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ABSTRACT

Estimation of statistical associations in microbial ge-
nomic survey count data is fundamental to micro-
biome research. Experimental limitations, including
count compositionality, low sample sizes and tech-
nical variability, obstruct standard application of as-
sociation measures and require data normalization
prior to statistical estimation. Here, we investigate
the interplay between data normalization, microbial
association estimation and available sample size
by leveraging the large-scale American Gut Project
(AGP) survey data. We analyze the statistical prop-
erties of two prominent linear association estima-
tors, correlation and proportionality, under different
sample scenarios and data normalization schemes,
including RNA-seq analysis workflows and log-ratio
transformations. We show that shrinkage estimation,
a standard statistical regularization technique, can
universally improve the quality of taxon–taxon as-
sociation estimates for microbiome data. We find
that large-scale association patterns in the AGP data
can be grouped into five normalization-dependent
classes. Using microbial association network con-
struction and clustering as downstream data analy-
sis examples, we show that variance-stabilizing and
log-ratio approaches enable the most taxonomically
and structurally coherent estimates. Taken together,
the findings from our reproducible analysis workflow
have important implications for microbiome studies
in multiple stages of analysis, particularly when only
small sample sizes are available.

INTRODUCTION

Recent advances in microbial amplicon and metagenomic
sequencing as well as large-scale data collection efforts
provide samples across different microbial habitats that
are amenable to quantitative analysis. Following the or-
ganization of sequence data into operational taxonomic
units (OTUs) or amplicon sequence variants (ASVs), via
pipelines such as qiime (1), mothur (2) or dada2 (3), the
resulting count data are then available in tabular format
for statistical analysis. Downstream analysis tasks include
assessing community diversity (4), differential abundance
analysis, associating bacterial compositions to system-
specific ecological and biomedical covariates, and learning
microbe–microbe associations.

However, technical artifacts inherent in microbial abun-
dance data preclude the application of such analysis tasks
directly on the measured counts. The data typically com-
prise a high proportion of zeros and carry only relative in-
formation about species abundance. The total number of
read counts for any given observation is limited by the total
amount of sequencing, quality of DNA preparations and
other technical factors and does not represent the commu-
nity abundance or total species abundance in the sample or
ecosystem. For example, unequal amplicon library sizes can
bias sequencing reads to OTUs from the larger sample, re-
gardless of true abundance profiles. Although some recent
studies have used controlled communities, spike-in controls
and other innovations to obtain total community size (5–8),
in the majority of experimental designs, the community size
is unknown, and, thus, our data are best thought of as con-
taining relative or compositional information (each OTU
fraction of total counts, total community size unknown)
(9,10). Additionally, technical variation due to sequencing
such as differences in amplification biases and batch effects
due to multiple sequencing runs can hamper proper quan-
tification of microbial compositions (11).
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To ameliorate these biases, general data normalization
methods have been proposed to correct for sampling bias,
library size and technical variability, including workflows
from RNA-seq pre-processing and compositional data
analysis (12–15). Dedicated normalization and modeling
strategies are also available for specific analysis tasks, most
prominently, for differential abundance testing (16–19).

Here, we examine data normalization schemes in connec-
tion with a fundamental multivariate statistical estimation
task: inferring pairwise linear associations from microbial
count data. Two common strategies that have been adopted
for microbial relative abundance data are correlation af-
ter data normalization (20,21) and proportionality (22,23)
as association measure for compositional data. Under the
assumption that ecological association can be captured by
empirical Pearson’s correlation or proportionality, accurate
correlation or proportionality estimation is of paramount
importance for a host of downstream analysis tasks, includ-
ing state-of-the-art diversity estimation that takes the con-
nectivity of the community into account (4), direct micro-
bial association network inference (14), discriminant anal-
ysis and microbial community clustering.

While previous work (20,24) has assessed the precision
of correlation detection strategies on synthetic microbial
sequencing count data, we took a different approach and
investigated the behavior of linear association estimation
on the largest-to-date citizen-science sample collection, the
American Gut Project (AGP) (25). The large available sam-
ple size n > 9000 allows us, for the first time, to critically
measure the empirical consistency of combinations of data
normalization and association estimation techniques. More
specifically, given the lack of ‘gold standard’ microbial as-
sociations in gut microbial communities, we asked the ques-
tion whether and how association patterns inferred from
small but realistic sample sizes of tens to a few hundreds
of samples resemble those inferred using the entire AGP
dataset. This type of ‘sample size consistency’ evaluation
was at the heart of the present study.

Using a comprehensive set of evaluation criteria and
summary statistics, we first show that, independent of any
specific data normalization scheme, standard linear associa-
tion measures are unreliable in the small sample regime. We
propose the application of shrinkage estimation (26) as an
effective strategy for sample size consistent association esti-
mation. We show that a popular correlation shrinkage ap-
proach from functional genomics (27) enjoys excellent per-
formance in the microbiome context. For proportionality,
we introduce a novel shrinkage estimator, ρ* (rhoshrink),
and assess its statistical behavior. In particular, we quantify
the effects of sample size on data normalization and asso-
ciation estimates on several downstream analysis tasks, in-
cluding microbial association (or relevance) network infer-
ence and clustering. Figure 1 shows the proposed analysis
framework used in this study.

