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Abstract: This research aimed to identify changes in muscle mechanical properties (MMPs) when a
standardized sequence of movements is performed and to determine the influence of acute low back
pain (LBP) and age on the MMPs. Socio-demographic, clinical variables and MMPs were collected in
33 patients with LBP and 33 healthy controls. A 2 × 2 × 2 (group × age × time) analysis of variance
(ANOVA) mixed model was used to determine the effect of the study factors on the different MMPs.
There were no significant triple interactions. After the movements, tone and stiffness increased
0.37 Hz and 22.75 N/m, respectively, in subjects <35 years, independent of their clinical status.
Relaxation showed differences by age in healthy subjects and creep in LBP subjects. Furthermore,
elasticity was higher in <35 years (p < 0.001) without the influence of any other factor. In conclusion,
sequenced movements can modify tone and stiffness as a function of age, while age-associated
changes in viscoelastic characteristics depends on pain but not on movements. The MMPs should be
assessed, not only at the beginning of the physical examination at rest, but also along the patient’s
follow-up, depending on their pain and age, in a clinical setting.

Keywords: myotonometry; thixotropy; viscoelasticity; spinal pain

1. Introduction

Back pain is one of the most common musculoskeletal pain disorders, affecting 80% of
the population at some point in their lives [1]. The increasing prevalence of low back pain
(LBP) is extensively detailed in the literature [2,3], which shows the necessity of a better
understanding of the acute stage of the pathology to improve diagnosis and treatment,
as well as to minimize the socio-economic burden [4]. Researchers categorize about 85%
of LBP as non-specific, without structural changes, inflammation, or specific underlying
disease [5,6]. Nevertheless, LBP has been associated with changes in neuromuscular
activity [7,8], decreased spinal mobility, limited lumbar muscle flexibility, and altered spinal
kinematics [9]. Furthermore, a modification of the mechanical changes associated to within
and between muscle activity redistribution in subjects with LBP has been described [6,7].
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These changes determine a reduction in lumbar spine function and alteration of the muscle
mechanical properties (MMPs) [9–12], as well as inadequate motor control [13].

The MMPs play a central role in several physiological and pathophysiological pro-
cesses, suggesting a relationship between pain and muscle stiffness in different spinal pain
disorders, including LBP [14,15]. However, previous studies have not described predictive
models of the anisotropic viscoelastic responses of relaxed muscles under physiological
conditions. The changes in muscle tissues that determine spinal stiffness are not fully
understood, requiring further research [15,16]. One of the characteristics of muscle tissue
that could modify its mechanical properties is thixotropy [17]. Thixotropy refers to the
property of a tissue to become fluid under certain conditions, such as voluntary movement
or passive muscle stretch, and to return to its primary characteristic at rest [18]. Thixotropic
substances are, therefore, history-dependent and have a “memory time” [19,20]. Some
researchers described this thixotropic behaviour as a “short-range stiffness”, which tends
to reduce or disappear after a few repetitions of movement and reappear after resting in
healthy subjects [21]. The influence of such viscoelastic properties on the determination
of MMPs in acute LBP and their modifications associated with the spinal movements
performed on the physical evaluation, age or sex are relevant from a clinical point of view.

New technologies, such as elastography, help to study the passive mechanical be-
haviour of skeletal muscles [22]. However, their high cost makes them inaccessible to a
clinical setting, challenging the determination of the MMPs. Since a decade ago, the device
MyotonPRO© emerged as a non-invasive and reliable alternative to assess and monitor
MMPs with clinical applications Several studies have shown sufficient accuracy and preci-
sion to determine MMPs in spinal muscles [23–26] and other tissues and regions [23,27–29],
although efforts to better determine the concurrent validity need further research [30].
Previous research has associated MMPs alterations, specifically an increase in stiffness
and tone or a decrease in elasticity, and axial spondyloarthritis [24]. Moreover, aging is
associated with structural tissue remodelling, which contributes to increased stiffness and
tone, and decreased elasticity at the cervical spine, and also the extremities [31,32]. Age
and gender can also influence measures of muscle tone in the orofacial musculature [33].
Likewise, changes in cervical and lumbar MMPs concerning position or movement have
been identified [31,33–36]. However, the behaviour of these patterns in the central stabilizer
system, such as the paraspinal muscles [12], remains unknown when the subjects develop a
standardized sequence of spinal movements, as is performed during physical examination,
which could improve the diagnosis and treatment processes.

