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In the cancer treatment, magnetic nanoparticles are injected into the blood vessel nearest to the cancer’s tissues. The dynamic of
these nanoparticles occurs under the action of the peristaltic waves generated on the flexible walls of the blood vessel. Studying
such nanofluid flow under this action is therefore useful in treating tissues of the cancer. In this paper, the mathematical model
describing the slip peristaltic flow of nanofluid was analytically investigated. Exact expressions were deduced for the temperature
distribution and nano-particle concentration. In addition, the effects of the slip, thermophoresis, and Brownianmotion parameters
on the temperature and nano-particle concentration profiles were discussed and further compared with other approximate results
in the literatures. In particular, these results have been obtained at the same values of the physical examined parameters that was
considered in Akbar et al., “Peristaltic flow of a nanofluid with slip effects,” 2012. The results reveal that remarkable differences are
detected between the exact current results and those approximately obtained in the literatures for behaviour of the temperature
profile and nano-particles concentration. Accordingly, the current analysis and results are considered as optimal and therefore may
be taken as a base for any future comparisons.

1. Introduction

In the recent times, peristalsis has attracted much attention
due to its important engineering and medical applications,
like chyme movement in the intestine, movement of eggs
in the fallopian tube, transport of the spermatozoa in cer-
vical canal, transport of bile in the bile duct, transport of
cilia, circulation of blood in small blood vessels and in
the intrauterine fluid flow within the uterine cavity. Since
the first investigation of Latham [1], several theoretical and
experimental studies have been conducted to understand
peristaltic action [1–11]. In particular, to describe peristaltic
flow in a symmetric channel or axisymmetric tubes contain-
ing Newtonian or nonNewtonian fluids, many models have
been investigated by Zien and Ostrach [2], Lee and Fung
[3], Srivastava et al. [4], El Shehawey and Mekheimer [6],

Ramachandra and Usha [7], and Mekheimer and Abd
elmaboud [10].

Further, present application is in the embryo transfer
within the uterine cavity, where physiologists observed that
the intra-uterine fluid flow due to myometrial contractions
is peristaltic-type motion. In addition, De Vries et al. [12]
found that the myometrial contractions may occur in both
symmetric and asymmetric directions. Therefore, a great
effort was devoted to study the peristaltic flow of Newtonian
and nonNewtonian fluids in an asymmetric channel [13–23],
and recently of Jeffrey and Johnson-Segalman fluids; see, for
example, [24–28].

Although a huge number of studies for the peristaltic
flow of classical fluids are available, only few papers are
available for the peristaltic flow of nanofluids [29–34]. In this
regard, Akbar et al. [33] may be the first authors to study the
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peristaltic nanofluids, in which the peristaltic flow and heat
transfer of a nanofluid in an asymmetric channel have been
analyzed.They have used the homotopy perturbationmethod
to obtain the analytical approximate solutions for the temper-
ature distribution and the nanoparticles concentration.

The nanofluids are a new class of fluids designed by
dispersing nanometer-sizedmaterials (nanoparticles, nanofi-
bers, nanotubes, nanowires, nanorods, nanosheet, or drop-
lets) in base fluids. Choi [35] reported that an innovative
technique to improve heat transfer is by using nanoscale
particles in the base fluid. Further, Choi et al. [36] showed that
the addition of a small amount (less than 1% by volume) of
nanoparticles to conventional heat transfer liquids increased
the thermal conductivity of the fluid up to approximately two
times.

In the tumors treatment, one of the effective methods is
to inject the blood vessel nearest to the tumor with mag-
netic nanoparticles along with placing a magnet close to
the tumor. These particles act like heat sources, in the
presence of the applied magnetic field of alternating nature.
Mekheimer and Abd elmaboud [10] found that the cancer’s
tissues are destroyed if the temperature reaches 42–45∘C. On
the other hand, in this application the drug may be placed on
the magnetic nanoparticles and is injected near the tumor.
Then, the drug is absorbed by the tumor through a high
gradientmagnetic field, which is concentrated near the tumor
center [37]. Regarding, Habibi et al. [38] mentioned that the
drug absorption due to high concentration of the magnetic
particles increases andmagnetic force prevents uniform drug
distribution in circulatory system.This approach reduces the
side effect and allows using high dose of anticancer drug.
It should be noted that Majumder et al. [39] indicated that
nanofluidic flow usually exhibits partial slip against the solid
surface, which can be characterized by the so-called slip
length, around 3.4–68mm for different liquids.

The aim of this paper is to declare the exact effects of the
slip, thermophoresis, and Brownian motion parameters on
the temperature and nanoparticle concentration profiles of
nanofluid flow in an asymmetric channel. It is well known
that the exact solution of any physical model is optimal when
available and would lead to the correct physical interpre-
tations of the involved phenomena. Therefore, an approach
is presented to achieve this goal for the resulting system of
linear and nonlinear partial differential equations derived by
Akbar et al. [33]. Then, these exact solutions are invested in
obtaining the correct behaviour of the physical quantities.