Our analysis revealed that all normalization-dependent
association estimates in the AGP data can be broadly
grouped into five categories and that variance-stabilizing
and log-ratio approaches provide the most consistent esti-
mation in terms of taxonomic and community structure co-
herence. Our findings, available in a fully reproducible sta-
tistical analysis R workflow at Synapse ID: syn21654780,

have important implications for microbiome studies in mul-
tiple stages of analysis, most prominently in the presence of
small sample sizes. In particular, we believe that our devel-
oped shrinkage estimation framework will improve the re-
producibility of future microbiome data analysis studies at
almost no additional computational cost.

MATERIALS AND METHODS

To examine the interplay of data normalization and associ-
ation estimation methods, we first describe the four essential
ingredients of our analysis: the processed AGP 16S rRNA
dataset, the comprehensive list of data normalization meth-
ods, statistical estimation of linear associations and down-
stream statistical evaluation and analysis tools.

AGP sample collection

The AGP is a large public repository of human microbiome
samples aiming to survey the diversity of microbiota.

Information including diet, disease status and lifestyle
variables was measured for public health analysis, but the
sheer size of the dataset makes it also a powerful profile
of the microbial communities in the human gut. For each
batch of samples, the V4 region of the 16S rRNA gene was
amplified and sequenced using Illumina next-generation se-
quencing. The untrimmed data were then processed using
sequence variant calling. We obtained OTU count tables
and mapping files for unrarefied AGP samples (25) from
the project website ftp://ftp.microbio.me/AmericanGut/ag-
2017-12-04/. The original OTU table contained P = 35 511
OTU observations for n = 15 148 samples. We filtered the
dataset to contain only fecal samples whose sequencing
depths fall above the 10th percentile and removed OTUs
that were present in <30% of all samples. This resulted in
a data matrix comprised of P = 531 OTUs and n = 9631
samples.

To investigate the sample size dependence of data nor-
malization and association estimation on this dataset, we
generated collections of random subsamples of varying
sample sizes, ranging from 25 ≤ n ≤ 9000, with 5 (random)
replicates per sample size. While sample sizes of n ≤ 25 are
not uncommon in clinical studies of the microbiome, n = 25
was the lower bound for study inclusion in a recent meta-
analysis (28). The large sample limit of n = 9000 was chosen
to ensure that the set of samples across the random sub-
samples is still relatively distinct, which also serves as our
large sample reference for association estimates. To simulate
reference data under null correlation or proportionality, we
randomly shuffled OTU count data across samples prior to
normalization.

Normalization methods

All normalization methods require as input OTU counts,
collected over n samples and stored in a matrix W ∈
N

n×p
0 . Each row is a p-dimensional vector w( j ) =

[w( j )
1 , w

( j )
2 , . . . , w

( j )
p ], where j = 1, . . . , n is the sample index,

w
( j )
i is the read count of OTU i in sample j and N0 is the set

of natural numbers {0, 1, 2, . . .}. Let the total OTU count

ftp://ftp.microbio.me/AmericanGut/ag-2017-12-04/
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Figure 1. Framework for examining the effects of normalization methods on linear association estimation with increasing sample size. Comparative sum-
mary statistics of the resulting association matrices include distribution-based analysis, distance-based matrix comparison, hierarchical clustering and
association network analysis.

for sample j be m( j ) = ∑p
i=1 w

( j )
i . Several methods require

the application of a log transformation, thus requiring non-
negative input data. We include a pseudocount of 1 to all
OTU input data if zero counts are not explicitly handled by
the respective normalization scheme. We consider the fol-
lowing data normalization or transformation schemes.

Total sum scaling. A standard approach for normalizing
count data is to divide individual counts by the total OTU
counts in a sample, thus scaling the count vector such that
the total sum is fixed to 1. This normalization is known as
total sum scaling (tss) or total sum normalization. It reads

tss(w( j )) =
[

w
( j )
1

m( j )
,
w

( j )
2

m( j )
, ...,

w
( j )
p

m( j )

]
∈ S

p.

The resulting sample space of the data is thus the (p − 1)-
dimensional simplex.

Cumulative sum scaling. The tss approach may place un-
wanted influence on OTUs that are highly sampled due to
sequencing biases by over-representing it in the scaling fac-
tor m(j) (11). To reduce the influence of these highly abun-
dant OTUs for sparse data, cumulative sum scaling (css) has
been proposed in (15) and implemented in the metagenome-
Seq R package. Rather than normalizing by the total sum,
css selects a scaling factor that is a fixed quantile of OTU
counts. Formally,

css(w( j )) =
[

w
( j )
1

m( j )
l̂

N,
w

( j )
2

m( j )
l̂

N, . . . ,
w

( j )
p

m( j )
l̂

N

]
∈ R

p≥0,

where the scaling factor for sample j is m( j )
l̂

=∑
i |wi j ≤q ( j )

l
w

( j )
i . The quantity q ( j )

l is the sum of read
counts up to and including the lth quantile. N is a pre-
specified constant, e.g. N � 1000, chosen such that the
resulting data vector resembles the units of the original
counts. The sample space of css-transformed data is that of
non-negative real numbers R≥0.

