.

DSC cooling curves at 10 ◦C/min showed (Figure 2) a similar slope of the baseline
(especially POM-P and POM-O) and one exothermic peak in the range of 160–130 ◦C.
All materials have one maximum point, designated as crystallization temperature Tcr.
Crystallization temperature values for POM-P, POM-O, and POM-R samples differed by
2 ◦C. The angle of inclination of the ascending lines of the exothermic peak in relation to
the baseline allowed us to conclude that the faster stage of the crystallization process for all
tested samples was the one just before reaching the maximum intensity of energy release
in the crystallization process. Nevertheless, the slope of the baseline for the POM-R sample
material was much softer than for the corresponding reference sample.
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4.2. Thermogravimetric Analysis

Figures 3–5 show the thermogravimetric curves for POM-P, POM-R, and POM-O sam-
ples obtained during the measurement in an oxidizing atmosphere (red line) and in an inert
atmosphere (blue line). Additionally, Table 4 lists the most important thermogravimetric
indicators in the graphs, which facilitate the analysis of the collected data.

Figure 3. TG thermograms for POM-P sample: red line—investigations carried out in oxygen
atmosphere; blue line—investigations carried out in the inert atmosphere, at a heating rate of
10 ◦C/min.

Figure 4. TG thermograms for POM-R sample: red line—investigations carried out in oxygen
atmosphere; blue line—investigations carried out in the inert atmosphere, at a heating rate of
10 ◦C/min.
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Figure 5. TG thermograms for POM-O sample: red line—investigations carried out in oxygen
atmosphere; blue line—investigations carried out in the inert atmosphere, at a heating rate of
10 ◦C/min.

Table 4. The most important thermogravimetric indicators in the graphs.

Sample Atmosphere T5%/◦C T10%/◦C T20%/◦C T50%/◦C Tmax/◦C

POM-P
Inert 332 ± 7 348 ± 7 361 ± 7 386 ± 8 370 ± 8

Oxygen 267 ± 5 274 ± 5 280 ± 6 295 ± 6 285 ± 6

POM-R
Inert 335 ± 7 348 ± 7 363 ± 7 390 ± 8 404 ± 8

Oxygen 279 ± 6 284 ± 6 289 ± 6 295 ± 6 296 ± 6

POM-O
Inert 340 ± 7 361 ± 7 376 ± 8 398 ± 8 403 ± 8

Oxygen 282 ± 6 291 ± 6 302 ± 6 324 ± 7 324 ± 7

Considering the measurements carried out in the inert atmosphere, it was observed
that in the range of 25–370 ◦C, the POM-P and POM-R samples had a very similar thermo-
gram. Above this temperature, the reference sample (POM-P) was less thermally stable.
The reason for this was that the sample reached the point of maximum weight loss just at
370 ◦C, while the POM-R sample reached this point at 34 ◦C higher.

Testing in an inert atmosphere makes it possible to compare the effect of temperature
itself on mass loss (decomposition/thermal stability of substances), and thus to assess and
compare the behavior of materials at high temperatures with different chemical structures
or compositions. In the discussed case, the unprocessed sample was more susceptible to
temperatures above 370 ◦C than the repeatedly processed sample (POM-R). The reason for
this is the different thermal histories of the compared samples, which is confirmed by the
DSC test.

As a result of multiple processing, the POM-R polymer chain was already subjected to
state changes, by inducing segmental movements within the macromolecule and stopping
them, or by creating crystalline phases in greater amounts than can be present in the
reference sample (POM-P). Thus, the processed sample became more resistant to the linearly
rising temperature and more than the reference sample. Nevertheless, the reference sample
degraded more slowly than the POM-R sample, which indicated a shift of the endset point
of the TG curve towards higher temperatures. The residue after the measurement was 1%
(600 ◦C) in both cases, which may indicate that the same point after decomposition was
finally reached. The study carried out for the waste POM showed that this material was
characterized by much better thermal stability at temperatures up to 400 ◦C (TG indicators
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higher by nearly 10 ◦C). Only after exceeding the point of maximum weight loss, the endset
on the TG curve was reached quickly and, consequently, over 3% of the residue at 600 ◦C.
Such a result may prove that the waste sample was enriched with components that did not
decompose up to 600 ◦C (there were at least 2% of them), and they are responsible for the
good thermal stability of the material at lower temperatures. Nevertheless, in all the cases
discussed, one major stage of decomposition was noted.