Therefore, this study aimed to identify changes in paraspinal MMPs when submitted
to a standardized sequence of lumbar movements and to determine the influence of lumbar
pain and age in those changes.

2. Methods

An observational, test-retest study including subjects with LBP and healthy controls
was performed. Participants were recruited with a non-probabilistic sampling of two
centres, Physiobalance (private physiotherapy centre) and the Biosanitary campus of the
University of Córdoba, Spain, from November 2018 to January 2021. Assessments were
conducted between April 2019 and March 2021. The Córdoba Research Ethics Commit-
tee approved this project (reference number 4016/2018). All participants signed written
informed consent.

2.1. Participants

Sixty-six subjects of both sexes participated in this study. Thirty-three of them pre-
sented acute LBP with less than four weeks of evolution [37] and a pain score of ≥3 on
the visual analogue scale (VAS) [38]. The control group consisted of 33 healthy subjects,
matched by sex, age (±3 years), and body mass index (BMI) (±3 kg/m2), without spinal
pain in the last six months or any neurological or musculoskeletal pain disorder.
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The exclusion criteria for both groups were history of traumatic lesions at the spine,
scoliosis, spinal surgery, congenital deformity, inflammatory disease, pregnancy, and
receiving spinal physiotherapy treatment in the last six months.

2.2. Sample Size

A moderate difference size (Cohen d = 0.7) [39], considered clinically relevant in
musculoskeletal pathology and physiotherapy field [40], was estimated for between-group
comparisons of MMPs. With an alpha level of 0.05 and power of 0.8, 33 subjects per group
were needed (GPower 3.1 software, Düsseldorf, Germany).

2.3. Assessments and Procedures

After signing the informed consent form, researchers collected socio-demographic
(age, sex, weight, height, and BMI) and clinical (severity of back pain and disability using
a VAS scale and the Oswestry Disability Questionnaire (ODI) data, respectively [41]).
Subsequently, the MMPs, using a MyotonPRO® (Myoton AS, Tallinn, Estonia) device,
were assessed before and after a standardized sequence of movements. The MyotonPRO©
provides measurements of five MMPs: tone or state of tension, determined by the frequency
(Hz); biomechanical properties such as dynamic stiffness (N/m) and decrement, that
characterizes elasticity; and viscoelastic properties such as relaxation or mechanical stress
relaxation time (ms) and creep (Deborah number), which corresponds to the gradual
elongation in the tissue when subjected to constant tension [42]. The device induces a
natural damped oscillation of the tissue following the application of a controlled load
through a cannula. To the initial 0.18 N of compression of the subcutaneous tissue, the
MyotonPRO® added a pulse of 15 ms and 0.40 N of mechanical force. The accelerometer at
the sensor’s tip provides the data that characterizes the tissue [43].

A clinician with more than fifteen years of clinical experience, identified the spinous
process of L5 by palpatory testing and performed the tonometric test on the erector spinae,
located 2.5 cm to the right and left of the spinous process. The assessment was performed
with the patient in a prone position with both arms alongside the body. Muscle measure-
ments were taken first on the left side, then on the right side, and the process was repeated.
The measurement was taken during a five-second apnoea after the normal expiratory
phase [24,44] (Figure 1).

Figure 1. Procedure for measuring MMPs at lumbar level with MyotonPRO©.