Let l̂ be the index of the q ( j )
l , the lth quantile for sample

j, q̄l = med j

{
q ( j )

l

}
the median lth quantile across all sam-

ples and μ
( j )
l be the mean lth quantile. css requires the me-

dian absolute deviation of sample quantiles to be empiri-
cally stable via the quantity δl = med j | μ

( j )
l − q̄l |. A com-

mon choice is to set l̂:= min{δl+1 − δl ≥ 0.1δl : 1 ≤ l < n}
(15). The scaling factor is then defined by summing all the
counts up to the smallest value of l that is stable, on aver-
age, across all samples that is greater than or equal to the
median. The default choice for the median is the lth quan-
tile.

Common sum scaling. Common sum scaling (com), as in-
troduced in (11), is an alternative to rarefying OTU counts.
Counts are scaled to the minimum depth of each sample via

com(w( j )) =
[⌊

w
( j )
1

m(min)

m( j )

⌋
, . . . ,

⌊
w( j )

p
m(min)

m( j )

⌋]
∈ R

p,

where m(min) = inf{m(1), m(2), . . . , m(n)}. The operator � · �
(floor) converts a real number to the greatest integer that is
less than or equal to the input.

Relative log expression. The relative log expression (rle)
is introduced for gene expression data and available in
the DESeq/edgeR package (13). The rle method is de-
fined as follows. Let g(x) = (∏m

i=1 xi
)1/m

be the geometric
mean of an m-dimensional vector x, and let wi = WT

i =[
w

(1)
i , . . . , w

(n)
i

]
be the vector of counts of OTU i over n sam-

ples (a transposed column vector of count matrix W). The
numeric scaling factor for sample j is

s( j ) = med( j )

[
w

( j )
1

g(w1)
, . . . ,

w
( j )
p

g(wp)

]
,

s̄( j ) = s( j )

g(s(·))
,

where med[x] denotes the median of vector x and s(·) = [s(1),
. . . , s(n)] is a collection of the sample scaling factors. Let the
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global scaling factor ŝc = 1
n

∑n
j=1 s̄( j ) be the arithmetic mean

of all normalized scaling factors. The rle is then defined as

rle(w( j )) =
[

ŝc
w

( j )
1

s̄( j )
, . . . , ŝc

w
( j )
p

s̄( j )

]
∈ R

p≥0.

In summary, the rle estimates a median library from the
geometric mean over all samples. The median ratio of each
sample to the median library is then taken as the scale fac-
tor.

Inverse hyperbolic sine. A standard variance-reducing
transformation, often applied to flow and mass cytometry
data (29,30), is the inverse hyperbolic sine function, defined
as

asinh(w( j )) = log
(

w( j ) +
√

(w( j ))2 + 1
)

,

applied element-wise over the sample vector. The resulting
data matrix is then mean centered prior to association esti-
mation.

Wrench. The Wrench procedure, introduced in (17), esti-
mates compositional correction factors in the presence of
zero inflation. Wrench is defined as

wren(w( j )) =
[

w
( j )
1

m( j )η−1
j

, . . . ,
w

( j )
p

m( j )η−1
j

]
∈ R

p.

The quantity η−1
j represents a compositional scale fac-

tor where η−1
j = 1

p

∑
i e( j )

i
yji

y++i
. Here, yji is the proportion of

each feature i in sample j and y++i is the average propor-
tion of each feature i across all samples. The weight e( j )

i is
estimated using the ‘W2’ scheme, the default choice in the
Wrench R package [see also (17) for further details]. While
Wrench is capable of incorporating information about sam-
ple grouping, e.g. for differential abundance testing, we con-
sider all samples to be in a single group.

Variance-stabilizing transform. The goal of variance-
stabilizing transformations (vst) is to factor out the
dependence of the variance on the mean (overdisper-
sion) (13). Consider the mean-dispersion relation v(μ) =

1
n−1

∑n
j=1

(
w

( j )
i

ŝ( j ) − μ̂
( j )
i

)2

. Here, the ‘size factors’ are ŝ( j ) =

med
(
w

( j )
i /g(w( j ))

)1/n
and μ̂

( j )
i = 1

n

∑n
j=1 w

( j )
i /ŝ j is the av-

erage count to size factor ratio of sample j. The vst is then
the integral quantity defined as

vst(w( j )) =
w

( j )
i∫

0

dμ√
v(μ)

∈ R
p .

The function v(μ) is approximated by a spline function and
evaluated for each count value in the column. The vst nor-
malization is available in the DESeq package where the
numerical fitting is achieved using local regression on the
graph (μ̂( j )

i , v(μ)). A smooth function v(μ) is estimated us-
ing an estimate of raw variance: v̂(μ) = v(μ̂( j )

i ) − zi , where

zi = μ
( j )
i
n

∑n
j=1

1
ŝ j . The local regression is parameterized such

that large counts are scaled to be asymptotically equal to the
logarithm base 2 of normalized counts. When we examined
the per-OTU standard deviation [taken across all (P = 531)
OTUs] plotted against the rank of the average OTU count,
it can be seen that vst produces similar counts to both clr
and a logarithm base 2 transform (Supplementary Figure
S1).