In the case of measurements carried out in an oxidizing environment, as before, the
POM-P and POM-R samples showed similar thermal stability at lower temperatures, which
began to differ only after the T50% point was exceeded. A deeper analysis of the endset on
the TG curve and the curve itself in the temperature range 300–400 ◦C showed faster residue
burning in the POM-R sample. Polymer recycled (POM-R), definitely in the presence of
oxygen, was more susceptible to combustion than the reference sample (POM-P). In such an
environment, the degree of degradation initiated at lower temperatures played a major role,
which in turn led to the faster decomposition of the polymer at much higher temperatures.
The influence of the oxidizing environment also caused a reduction in all indices by nearly
60 ◦C for T5%–T20%, and even 100 ◦C for T50% and Tmax, compared to the previously
discussed results. Differences in the residual values between the two samples at the end
temperatures of the heating program suggest that different degradation mechanisms are
involved. Nevertheless, such a low residue content (0.6% POM-P and 1% POM-R and POM-
O) indicates that good flammability of these samples can be expected. The waste sample
(POM-O) was also characterized by the highest thermogravimetric indicators (Table 4);
however, under oxidizing conditions, two decomposition stages could be observed for this
sample: the first in the range up to 390 ◦C, which was the main polymer decomposition,
and the second from 390 to 560 ◦C, which was the process of afterburning the carbon to
a residue of 1%. It can be concluded that the residues formed after heating the POM-O
sample in an inert environment (which may be responsible for the material stabilization
effect at lower temperatures) decompose at temperatures of 390–560 ◦C in an oxidizing
environment during the afterburning of the resulting residue.

4.3. Kinetic Modelling of Thermo-Oxidative Degradation Process

In order to obtain significant information on the mechanism of the degradation pro-
cess, determination of the reaction order, reaction rate constant, apparent activation energy,
and the pre-exponential coefficient, kinetic studies of the POM-P, POM-R, and POM-O
thermal degradation process was carried out using the thermogravimetric method. A set
of three signals with the following temperature domains was introduced as thermogravi-
metric input data: β = 10 ◦C/min, 20–600 ◦C; β = 15 ◦C/min, 20–600 ◦C; β = 20 ◦C/min,
20–600 ◦C. Figures A1–A6 (Appendix A) show the results of the analysis of the kinetic
degradation of POM-P, POM-R, and POM-O samples in an oxidizing (A) OX and inert
(B) IN atmosphere for the Friedman and OFW models. The pink color corresponds to the
heating rate β = 10 ◦C/min, blue β = 15 ◦C/min, and red β = 20 ◦C/min.

As shown by the curves for the samples tested under oxidizing conditions (Appendix A:
Figures A1A, A3A and A5A), all three POM thermogravimetric curves showed a course
trend characterized by noticeable grades. The comparison of two different isoconversion
methods (Friedman and OWF—Appendix A) proved their differences and imperfections
when applied to numerous studies of the degradation of polymeric materials [25–28]. On
the basis of the obtained curves, the values of apparent activation energy (Ea) in the entire
range of mass loss were determined using both kinetic models.

The course of the curves shown in Figures 6–8 confirmed that the decomposition of
homopolyacetals can be a single or multi-stage process depending on their origin and
thermal history, which may result, among other factors, from only univariate or invariant
apparent activation energy as the reaction progresses. Following the literature data, it
would be expected that the activation energy for the homopolymer should be in the range
of 40–160 kJ/mol [3,4].
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Figure 6. Apparent activation energy vs. partial mass loss found from the slope of isoconversion lines from Friedman (black
lines) and OWF (blue lines) analyses of POM-P plots, where OX stands for tests carried out in an oxidizing atmosphere and
IN in an inert atmosphere.

Figure 7. Apparent activation energy vs. partial mass loss found from the slope of isoconversion lines from Friedman (black
lines) and OWF (blue lines) analyses of POM-R plots, where OX stands for tests carried out in an oxidizing atmosphere and
IN in an inert atmosphere.

In the case of the graph of changes in apparent activation energy as a function of the
partial mass loss of the POM-P sample, a similar trend of changes in activation energy was
observed in the range of 0.4–0.8 weight loss (regardless of the nature of the atmosphere in
which TG measurements were carried out and the calculation model used). However, the
intensity of the apparent activation energy changes in the considered range seemed to be
much greater for the results calculated by the Friedman method. The obtained values of
apparent activation energy (500–650 kJ/mol—Friedman model; 250–300 kJ/mol—OWF
model) significantly exceeded those obtained in the literature. This is due to the fact that
the POM-P sample did not have any thermal history; hence, it was characterized by a
higher energy barrier, which had to be exceeded to lead to decomposition both under
oxidizing and inert conditions. On the other hand, the data presented in the literature
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came from the POM sample, which, like POM composites, already had a certain thermal
history. According to the literature, an increase in the activation energy can be attributed to
the higher degree of crystallinity of POM [32,33] manifested by the better arrangement of
polymer chains even in the molten state. More crystalline polymers require higher energy
inputs to overcome their inter- and intramolecular forces, and the activation energy barrier
is at higher level [32,33].