The standardized sequence of movements involved the maximum range of motion in
frontal flexion, extension, lateral flexion, and rotation of the spine in a standing position, all
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routinely used in the conventional evaluation of the amount of movement of patients in a
clinical setting [45]. Each movement lasted four seconds, with two seconds to achieve the
maximum range of motion and two seconds to return to the neutral position, controlled with
a metronome (view Supplementary Material, Figures S1–S6). A total of three repetitions
per movement were performed, supervised by a second clinician with more than ten years
of clinical experience. The whole procedure did not take more than ten minutes.

2.4. Statistical Analysis

Descriptive results for qualitative variables were expressed as frequencies and per-
centages. Quantitative variables were expressed as means, standard deviations, and 95%
confidence interval (CI). The Kolmogorov–Smirnov test was used to assess the normality
of the data distribution, with p > 0.05 in all cases.

In a preliminary analysis of the data, no side-to-side differences were identified when
applying Student’s t-test between measurements on each group (p > 0.05). Consequently,
pooled (mean) data from both sides were used in the main analysis.

A 2 × 2 × 2 mixed model (group × age × time) of analysis of variance (ANOVA)
was used to determine the effect of the study factors on the different MMPs. The first
factor was clinical status (LBP patients vs. healthy subjects). The second factor was the age,
with two levels (subjects <35 vs. >35 years) as previous studies with similar objectives has
defined [1,46–48]. Finally, the third factor analysed was time of assessment, with before and
after movement measure as the levels of this repeated measures factor. The first hypothesis
of interest was the triple interaction. In the absence of triple interaction, double interactions
(group-by-time, group-by-age, time-by-age) were those of interest. If no interactions were
observed, the main effect of each factor was finally studied. Pairwise comparisons were
conducted by post hoc Bonferroni tests when necessary.

In all cases, the confidence level was established at 95%, and the statistical significance
level for the tests was p < 0.05. The analyses were carried out by IBM SPSS® Statistics
version 25 (SPSS Inc., Chicago, IL, USA).

3. Results

A total of 66 subjects were analysed, 33 with acute LBP (<35 years n = 19, >35 years
n = 14) and 33 healthy controls (<35 years n = 18, >35 years n = 15), with a mean age of
33.3 ± 11.8 years and a BMI of 23.9 ± 2.6 kg/m2 (Table 1).

Table 1. Demographic characteristics of the sample.

LBP Group (N = 33) Healthy Group (N = 33) p-Value

Age (years) 33.05 ± 11.8 33.6 ± 12.0 NS
Sex (female/male) 14/19 14/19 NS

BMI (kg/m2) 24.2 ± 2.45 23.6 ± 2.8 NS
Pain intensity (VAS) 4.7 ± 1.7 - -

ODI 7.8 ± 5.4 - -
Results are expressed as: mean ± standard deviation, frequencies. Abbreviations: BMI: Body mass index,
VAS: Visual analogic scale, ODI: Oswestry disability questionnaire, NS: not significant differences.

There was no triple interaction when analysing the pooled effect of movement, clinical
status, and age on the behaviour of the MMPs (frequency: F = 0.169, p = 0.682; stiffness:
F = 0.623, p = 0.433; decrement: F = 0.947, p = 0.334; relaxation: F = 0.003, p = 0.982; creep:
F = 0.632, p = 0.430).

With borderline statistical significance found in the double interactions, frequency
(F = 3.342, p = 0.045) and stiffness (F = 3.145, p = 0.048) increased 0.37 Hz (95% CI 0.06–0.70)
and 22.75 N/m (95% CI 5.83–39.67), respectively, in the younger subjects after the move-
ments, independent of their clinical status. Only the baseline measure showed significant
differences (p < 0.05) between both age groups in both MMPs. No other time-by-age in-
teraction was identified neither for decrement (F = 0.060, p = 0.808), relaxation (F = 1.599,
p = 0.211), and creep (F = 0.007, p = 0.934) outcomes.
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Likewise, the relaxation and creep showed interactions between age and clinical status
of the subjects (F = 3.202, p = 0.047; F = 3.345, p = 0.045, respectively), with relaxation being
2.98 ms (95% CI 0.36–6.01) higher in young healthy subjects. In contrast, creep was 0.10
(95% CI 0.06–0.15) greater in subjects with LBP over 35 years. Differences between patients
and controls in those over 35 were also found (mean difference 0.12, 95% CI 0.01–0.27,
p = 0.04). Frequency (F = 1.391, p = 0.243), stiffness (F = 0.675, p = 0.414), and decrement
(F = 0.013, p = 0.908) did not show group-by-age interaction.