Centered log-ratio transformation. Log-ratio transforma-
tions, introduced in (9), transform positive compositional
data from the simplex to Euclidean space (9,14). The cen-
tered log-ratio (clr) transform is defined as

clr(w( j )) =
[

log
w

( j )
1

g(w( j ))
, . . . , log

w
( j )
p

g(w( j ))

]
∈ R

p,

where the ratio is taken with respect to the geometric mean
of the composition. The resulting data lie in a p − 1 hyper-
plane of p-dimensional Euclidean space.

Estimation of linear associations

Following a transformation of count data under some func-
tion f : N

p
0 → X p, we consider several estimation methods

for linear associations among the p OTUs.

Covariance and correlation estimation. The standard way
of estimating linear associations is the empirical (sample)
covariances in the sample space X p that forms the basis for
many downstream multivariate data analysis techniques, in-
cluding principal component analysis (PCA), discriminant
analysis, metric learning and network inference.

Formally, column centering the transformed data results
in an n × p data matrix X = f (W)

(
Ip − 1

n 1p
)
, where Ip is

the p-dimensional identity matrix and 1p is unit (all-ones)
matrix. In matrix notation, the sample covariance matrix
(cov) is Ŝ = XT X ◦ 1

n−1 1p, where © indicates element-wise
multiplication of two equal size matrices.

The estimate Ŝ is a symmetric p × p matrix with the
sample variances along the diagonal and can be normal-
ized to obtain a matrix containing Pearson correlation co-
efficients. Let D̂ = diag[Ŝ] be a diagonal matrix with the
p post-transformed OTU variances on the diagonal and
zero elsewhere. The Pearson correlation matrix is then R̂ =
D̂−1/2 ŜD̂−1/2. The matrix R̂ is a symmetric p × p matrix
where each entry r̂ik = R̂[i, k] corresponds to the Pearson
correlation between OTUs i and k under the data transfor-
mation.

The magnitude and sign of the values in R̂ are often
interpreted as the association strength and direction, re-
spectively. The sample correlation/covariance matrices are,
however, inadmissible in the p 
 n setting, i.e. when fewer
samples than OTUs are available. For example, type I errors
may be grossly inflated, since the parameters under estima-
tion are underdetermined. Standard operations for solving
systems of linear equations such as PCA are then ill-posed.

Proportionality estimation. Covariance and correlation es-
timation on compositional data has long been criticized due
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to the necessary presence of negative bias, scale dependence
and subcompositional incoherence in the estimates (9,31).
Association measures based on the concept of proportion-
ality have thus been put forward as an alternative to correla-
tion (22). Here, we consider the symmetric proportionality
ρp (23,32) that, by default, operates on clr-transformed data
Xclr � clr(W). The measure is defined as

ρp
(
Xclr

i , Xclr
k

) = 1 − var(Xclr
i − Xclr

k )

var(Xclr
i ) + var(Xclr

k )
, (1)

where Xclr
i and Xclr

k are the columns of the matrix cor-
responding to OTUs i and k, respectively. The quantity
ρp is a proportionality measure because differences of clr-
transformed components are equivalent to log ratios of
compositions. When p 
 n, the sample estimator for ρp
faces similar challenges as sample correlation/covariance
estimation.

Shrinkage estimation of linear associations

One way to improve sample estimation of linear associa-
tions in the high-dimensional (p > n) setting is via regu-
larization. For instance, covariance/correlation estimators
with stronger statistical properties can be derived in the p >
n setting when imposing structural assumptions about the
underlying population covariance. One ubiquitous struc-
tural assumption is sparsity where only a few strong pair-
wise correlations are assumed to be present in the data.
An effective data-driven approach to realizing structural
sparsity is shrinkage estimation. We next revisit a popular
covariance/correlation shrinkage approach and introduce a
novel shrinkage estimator for proportionality.

Shrinkage covariance estimation. While several regular-
ized covariance estimators are available in the literature (33–
35), we focus here on Schäfer–Strimmer shrinkage estima-
tion (27). The principal idea of shrinkage estimation is to
shrink small sample correlations toward entries of a pre-
scribed target matrix. The standard target matrix is the
p × p-dimensional identity matrix. Shrinkage intensities
are simultaneously estimated from data (33). In Schäfer–
Strimmer shrinkage, as implemented in the R package
corpcor, individual entries s∗

ik of the shrinkage covariance
S* and entries r∗

ik in the shrinkage correlation R* are esti-
mated as follows. For all off-diagonal elements in S*, we
compute

ŝ∗
ik = r̂∗

ik

√
ŝi i ŝkk ∀i = j,

where the shrunk correlation estimates are r̂∗
ik = (1 − λ̂∗

1)r̂ik.
The variance (var) estimates ŝ∗

i i are shrunk in a separate pro-
cedure toward the median v = med[ŝ11, . . . , ŝ pp] via ŝ∗

i i =
λ̂∗

2v + (1 − λ̂∗
2)ŝi i .

The shrinkage intensities λ̂∗
1 and λ̂∗

2 are determined em-
pirically by estimating the variance within the sample co-
variance matrix (see Supplementary Methods).