Figure 8. Apparent activation energy vs. partial mass loss found from the slope of isoconversion lines from Friedman (black
lines) and OWF (blue lines) analyses of POM-O plots, where OX stands for tests carried out in an oxidizing atmosphere and
IN in an inert atmosphere.

On the other hand, in the case of the recycled sample (POM-R), the nature of changes
in apparent activation energy was dictated by the conditions for conducting thermogravi-
metric measurements. The applied calculation models turned out to be consistent in terms
of the nature of the curve changes and similar in terms of Ea in the entire range of mass
loss. It is worth noting that the trend of Ea changes in the oxidizing medium (OX) with the
progress of the reaction corresponded to the trend presented in the cited literature [3,4,32].
Meanwhile, the degradation of POM-R carried out in an inert atmosphere followed a
different mechanism, which covered almost the entire measuring range. Its maximum was
shifted towards lower temperatures and also lower values of mass loss. The only factor
that remained unchanged was the height of the energy barrier. The presented observa-
tions can be summed up by the fact that POM with a single thermal history decomposes
quite easily under oxidative conditions, while the same sample under neutral conditions
has a high energy barrier (like the POM-P sample) with the maximum shifted towards
lower temperatures.

Multiple processing of polyacetal (POM-O) and exposure of the polymer to other
external factors (mechanical stress, UV radiation, etc.) resulted in a significant reduction
in the apparent activation energy in the entire measuring range (oxidizing and inert
atmosphere). Simulations carried out in accordance with both kinetic models showed a
very similar course of the Ea curves, which confirmed our assumptions, preceded by DSC
tests, that along with the degree of POM processing, its thermal and thermo-oxidative
degradation is facilitated. Thus, the above results confirmed the theses put forward in our
previous publication [8,9].

Knowing the values of the apparent activation energy changes as a function of partial
mass loss, theoretical curves were fitted to the experimental data (F-Test) for individual
samples (Appendix B: Figures A7–A9). In the case of all tested types of polyacetals, each
of the 16 possible variants was checked in a single-step reaction (linear regression), as
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shown in Table 1. Then, knowing the six best linear regressions, parallel and subsequent
reactions consisting of two stages in each of the 16 possible variants of X-Y (nonlinear
regression) were checked as kinetic models, where X is the symbol of the first reaction, and
Y is the symbol of the second reaction. The choice of X as the first reaction was dictated
by the results of the six best fits using the linear regression method. It should be noted
here that the calculations for the model of follow-up reactions take much longer than for
parallel or competitive reactions, and the obtained results can be very similar in a statistical
sense [15,16,21–24]. Table 5 shows the results of the six best matches in terms of the F-test
indicator for measurements made in an oxidizing and inert atmosphere.

Table 5. Six best fits of kinetic models to experimental results of POM-P, POM-R, and POM-O samples
tested in oxygen and inert atmosphere (F-Test).

POM-P

#
Oxygen Inert

Type f-Act F-Test Type f-Act F-Test
1 Cn B 870 1.00 An 632 1.00
2 Bna 869 1.03 Fn 632 1.52
3 Fn 869 1.03 Cn B 631 1.52
4 F2 871 1.08 F2 633 1.55
5 An 870 1.63 Bna 631 1.56
6 F1 871 1.99 D3 633 2.00

POM-R

#
Oxygen Inert

Type f-Act Fexp Type f-Act Fexp
1 Cn B 1028 1.00 An 674 1.00
2 Bna 1028 1.02 D3 675 3.36
3 A2 1039 1.22 D4 675 4.17
4 C1 B 1029 1.26 F2 675 4.28
5 A3 1029 1.41 Fn 674 4.28
6 Fn 1030 1.97 Cn B 673 4.28

POM-O

#
Oxygen Inert

Type f-Act Fexp Type f-Act Fexp
1 Cn B 934 1.00 An 855 1.00
2 Bna 934 1.03 Cn B 854 1.00
3 Fn 935 1.14 Bna 854 1.01
4 F2 936 1.19 Fn 855 1.01
5 F1 936 1.35 C1 B 855 1.03
6 An 935 1.35 R3 856 1.05