2. The Mathematical Investigated Model

In the current work, we consider the peristaltic transport of
an incompressible Newtonian nanofluid in an asymmetric
channel with flexible walls, generating by propagation of
waves on the channel walls traveling with different ampli-
tudes and phases but with the same constant speed 𝑐. In the
Cartesian coordinates system (𝑥, 𝑦), the upper wall ℎ

1
and

lower wall ℎ
2
are given by, see Figure 1,
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Figure 1: Schematic diagram of a two-dimensional asymmetric
channel.

where 𝐴 = 1, −1 and 𝐵 = 0, 1 when 𝑖 = 1, 2, respectively.
Further, 𝑎

1
and 𝑎

2
are the amplitude of the waves, 𝜆 is the

wave length, 𝑑
1
+ 𝑑
2
is the width of the channel, the phase

difference 𝜑 varies in the range 0 ≤ 𝜑 ≤ 𝜋, where 𝜑 = 0, and
𝜋 corresponds to symmetric channel with waves out of the
phase and in the phase, respectively. It should be noted that
the following condition has to be achieved [40]:

𝑎
2

1

+ 𝑎
2

2

+ 2𝑎
1
𝑎
2
cos𝜑 ≤ (𝑑

1
+ 𝑑
2
)
2

, (2)

with the following nondimensional phenomena [33]:

𝑎 =

𝑎
1

𝑑
1

, 𝑏 =

𝑎
2

𝑑
1

, 𝑑 =

𝑑
2

𝑑
1

. (3)

On considering heat transfer along with nanoparticles
phenomena under the assumptions of long wavelength and
low Reynolds number approximation, Akbar et al. [33] found
that the flow is governed by the following system of partial
differential equations:

𝜓
𝑦𝑦𝑦𝑦

+ 𝐺
𝑟
𝜃
𝑦
+ 𝛽
𝑟
𝜎
𝑦
= 0, (4)

𝜃
𝑦𝑦

+ 𝑁
𝑏
𝜃
𝑦
𝜎
𝑦
+ 𝑁
𝑡
(𝜃
𝑦
)

2

= 0, (5)

𝜎
𝑦𝑦

+

𝑁
𝑡

𝑁
𝑏

𝜃
𝑦𝑦

= 0, (6)

𝑑𝑝

𝑑𝑥

= (𝜓
𝑦𝑦

+ 𝐺
𝑟
𝜃 + 𝛽
𝑟
𝜎)
𝑦

, (7)

where 𝜓, 𝜃, 𝜎, and 𝑝 are the stream function, tempera-
ture distribution, nanoparticles concentration, and pressure
gradient, respectively. In addition, 𝑁

𝑏
, 𝑁
𝑡
, 𝐺
𝑟
, and 𝐵

𝑟
are

the Brownian motion parameter, thermophoresis parame-
ter, local temperature Grashof number, and nanoparticles
Grashof number, respectively. The system (4)–(6) has to be
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solved subject to the following boundary conditions on 𝜓, 𝜃,
and 𝜎:

𝜓 =

𝐹

2

, 𝜓
𝑦
= −𝛽𝜓

𝑦𝑦
− 1 at ℎ

1
= 1 + 𝑎 cos (𝑥) ,

𝜓 = −

𝐹

2

, 𝜓
𝑦

= 𝛽𝜓
𝑦𝑦

− 1 at ℎ
2
= −𝑑 − 𝑏 cos (𝑥 + 𝜑) ,

(8)

𝜃 + 𝛾𝜃
𝑦
= 0, at 𝑦 = ℎ

1
,

𝜃 − 𝛾𝜃
𝑦
= 1, at 𝑦 = ℎ

2
,

(9)

𝜎 + 𝛾
1
𝜎
𝑦
= 0, at 𝑦 = ℎ

1
,

𝜎 − 𝛾
1
𝜎
𝑦
= 1, at 𝑦 = ℎ

2
.

(10)

3. Closed Form Solution of the Model

In the present section, an effective procedure is introduced to
obtain the analytical solutions for the resulted systemof linear
and nonlinear differential equations.