Shrinkage proportionality estimation. To derive a shrink-
age estimator for proportionality, we first consider an equiv-

alent formulation of (1) in terms of covariances and vari-
ances (23,32). The reformulation reads

ρp
(
Xclr

i , Xclr
k

) = 2 × cov
(
Xclr

i , Xclr
k

)
var

(
Xclr

i

) + var
(
Xclr

k

) ,

and the corresponding sample estimator is thus

ρ̂p
(
Xclr

i , Xclr
k

) = 2ŝik

ŝi i + ŝkk
,

where ŝik are elements of the covariance estimates Ŝ =
(Xclr)T Xclr ◦ 1

n−1 1p on clr-transformed data. This formula-
tion clarifies the link between the standard correlation ma-
trix on clr-transformed data and ρp: the former uses the ge-
ometric mean of ŝi i and ŝkk in the denominator, whereas the
latter uses the arithmetic mean. Since ρ̂p is completely deter-
mined by sample covariances and variances, we expect the
measure to have the same drawbacks in the small sample
setting as the sample covariance estimators. We thus pro-
pose the following shrinkage proportionality estimator ρ*
(rhoshrink) as

ρ∗
(
Xclr

i , Xclr
k

)
� 2s∗

ik

s∗
i i + s∗

kk
, (2)

where s∗
ik are the elements of the Schäfer–Strimmer shrink-

age covariance S*. The estimator for ρ* is thus completely
determined by the Schäfer–Strimmer covariance shrinkage
estimates, outlined in the previous paragraph.

Comparing association patterns

The distribution of association patterns was visualized us-
ing density plots. For each method, we examine the distri-
bution of values after the appropriate association metric is
applied to a single normalized subsample. In each density
distribution, we also calculate statistical moments: mean,
variance, skewness and kurtosis. To quantify similarities of
the estimated association patterns across different data nor-
malization methods, association measures and sample sizes,
we considered three different distance measures. These dis-
tances are then used for comparative low-dimensional em-
beddings of the different estimates as well as for measuring
convergence of the estimators with sample size.

Frobenius distance. Given a pair of p × p-dimensional as-
sociation matrices R̂ and R̂′, the Frobenius distance mea-
sures the sum of squared differences between the corre-
sponding entries and is defined as

df
(
R̂, R̂′) =

√∑
k

∑
i

(
R̂ik − R̂′

ik

)2 ≡ ∥∥R̂ik − R̂′
ik

∥∥
F .

Spectral distance. Given a square, symmetric matrix A, let
A = U�UT be its singular value decomposition, where �
is a diagonal matrix with singular values along the diago-
nal entries, i.e. �ii = σ i. Let σ max (A) be the largest singular
value of A. The spectral distance is

ds
(
R̂, R̂′) =

√
σmax(R̂ − R̂′) ≡ ∥∥R̂ik − R̂′

ik

∥∥
2 .

Due to its sole dependence on the ‘spectrum’ (the singu-
lar values) of the association matrix, the spectral distance is
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invariant to unitary transformations (e.g. rotations) of the
matrices.

Correlation matrix distance. The correlation matrix dis-
tance (CMD) (36) measures the orthogonality of two cor-
relation matrices and is defined as

dcmd
(
R̂, R̂′) = 1 −

(
R̂R̂′)∥∥R̂

∥∥
F

∥∥R̂′∥∥
F

∈ [0, 1],

where the trace operator (A) = ∑
iAii is the sum of the di-

agonal entries of a square matrix.

Downstream analysis

We considered two downstream exploratory data analysis
tasks that require the estimation of microbial associations
as input: (i) OTU clustering and (ii) microbial association
network construction and community analysis.

Clustering. Unsupervised clustering of OTUs can help
identify microbial subcommunities that may jointly affect
host phenotype or reveal experimental and batch effects
(25). We considered two popular clustering techniques:
spectral and hierarchical clustering.

Spectral clustering requires the construction of an ‘affin-
ity matrix’ from estimated associations, or a matrix express-
ing how similar pairwise entries are to each other. Here, to
construct the affinity matrix we transformed associations

into dissimilarity scores As = 1 −
√

1−R̂
2 and constructed a

k-nearest neighbor graph (k = 2) to obtain a sparse and
symmetric affinity matrix A. Identification of OTU clus-
ters is based on k-means clustering of the first m compo-
nents of the eigendecomposition of the normalized Lapla-
cian L = D1/2(D − A)D1/2, where D is the diagonal degree
matrix with entries containing the row or column sums of A
(37). We chose the target cluster size to be number of con-
nected components of the associated affinity graph (37). To
assess the taxonomic content of a particular clustering, we
evaluated the homogeneity of each cluster with respect to
the taxonomic families of the underlying OTUs. As a quan-
titative measure, we computed the ratio of the effective fam-
ily number (exponential of the Shannon entropy of family
counts) to the total number of families detected per cluster.

For hierarchical clustering, we converted association ma-

trices to dissimilarity measures using Ah =
√

1−R
2 . Clus-

tering was then performed using Ward’s method from the
hclust package in R. Circular dendrograms were cut using
the cuttree method, where k = 10 was chosen to represent
the number of class annotations.

Relevance networks and community analysis. Relevance
networks (38) are a popular way of visualizing and analyz-
ing the overall structure of the microbial ecosystem. Rele-
vance network construction ranks all pairwise correlation
or proportionality values between OTUs by absolute value,
selects a certain percentage of highest ranked pairs and vi-
sualizes the resulting set of pairs as edges between OTUs
in an association network. The ranking of pairwise interac-
tions allows us to compare strong associations regardless of
differences in scale.