In all the discussed cases of polyacetals, the best fit of the curves to the experimental
data was obtained using the mechanism of single-stage or independent reactions. However,
for samples decomposing under oxidative conditions, the best fit was obtained for the
Cn B model (reaction of nth order with autocatalysis by product B). These results are still
in good agreement with isoconversion studies for POM based on the Friedman method,
where the autocatalytic nature of the POM degradation process was suggested [18,19,34].
Generally, autocatalysis occurs when the products catalyze the reaction; reactants are
regenerated during a reaction. During POM degradation, the evolved formaldehyde
autocatalyzes the decomposition process of POM. Autocatalysis occurs when the products
catalyze the reaction; this occurs when the reactants are regenerated during a reaction in
what is called branching. The reactants will eventually be consumed, and the reaction
will enter a termination stage where it will cease [34]. On the other hand, for samples
that decompose under neutral conditions, the best fit was obtained for the An model (n-
dimensional nucleation according to Avrami-Erofeev). The kinetic parameters describing
these models are listed in sequence for the POM-P, POM-R, and POM-O samples in Table 6.



Materials 2021, 14, 2281 14 of 26

Table 6. Kinetic parameters determined by non-linear regression for thermal and thermo-oxidative
degradation of POM-P, POM-R, and POM-O.

Factor
POM-P POM-R POM-O

Oxygen Inert Oxygen Inert Oxygen Inert

log A1/s−1 26.54 30.42 6.92 10.81 8.28 12.16
E1/kJ/mol 307.08 366.89 111.53 172.33 122.95 183.95

Stand. dev. n1 0.41 0.26 0.23 0.07 0.35 0.19
Correlation coefficient 0.9998 0.9997 0.9998 0.9993 0.9997 0.9994

In a further step, thanks to the known kinetic parameters determined for individual
kinetic models presented in Table 6, simulations were performed to predict the mass loss
of each sample vs. time, in the temperature range from 300 to 370 ◦C (Figures 9–11) in an
oxidizing environment. As we mentioned above, the temperature range was dictated by
the fact that in our previous publications [8,9] we suggested that the thermal-oxidative
degradation of POM could be performed at a temperature as low as 350 ◦C.

Figure 9. Prediction of the partial mass loss during heating in the temperature range 300–370 ◦C in an oxygen atmosphere.
The simulation was performed for the kinetic model of the POM-P sample, which was characterized by the best fit to the
experimental results (Table 5).

As can be seen in Figures 9–11, the change in the partial mass loss as a function of
time showed a power character in the whole or partial temperature range. For the POM-P
sample, this change was complete, and after 1 min of heating in an oxidizing atmosphere
at 300 ◦C, about 10% of the sample was lost, and almost 99% at 360 ◦C. It is noteworthy
that the rate of mass loss in this temperature range varied drastically, and it is anticipated
that the total mass loss could be obtained after 50 s at 370 ◦C (Figure 9).

A slightly different trend was observed in the case of the POM-R sample. As expected,
the reaction rate of POM-R decomposition should be much higher than the rate of POM-P
degradation. This is illustrated, inter alia, by the degree of predicted weight loss after 1 min
for individual temperatures. The complete decomposition of POM-R should take 15 s at
370 ◦C (Figure 10).
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Figure 10. Prediction of the partial mass loss during heating in the temperature range 300–370 ◦C in an oxygen atmosphere.
The simulation was performed for the kinetic model of the POM-R sample, which was characterized by the best fit to the
experimental results (Table 5).

Figure 11. Prediction of the partial mass loss during heating in the temperature range 300–370 ◦C in an oxygen atmosphere.
The simulation was performed for the kinetic model of the POM-O sample, which was characterized by the best fit to the
experimental results (Table 5).

On the other hand, the degradation of POM-O did not occur completely, despite the
simulation carried out under comparable temperature and time conditions. The reason
for this could be the presence in the sample of systems stabilizing/slowing down the
decomposition reactions at elevated temperatures added during the forming of the high-
temperature product, which we also found using other analytical methods in our previous
publication [8,9]. The kinetic analysis showed that the addition of commercial stabilizers
did not change the reaction mechanism, but only slowed it down, causing the formation of
some kind of residues after the decomposition process.
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5. Conclusions

In this article, we continued our discussions on the thermal and thermo-oxidative
degradation of POM samples with different life histories. Throughout the entire study
cycle of DSC measurements, the samples showed an endothermic effect. All DSC curves of
the heat flow as a function of temperature for the heating process in the temperature range
of 20–200 ◦C were characterized by the dominant phenomenon of energy absorption by the
system. The calculations showed that material recycling slightly increased the degree of
crystallinity in relation to the unprocessed sample. On the other hand, multiple processing
and long-term use reduced the degree of crystallinity to 43%. This meant that both the
processing and use of the POM detail facilitates the melting of the material, i.e., the easy
transition from a glassy to a plastic state because less energy must be supplied to the
system to reach the transition point between these states. Additionally, the unprocessed
sample was more susceptible to temperatures above 370 ◦C than the repeatedly processed
sample (POM-R).