On integrating (6) twice and then inserting the resulted
equation into (5), we obtain

𝜕
2

𝜃

𝜕𝑦
2

+ 𝑁
𝑏
𝑓
1
(𝑥)

𝜕𝜃

𝜕𝑦

= 0. (11)

This equation can be exactly solved to give the tempera-
ture distribution, and therefore the nanoparticles concentra-
tion, as

𝜃 (𝑥, 𝑦) = 𝑓
4
(𝑥) 𝑒
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,

(13)

where 𝑓
𝑖
(𝑥), 𝑖 = 1, 2, 3, 4 are unknown functions to be

determined. On applying the boundary conditions (9) on
(12), and then solving the resulted equations, we get
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Further, applying the boundary conditions (10) on (13),
and then solving the given system, results
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where

𝑟
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−𝑁𝑏ℎ1

, 𝑟
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= 𝑒
−𝑁𝑏ℎ2

. (16)

The above analysis leads to the following implicit alge-
braic equation in 𝑓

1
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4. Exact Solutions of the Physical Variables

4.1. Exact Expression of the Stream Function 𝜓(𝑥,𝑦). Now, we
search for the exact expression of the stream function𝜓(𝑥, 𝑦).
By integrating the 𝜓(𝑥, 𝑦) expression in (4) twice, we obtain
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where
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Applying the boundary conditions (8) on the 𝜓-equation
given in (18) and (19), we obtain the following system:
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where again 𝐴 = 1, −1 when 𝑖 = 1, 2, respectively.
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4.1.1. Obtaining the Values of 𝑓
𝑗
, 𝑗 = 5, . . . , 8. On solving the

last linear system in (20) with (21), we obtain
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Table 1: The numerical values of 𝑓
1

at different values of𝑁
𝑡

for 𝑎 =

0.1, 𝑑 = 1, 𝑏 = 0.5, 𝑥 = 1, 𝜙 = 0.2 when 𝛾 = 𝛾
1

= 0.1 for 𝑁
𝑏

= 0.8

and 5.

𝑁
𝑏

𝑁
𝑡

𝑓
1

0.8

1.0 −0.923945
1.5 −1.180600
2.0 −1.437250
2.5 −1.693900
3.0 −1.950550
4.0 −2.463850

5.0

1.0 −0.492771
1.5 −0.533835
2.0 −0.574899
2.5 −0.615964
3.0 −0.657028
4.0 −0.739156

4.2. Exact Expression of the Pressure Gradient 𝑑𝑝/𝑑𝑥. To get
the pressure gradient 𝑑𝑝/𝑑𝑥, we obtain from (7) and the
above analysis that

𝑑𝑝

𝑑𝑥

= Ω
3
(𝑥) − 𝛽

𝑟
𝑓
1
𝑦 + (1 + 𝑁

𝑏
𝑓
1
)Ω
2
(𝑥) 𝑒
−𝑁𝑏𝑓1𝑦

, (24)

where

Ω
3
(𝑥) = Ω

1
(𝑥) + 𝑓

5
(𝑥) + 𝛽

𝑟
𝑓
1
(𝑥) , (25)

and further all other functions are already well defined in the
present section.

4.3. Numerical Values of 𝑓
1
(𝑥). In Section 3, the general

closed form solutions for the temperature distribution 𝜃 and
nanoparticles concentration 𝜎 are obtained and expressed in
terms of 𝑓

1
, 𝑓
2
, 𝑓
3
, and 𝑓

4
. As 𝑓

2
, 𝑓
3
, and 𝑓

4
depend on the

evaluating of 𝑓
1
, it is noticed from (17) that 𝑓

1
is governed by

a nonlinear algebraic equation. Once this equation is solved
for 𝑓
1
, the analytical expressions for 𝜃 and 𝜎 are established.

It should be noted that obtaining the value of 𝑓
1
ana-

lytically from (17) in terms of the other parameters set is
a very difficult task, and it may be impossible. However,
with the help of MATHEMATICA 6 software, the numerical
solutions are still available. Values for 𝑓

1
at some given cases

are presented in Tables 1 and 2. These obtained values for 𝑓
1

play an important role to get several plots for variation of the
temperature distribution and nanoparticles concentration,
which are introduced in the next section.

5. Results and Discussion

Besides discussing the effects of various physical parameters
on the temperature distribution andnanoparticles concentra-
tion, comparing with the approximate solutions obtained by
Akbar et al. [33] is also presented.

Effect of𝑁
𝑡
on the temperature profile 𝜃 for different val-

ues of the thermophoresis parameter𝑁
𝑡
is plotted in Figure 2
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Table 2: The numerical values of 𝑓
1

at different values of 𝛾 and 𝛾
1

for 𝑎 = 0.1, 𝑑 = 1, 𝑏 = 0.5, 𝑥 = 1, 𝜙 = 0.2 when𝑁
𝑏

= 2 for𝑁
𝑡

= 0.8 and 5.

𝑁
𝑡

𝛾
1

𝛾 𝑓
1

𝑁
𝑡

𝛾 𝛾
1

𝑓
1

0.8 0.5

0.2 −0.468643
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Figure 2: Variation of the temperature profile 𝜃 at different values
of𝑁
𝑡

for 𝑎 = 0.1, 𝑑 = 1, 𝑏 = 0.5, 𝑥 = 1, 𝜙 = 0.2 when 𝛾 = 𝛾
1

= 0.1 at
(a)𝑁
𝑏

= 0.8 and (b)𝑁
𝑏

= 5.

at two different values for Brownian motion parameter 𝑁
𝑏
.