Multiple studies have found a higher prevalence of pos-
itive associations between taxonomically related OTUs in
human gut datasets (14,39–42). We thus use taxonomic
coherence, measured by assortativity (43), as independent
summary statistic for relevance networks. When categorical
variables are available for each node, the assortativity coef-
ficient of a network takes values in [−1, 1] and measures the
tendency of adjacent nodes to belong to the same category.
In the context of microbial networks, the nodes are OTUs
and the associated categories are their inferred taxonomic
rank at the genus level.

We also examined the presence of community structure
in the relevance networks using the concept of modular-
ity (44). Similar to clustering analysis, modularity analysis
of a network enables the partitioning of nodes into tightly
connected subcommunities. Modularity was computed us-
ing the fast-greedy algorithm, described in (45) and imple-
mented in the igraph package in R. Network layout was
generated using the force-directed Fruchterman–Reingold
algorithm (46).

RESULTS

Our comprehensive computation and analysis workflow
produced several key results that are summarized below. We
highlighted statistical properties of association estimation,
followed by a comparison of downstream analysis results.
For ease of presentation, we focused on tss and clr as rep-
resentative data normalization/transformations as well as
standard and shrinkage-based proportionality estimation
in the main text. The complete analysis is available in the
Supplementary Data.

Shrinkage universally improves consistency of association es-
timation

We first analyzed the influence of shrinkage on the estima-
tion of associations under different data normalization and
sample sizes. We show the convergence properties of asso-
ciation estimation, as measured by Frobenius distance df
with respect to the large sample limit, with increasing sam-
ple size in Figure 2A. Shrinkage universally improves esti-
mates in the low sample regime compared to its sample es-
timation counterparts. Even when the sample size n exceeds
the number of OTUs p, most shrinkage estimates remain
more similar to their respective large sample. This behav-
ior is also reflected in the distribution of association esti-
mates at low (n = 50) and large (n = 9000) sample sizes,
as highlighted in Figure 3 for the proportionality measures
ρp (rhoprop) and ρ* (rhoshrink). In the small sample limit,
rhoprop produces extreme proportionality estimates com-
pared to the large sample limit (third row in Figure 3). The
shapes of the distributions of rhoshrink estimates, however,
were more similar in the small and large sample limits, and
the distribution covered a similar range of [−0.1, 0.1]. These
phenomena were observed for all combinations of data nor-
malization and association estimation (Supplementary Fig-
ures S4A and S5A). As expected, the influence of shrinkage
vanished in the large sample limit, as reflected in decreasing
shrinkage intensities with increasing sample size (Supple-
mentary Figure S2).
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Figure 2. Frobenius distance between estimates of association. (A) Average Frobenius distance between subsamples of the same sample size. Dashed
lines represent the mean distance between normalized matrices after Pearson correlation. The solid lines represent the mean distance between normalized
matrices where correlation/proportionality estimation with shrinkage was performed. The dot-dashed line represents rho, a proportionality metric. The
long-dashed line represents rhoshrink, proportionality with shrinkage included. Vertical lines represent standard deviation from the mean for each cor-
responding method. (B) Multidimensional scaling (MDS) representation of Frobenius distance between correlation structures of varying sizes estimated
from different normalization methods. The most opaque points represent the mean of five subsamples of the same size [color scheme as in (A)]. Points are
labeled based on subsample size.

Normalization methods induce distinct association patterns

We next analyzed the similarity among the different asso-
ciation estimates with increasing sample size using MDS.
Figure 2B shows a 2D MDS embedding of all shrinkage as-
sociation estimates using the Frobenius distance. We iden-
tified five distinct classes. Association estimates following a
variance-reducing/stabilizing transformations (clr, vst, as-
inh, rhoprop, rhoshrink) form a distinct linear trace in the
embedding, ordered along sample size (V). Correlation es-
timates on raw count data form another distinct group (I).
Correlation estimates after css (II) and wren (IV) normal-
ization form two distinct traces in the embedding. Finally,
correlation estimates following the com, rle and tss nor-
malization form the fifth class of association patterns (III).
For small sample sizes, association patterns are similar in-
dependent of the normalization methods. As each of the
five classes forms a distinct linear trace in the embedding,
we used the distances between estimates of different sam-
ple sizes to evaluate the rate at which normalization meth-
ods arrived at stable patterns of association. In agreement
with Figure 2A, we observed that wren, vst and com arrived
at consistent association estimates with the fewest samples,
followed closely by rle and tss normalization methods (Fig-
ure 2B and Supplementary Figure S3). The observed group-
ing pattern and convergence behavior are largely invariant
to the distance measure used (see Supplementary Figures
S4B and S5B for spectral distance and CMD, respectively).