The POM-P sample, without any thermal history, was characterized by a higher
energy barrier, which had to be crossed in order to induce degradation, leading to its
decomposition both under oxidizing and neutral conditions. On the other hand, in the case
of the recycled sample (POM-R), the nature of changes in apparent activation energy was
dictated by the conditions for conducting thermogravimetric measurements. The applied
calculation models turned out to be consistent in terms of the nature of the curve changes
and similar in terms of Ea in the entire range of mass loss. Multiple processing of polyacetal
(POM-O) led to a significant reduction in the apparent activation energy in the entire
measuring range. Friedman and OWF kinetic models showed a very similar course of the
Ea curves. The samples that decompose under oxidative conditions obtained the best fit for
the Cn B model (reaction of nth order with autocatalysis by product B), and the samples that
decompose under inert conditions for the An model (n-dimensional nucleation according
to Avrami-Erofeev). The suggestion indicated in the previous considerations to carry out
combustion at a temperature of at least 350 ◦C seems to be correct because the predictions
carried out show that the optimal temperature is 370 ◦C for all tested materials.
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Appendix A

Figure A1. Friedman POM-P analysis plot lg (reaction rate) vs. 1000 K/T: (A) sample investigated in an oxygen atmosphere;
(B) sample investigated in an inert atmosphere. Lines are drawn through isoconversion points for the measurement with 10
(♦), 15 (∆), and 20 (�) ◦C/min heating rates.
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Figure A2. Ozawa-Flynn-Wall POM-P analysis plot lg (heating rate) vs. 1000 K/T: (A) sample investigated in an oxygen
atmosphere; (B) sample investigated in an inert atmosphere. Lines are drawn through isoconversion points for the
measurement with 10 (♦), 15 (∆), and 20 (�) ◦C/min heating rates.
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Figure A3. Friedman POM-R analysis plot lg (reaction rate) vs. 1000 K/T: (A) sample investigated in an oxygen atmosphere;
(B) sample investigated in an inert atmosphere. Lines are drawn through isoconversion points for the measurement with 10
(♦), 15 (∆), and 20 (�) ◦C/min heating rates.
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Figure A4. Ozawa-Flynn-Wall POM-R analysis plot lg (heating rate) vs. 1000 K/T: (A) sample investigated in an oxygen
atmosphere; (B) sample investigated in an inert atmosphere. Lines are drawn through isoconversion points for the
measurement with 10 (♦), 15 (∆), and 20 (�) ◦C/min heating rates.
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Figure A5. Friedman POM-O analysis plot lg (reaction rate) vs. 1000 K/T: (A) sample investigated in an oxygen atmosphere;
(B) sample investigated in an inert atmosphere. Lines are drawn through isoconversion points for the measurement with 10
(♦), 15 (∆), and 20 (�) ◦C/min heating rates.
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Figure A6. Ozawa-Flynn-Wall POM-O analysis plot lg (heating rate) vs. 1000 K/T: (A) sample investigated in an oxygen
atmosphere; (B) sample investigated in an inert atmosphere. Lines are drawn through isoconversion points for the
measurement with 10 (♦), 15 (∆), and 20 (�) ◦C/min heating rates.
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Appendix B

Figure A7. Experimental points for POM-P sample, investigated with 10, 15, and 20 ◦C/min heating rates, represented by
simulated solid lines: (A) investigations carried out in oxygen atmosphere; (B) investigations carried out in inert atmosphere.
For the simulation, the apparent activation energy was used as the function of conversion.
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Figure A8. Experimental points for POM-R sample, investigated with 10, 15, and 20 ◦C/min heating rates, represented by
simulated solid lines: (A) investigations carried out in oxygen atmosphere; (B) investigations carried out in inert atmosphere.
For the simulation, the apparent activation energy was used as the function of conversion.
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Figure A9. Experimental points for POM-O sample, investigated with 10, 15, and 20 ◦C/min heating rates, represented by
simulated solid lines: (A) investigations carried out in oxygen atmosphere; (B) investigations carried out in inert atmosphere.
For the simulation, the apparent activation energy was used as the function of conversion.
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