It is observed from this figure that the temperature profile
increases when thermophoresis parameter 𝑁

𝑡
increases for

the small or high value of Brownian motion parameter𝑁
𝑏
. It

should be mentioned here that the present results are derived
through exact solutions not as in [33] by an approximate way
via the homotopy perturbation method. For the purpose of
comparison, remarkable differences can be easily detected
between our exact results presented in Figure 2(a) and those
obtained by Akbar et al. [33] at the same values of the
physical parameters. Regarding this we may point out that
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Figure 3: Variation of the temperature profile 𝜃 at different values
of 𝛾 for 𝑎 = 0.1, 𝑑 = 1, 𝑏 = 0.5, 𝑥 = 1, 𝜙 = 0.2, 𝛾

1

= 0.5, 𝑁
𝑏

= 2 at
(a)𝑁
𝑡

= 0.8 and (b)𝑁
𝑡

= 5.

the approximate solutions obtained in [33] were not effective
enough to give the correct physical curves.

Figure 3 shows the effect of the slip parameter 𝛾 on
the temperature profile 𝜃 at two different values of the
thermophoresis parameter 𝑁

𝑡
. The results reveal that the

temperature profile decreases in a specific domain with
increasing 𝛾 for any small or high value of 𝑁

𝑡
. After that

domain, the behaviour of 𝜃 is different, where it increaseswith
increasing 𝛾. However, the domain in which the temperature
profile decreases with increasing 𝛾 becomes wider when 𝑁

𝑡

takes high values; see Figure 3(b).
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Figure 4: Variation profile of nanoparticles concentration 𝜎 at dif-
ferent values of 𝛾

1

for 𝑎 = 0.1, 𝑑 = 1, 𝑏 = 0.5, 𝑥 = 1, 𝜙 = 0.2, 𝛾 = 0.5,
𝑁
𝑏

= 2 at (a)𝑁
𝑡

= 0.8 and (b)𝑁
𝑡

= 5.

The nanoparticles concentration 𝜎 is depicted in Figures
4 and 5. In Figure 4(a) when the small value of Brownian
motion parameter 𝑁

𝑏
is presented, it is observed that the

nanoparticles concentration 𝜎 decreases in a certain domain
with increasing the slip parameter 𝛾

1
. A converse of this

behaviour occurs after that domain. At a higher value
of Brownian motion parameter 𝑁

𝑏
, it is noticed that the

nanoparticles concentration 𝜎 decreases in the whole domain
with increasing the slip parameter 𝛾

1
. On comparing the

results depicted in Figure 4(a) and those obtained by Akbar
et al. [33] at the same values of the physical parameters,
slight differences are observed. Therefore, the current exact
solutions, which can be verified by direct substitution into
the governing differential equations and the boundary con-
ditions, are reported in this paper for the first time. In addi-
tion, the effect of the thermophoresis parameter 𝑁

𝑡
on the

nanoparticles concentration 𝜎 is depicted in Figure 5 at two
different values for 𝑁

𝑏
. The behaviour of 𝜎 always decreases

with increasing 𝑁
𝑡
. However, slight differences are also

observed between the current results in Figure 5(b) and those
obtained in Figure 4(b) by Akbar et al. [33]. Accordingly, the
present results can be viewed as optimal and more accurate.

6. Conclusion

In this paper, exact effects of the slip conditions and peristaltic
action on the nanofluid flow in an asymmetric channel were
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Figure 5: Variation profile of nanoparticles concentration 𝜎 at dif-
ferent values of𝑁

𝑏

for 𝑎 = 0.1, 𝑑 = 1, 𝑏 = 0.5, 𝑥 = 1, 𝜙 = 0.2 when
𝛾 = 𝛾
1

= 0.1 at (a)𝑁
𝑏

= 0.8 and (b)𝑁
𝑏

= 5.

discussed for the variations of the temperature profile and
nanoparticles concentration. The flow was described by a
system of linear and nonlinear partial differential equations
with complex boundary conditions generated on the flexible
walls of the channel.

The exact solutions have been successfully obtained
and reported for the first time. In addition, the obtained
exact numerical results for effects of the slip condition,
thermophoresis, and Brownian motion parameters on the
temperature and nanoparticles concentration profiles show
slight differences on comparing with the approximate solu-
tions obtained via the homotopy perturbation method. The
current analysis may throw some light on the nanofluid
dynamic aspects used in the biomedical applications to treat
the cancer’s tissues, with the help of magnetic nanoparticles
under the peristalsis on the blood vessels.
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