Association estimates are positively skewed

We next analyzed the shapes of empirical distributions
of shrinkage association estimates for all normalization
schemes in three different sample scenarios: small sample
regime (n = 50), randomly shuffled data in the small sample
regime (n = 50) and large sample regime (n = 9000). Figure
3 shows clr, tss, rhoprop and rhoshrink distributions across

these scenarios (see Supplementary Figure S3 for all oth-
ers). All correlation distributions are positively skewed. Es-
timates without shrinkage are considerably wider in the low
sample regime (as exemplified for standard proportionality
rhoprop versus rhoshrink in Figure 3). Overall, variance-
reducing/stabilizing transformations (clr, vst, asinh, rho-
prop, rhoshrink) induce wider, more symmetric association
distributions. All other normalization schemes induce dis-
tributions with considerable positive skewness, resembling
correlation distributions on raw count data (Supplementary
Figure S3). Positive skewness also persists for association
estimates on shuffled data. Although the shapes of shrink-
age association distributions are visually similar in the small
and large sample limits, we universally observed an increase
in skewness and kurtosis with larger sample sizes indepen-
dent of the normalization scheme.

Clustering methods are sensitive to normalization and shrink-
age estimation

We next focused on analyzing the influence of normal-
ization and association estimation on downstream data
analysis tasks. We first considered clustering of OTUs us-
ing a large sample limit of n = 9000 samples from the
AGP dataset. For spectral clustering, we asked the ques-
tion whether and how normalization and shrinkage influ-
ence (i) the standard selection of the number of cluster and
(ii) the taxonomic composition of the resulting clusters. One
common strategy for model selection in spectral cluster-
ing is the ‘spectral gap’ criterion. The number of selected
clusters is considerably larger (k ≥ 11) for the variance-
reducing/stabilizing transformations (clr, vst, asinh, rho-
prop, rhoshrink) than for other normalization methods (k
≤ 8) (Supplementary Figure S6). Despite the large sample
size, the spectral gap of rhoprop- and rhoshrink-based spec-
tral clustering is still different, resulting in k = 11 and k
= 12 clusters, respectively. The different number of clus-
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Figure 3. Density of association values under different transformations and shrinkage. To represent clr and tss, data are normalized and correlation is
calculated with shrinkage. Proportionality without shrinkage and proportionality with shrinkage are represented by rhoprop and rhoshrink, respectively.
Each plot is a single random subsample of four representative methods at (A) 50 samples, (B) 50 samples with shuffled data and (C) 9000 samples. Mean,
variance, skewness and kurtosis are shown for each distribution. Additional methods are provided in Supplementary Figure S3.

ters also contributed to marked differences in terms of
the homogeneity of OTU compositions, as shown in Fig-
ure 4. Variance-reducing/stabilizing transformations pro-
duced taxonomically more homogeneous groups at the fam-
ily level. rhoshrink-based clustering produced the highest
mean cluster purity, indicating strong agreement between
estimated OTU associations and taxonomic identity (as
shown for the family level in Figure 4 and Supplemen-
tary Figure S5). rhoprop- and rhoshrink-based clustering
formed very similar but not identical clusters in terms of
composition and cluster purity. A larger number of OTUs
of family Ruminococcaceae and class Bacteriodia cluster
together in clr-based clustering compared to tss-based clus-
tering. OTU clusters derived from css, rle and wren normal-
ization resulted in no distinct taxonomic grouping (see Sup-
plementary Figure S5).

Hierarchical clustering largely confirmed the previous
observations. For ease of comparison, we set the num-
ber of clusters to k = 10 for inference workflows. Fig-
ure 5 shows the dendrograms for clr-, tss-, rhoprop- and
rhoshrink-based clustering. While some distinct and homo-
geneous clusters can be found in the tss case, the majority
of OTUs have been grouped into a single cluster compris-
ing many families and classes of taxonomically unrelated
bacteria. However, taxonomic grouping is well represented
by hierarchical clustering of rho- and rhoshrink-based es-
timates (Figure 5). Similarly, vst and asinh have recovered
large groups of the most prevalent family annotation: Ru-

minococcaceae, Lachnospiraceae and Bacteroidaceae (see
Supplementary Figure S8).

Normalization induces relevance networks with different
community structures

We next considered the downstream statistical task of learn-
ing microbial relevance networks from AGP data. We es-
timated associations in the large sample limit n = 9000
and selected the top 2000 associations for network con-
struction in every data normalization/association estima-
tion workflow. Figure 6 shows network visualizations for
clr-, tss-, rhoprop- and rhoshrink-based relevance networks
(see Supplementary Figure S9 for the other instances). We
identified subcommunities of highly connected OTUs using
modularity maximization. The number of identified mod-
ules ranged between 20 (using Wrench) and 38 (using vst
normalization). Relevance networks derived from variance-
reducing/stabilizing transformations (clr, vst, asinh, rho-
prop and rhoshrink) were partitioned into 35–38 modules
and achieved a maximum modularity score of ≈0.8 (com-
pared to modularity scores of <0.6 for all other networks).
Visual inspection of these networks revealed that members
of the Bacteroidetes phylum (represented by square nodes
in Figure 6) formed tightly connected modules with few
edges connecting to other phyla. Firmicutes (represented
by circular nodes) in networks were divided into a higher
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Figure 4. OTU clusters from spectral clustering. (A–D) Each horizontal bar represents the composition of OTUs in a cluster at the family level. Clusters
are in order of increasing percentage of the most abundant family: Ruminococcaceae. In each cluster, the colors represent the OTU families in each cluster.
Numbers to the left of each bar represent the number of OTUs in each cluster. Values next to each method name represent cluster purity. Additional
methods are provided in Supplementary Figure S7.

number of modules comprising distinct families, including
Lachnospiraceae (represented by orange circles) and Ru-
minococcaceae (teal circles, Figure 6 and Supplementary
Figure S9). This striking modularity is less pronounced in
the tss-based relevance networks (Figure 6B).