The group-by-time interaction did not reveal any statistical significance (frequency:
F = 0.244, p = 0.623; stiffness: F = 0.028, p = 0.868; decrement: F = 0.212, p = 0.647; relaxation:
F = 0.135, p = 0.714; creep: F = 0.111, p = 0.740).

Finally, the evaluation of the main factors showed that the decrement was different
depending on age. Thus, older subjects presented higher decrement than the younger ones
(mean difference 0.337, 95% CI 0.21–0.46, F = 29.176, p < 0.001) (Table 2).

Table 2. Results of MMPs according to the clinical status (LBP group, N = 33; healthy group, N = 33),
age, (under 35 years, n = 37; over 35 years, n = 29), and time of assessment.

Group Age Baseline Evaluation After Movement
Evaluation

Between Evaluation
Differences

Frequency
(Hz)

LBP <35 years 14.26 ± 1.50 14.64 ± 2.07 0.38 (0.83, −0.06)

Healthy 13.94 ± 1.40 14.30 ± 1.87 0.36 (0.82, −0.09)

Between clinical status differences 0.31 (−0.98, 1.61) 0.33 (−1.09, 1.77)

LBP >35 years 14.91 ± 2.51 14.98 ± 2.50 0.07 (0.59, −0.44)

Healthy 15 87 ± 2,46 15.73 ± 2.33 −0.14 (0.35, −0.64)

Between clinical status differences −0.96 (−2.43, 0.50) 0.74 (−2.36, 0.87)

Stiffness (N/m)

LBP <35 years 250.26 ± 59.63 269.03 ± 89.23 18.77 (42.37, −4.82)

Healthy 235.23 ± 55.73 261.95 ± 110.83 26.72 (50.97, 2.47)

Between clinical status differences 15.02 (−30.99, 61.05) 7.08 (−53.09, 67.26)

LBP >35 years 283.36 ± 80.95 295.48 ± 76.09 12.12 (39.61, −15.37)

Healthy 309.95 ± 85.27 309.85 ± 81.04 −0.10 (26.46, −26.66)

Between clinical status differences −26.58 (−78.58, 25.41) 14.36 (−82.35, 53.62)

Decrement

LBP <35 years 1.05 ± 0.23 1.08 ± 0.31 0.02 (0.10, −0.05)

Healthy 1.08 ± 0.22 1.04 ± 0.17 −0.03 (0.04, −0.11)

Between clinical status differences −0.02 (−0.19, 0.15) 0.04 (−0.13, 0.21)

LBP >35 years 1.41 ± 0.24 1.41 ± 0.21 −0.00 (0.09, −0.09)

Healthy 1.38 ± 0.34 1.40 ± 0.33 0.01 (0.10, −0.07)

Between clinical status differences 0.03 (−0.16, 0.22) 0.01 (−0.18, 0.21)

Relaxation
(ms)

LBP <35 years 19.35 ± 5.89 19.05 ± 5.96 −0.29 (0.38, −0.98)

Healthy 20.79 ± 4.05 20.35 ± 4.61 −0.44 (0.28, −1.17)

Between clinical status differences −1.44 (−4.56, 1.66) −1.30 (−4.54, 1.94)

LBP >35 years 19.26 ± 4.20 19.43 ± 4.54 −0.16 (0.96, −0.63)

Healthy 17.58 ± 3.86 17.61 ± 3.70 0.03 (0.80, −0.73)

Between clinical status differences 1.68 (−1.77, 5.15) 1.81 (−1.79, 5.43)

Creep (Deborah
Number)

LBP <35 years 1.15 ± 0.14 1.13 ± 0.19 −0.02 (0.05, −0.09)

Healthy 1.20 ± 0.22 1.16 ± 0.28 −0.04 (0.035, −0.11)

Between clinical status differences −0.04 (−0.19, 0.09) 0.03 (−0.19, 0.12)

LBP >35 years 1.27 ± 0.28 1.22 ± 0.28 −0.05 (0.02, −0.14)

Healthy 1.14 ± 0.21 1.12 ± 0.18 −0.01 (0.07, −0.09)

Between clinical status differences 0.13 (−0.25, 0.30) 0.09 (−0.08, 0.27)

Results are expressed as mean ± standard deviation, mean difference (95% confidence interval).
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4. Discussion

The results showed that paraspinal lumbar MMPs have different behaviour under
specific conditions of lumbar movements, clinical status or age. Thus, the sequenced lumbar
movements protocol influenced tone and stiffness depending on age, with lower values for
the MMPs in younger subjects, which were more susceptible to be influenced by movement.
However, the presence of LBP did not influence MMPs. On the other hand, although with
almost statistical significance, the viscoelastic state of paraspinal muscles, expressed as
relaxation and creep, depends on the combination of pain and age. While healthy subjects
showed a reduction in relaxation with age, these differences did not occur in individuals
with LBP. The presence of pain determined the differences in creep concerning age. In
this case, the performance of sequenced lumbar movements did not influence the MMPs.
Furthermore, the elasticity, as the inverse of the decrement, was higher in younger subjects,
without the influence of any other factor.

Curiously, when the presence or absence of LBP was analysed separately, no signif-
icant differences were detected, despite the higher values of tone, stiffness, and lower
values of decrement, relaxation, and creep found in LBP subjects. This was an unexpected
result, since acute LBP is commonly associated to muscle spasm throughout the paraspinal
muscles [13,49,50]. However, it could be explained by the mild disability that showed the
current sample. Finally, it is relevant to note that there was no interdependence among the
execution of the movements, the age, and the clinical condition of the subjects, showing that
the three factors were independent. In summary, the influence of movements, pain, and age
is different depending on each specific MMP, which means that MMPs should be assessed,
not only at the beginning of the physical examination, but also along the follow-up of the
patient, with emphasis on elder subjects and those with pain.

This study determined the interaction between the effect of sequenced movements
and the advancing of age on tone and stiffness at the lumbar level, where the first measure
reports a difference between age groups of 1.29 Hz that decreases to 0.88 Hz after movement.
This difference indicates that younger subjects experienced a change in their muscle tone
that did not occur in older subjects. Regarding stiffness, from a difference between age
groups of more than 50 N/m, younger subjects increased their stiffness more than 8%
after the movements, while older subjects showed a rise of only 2%. Apparently, our
results would contradict the behaviour of thixotropic properties of specific tissues, which
establishes the reduction of viscosity and, therefore, of muscle stiffness, during and, for
some time, after movement [19,21,51]. However, the procedures to perform the movements
associated to physical evaluation may explain the results. In fact, Altman et al. [18] reported
that the frequencies of movements that allow observing both thixotropic and rheopectic
reactions, this one being opposite phenomenon to thixotropy, in muscle fibres are in the
range of 1 to 20 Hz [20]. Specifically, in those movements below 1 Hz, a rheopectic behaviour
is observed in activated fibres in rabbits [18]. Likewise, although some authors report
thixotropic behaviours, even in short-range movements or with just two repetitions [21,51],
the recovery of rigidity could occur after only 15 s of rest [21]. This could explain our
observations, because the lumbar movements associated with physical evaluation have a
low frequency and are followed by rest periods.

On the other hand, the fact that only subjects under 35 years presented a significant
change in muscle tone and stiffness after movement supports the relationship between
age and MMPs changes [14,31,32,44]. Supporting this approach, Ayapong-Badu et al. [32]
identified an 30% decrease in elasticity between age groups for biceps brachialis and
between 20% and 30% for rectus femoris, as was detected in our sample in the lumbar
muscles, and changes in tone of 10%. With similar aims, Kocur et al. [31] showed that
aging provokes an increase in the tone and stiffness of 11–17% for sternocleidomastoid and
trapezius muscles in healthy subjects. These changes in MMPs could be due to the muscle
composition and architecture alterations that occur with advancing age [31,33,52] and begin
in the young adulthood [53,54]. For example, some authors have suggested that increased
intramuscular adipose tissue in older adults is the cause of increased muscle stiffness [52,55],
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as well as the qualitative change in muscle fibres, with an increase in the proportion of
type I muscle fibres, characterized by greater stiffness than type II ones [31]. Curiously,
the tendon tissue shows a decrease in tone and stiffness in elderly subjects [56,57], which
means that different tissues show specific physiological adaptations to age. In summary,
for evaluation purposes, the significant changes in tone and post-movement stiffness in
subjects under 35 years suggest that the baseline measure represents the best approach to
characterize the MMPs in this population.

Our study also reported the relationship between LBP and age with relaxation, and
creep, as viscoelastic characteristics, of paraspinal muscles. Relaxation was different in
healthy subjects depending on age. In fact, advanced age established differences in creep
between healthy subjects and patients. However, the presence of LBP inhibited this be-
haviour in the creep. Although there is no previous research on viscoelastic properties in
acute LPB, previous studies have determined changes in MMPs in subjects with chronic
mechanical and inflammatory LBP and neck pain [24,36,43,58]. In these studies, the differ-
ences for MMPs between subjects with spinal pain and healthy subjects were explained
by the response of muscle spasm to pain, which decreases circulation and increases stiff-
ness [50], disuse as a cause of muscle atrophy, that also increases stiffness [33], or disease of
long duration, that alters elasticity and stiffness [43]. It is possible that the acute LBP and,
consequently, the short period of evolution of our sample, prevented the changes in the
MMPs. Future studies are required to confirm these findings as well as determine these
effects on a longer follow-up.

Strengths and Limitations

To date, no previous study has attempted to establish the adequate moment to eval-
uate MMPs in clinical practice based on the physical evaluation, clinical status and age.
Consequently, these results will allow us to determine the effect of the therapy on the
MMPs with greater precision.

However, several limitations must be recognized. First, the raters were not blinded,
although the assessment of the MMPs has shown high reliability and low rater dependence,
which limits a negative influence on the results [25,59]. Second, the evaluation of the
MMPs was only determined in paraspinal muscles at the L5 level, making it impossible
to know if other muscles and tissues exhibit similar behaviour. Third, although 35 years
has been used to distinguish younger than older adults [32,46,47], other age classifications
could provide different results and interpretations. Additionally, the study of other factors,
such as the level of physical activity, work or leisure-time activity [60–62], among others,
could have afforded other relationship patterns to the results. Furthermore, adding other
techniques to analyse muscle characteristics, such as surface electromyography, could
provide information on normal or unusual activity, such as muscle spasm during the
evaluation. Finally, our sample showed mild disability according to ODI, which could limit
the external validity of the results for higher levels of disability.

5. Conclusions

A sequenced spinal movement protocol can modify lumbar paraspinal tone and
stiffness according to the patient’s age but not according to the presence of LBP. The
changes in viscoelastic characteristics of lumbar muscles depend on age and the presence
or absence of pain, but not on the performance of the sequenced movements. Older
subjects showed less elasticity than younger ones at the L5 spinal level, independent of
their condition.

The MMPs should be assessed in a clinical setting, not only at the beginning of the
physical evaluation during rest, but also during the patient’s follow-up, with special
attention to elder subjects and those with pain.
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