Similar to the clustering analysis, we next evaluated the
taxonomic coherence of the different networks. Using as-
sortativity on the genus level as a quantitative measure,
we found that relevance networks derived from variance-
reducing/stabilizing transformations showed the highest
overall assortativity in the large sample limit (≈0.35).

We next asked the question whether high-level network
properties such as assortativity and modularity were con-
sistent independent of the sample size used to estimate the
association networks. We thus repeated the previous anal-
ysis for different sample sizes, ranging from n = 25 to n
= 9000. Figure 7 shows the estimated network assortativ-
ity and maximum modularity score estimates versus sam-
ple size. We found that for relevance networks derived from
variance-reducing/stabilizing transformations, both assor-
tativity and modularity monotonically increase with sam-
ple size. Both estimates stabilize around sample sizes n ≈
p. For the remaining relevance networks, assortativity esti-
mates monotonically increase with sample size, while mod-

ularity tends to decrease with sample size. In summary, this
analysis implies that estimates of high-level network sum-
mary statistics such as assortativity and modularity are in-
consistent compared to their large sample limit.

We next examined the edge overlap from correlation-
based relevance networks (clr and tss transformations) and
proportionality metrics (rhoprop and rhoshrink). We found
a common core of 1086 edges between 349 OTUs that were
present in all relevance networks. This consensus network
also contained several tightly connected network modules
with highly assortative inter-family associations (Figure
8A). Overall, we found that clr-, rhoprop- and rhoshrink-
based networks shared the majority of common edges with
rhoprop- and rhoshrink-based edge set differing only by a
single edge. The tss-based relevance network comprised 779
unique edges not shared by any of the other networks (Fig-
ure 8B).

Additionally, we found that clr-, vst- and asinh-based
correlation networks also shared a large common consen-
sus core (Supplementary Figure S10A). Similarly, com-,
rle- and tss-based networks showed a large edge set over-
lap (Supplementary Figure S10B). These observations con-
firmed the distinct groupings observed in the MDS embed-
ding of Frobenius distances (Figure 2B).
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Figure 5. Circular dendrograms showing hierarchical clustering patterns among OTUs. Each point surrounding the circular dendrogram represents one
of the 531 OTUs in our dataset. The color represents family annotation. Each dendrogram (A–D) has been cut hierarchically into 10 trees (representing
the 10 orders to which these taxonomic families map). The gray and black shading is used to highlight different clusters that are numbered. Hierarchical
clustering of clr-transformed OTUs is better at delineating taxonomic relationships than clustering of those using tss; rhoprop and rhoshrink produce
similar clustering patterns. Additional methods are provided in Supplementary Figure S8.

DISCUSSION

Data normalization and inference of taxon–taxon associa-
tions from microbial genomic survey count data are two of
the most basic statistical analysis tasks in modern micro-
biome research. To help the practitioner of microbial data
analysis make informed choices about the different avail-
able normalization and association inference schemes, we
have taken a closer look at the impact of data normaliza-
tion on association estimation and several downstream ex-
ploratory data analysis tasks. Rather than asking what is the
best method available for different analysis steps, we have
leveraged the large available sample size in the AGP dataset
and assessed the consistency of two ubiquitous linear associ-
ation estimators for microbiome data, correlation and pro-
portionality, under a wide range of realistic sample size sce-
narios, data normalization schemes and downstream data
analysis tasks.

Our analysis revealed several important observations that
have direct implications for best practice in microbiome
data analysis workflows. First, we have confirmed that cor-
relation and proportionality estimates are inconsistent in
the low sample regime n < p when compared to large sam-
ple counterparts, in terms of both general large-scale asso-
ciation patterns (Figure 2) and downstream network sum-
mary statistics, including assortativity and modularity (Fig-
ure 7). While this phenomenon has been long appreciated
in the statistical literature, we have established that shrink-
age estimation, a popular statistical regularization scheme
used in finance (33) and genomics research (27), can also
improve association estimation for microbiome data, inde-
pendent of the employed normalization method. Leverag-
ing the close mathematical relationship between variance–
covariance estimation and the concept of proportionality,
we have also introduced a novel shrinkage proportionality
estimator, rhoshrink, that is easy to compute and may prove
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Figure 6. Community structure of relevance networks. (A–D) The left network of each panel shows module membership. Each numbered node represents
the module annotation of an OTU in the graph. The networks on the right represent the corresponding taxonomic annotation of the OTU at the family
(color) and phylum (shape) levels. Values stated next to method name represent the number of modules in the network. Node layout is conserved for both
networks in each panel. Additional methods are provided in Supplementary Figure S9.

Figure 7. Community analysis of relevance network structure with increasing sample size. (A) Assortativity coefficient across sample size of genus anno-
tation. (B) Maximum modularity score across sample size at 2000 edges. For all plots, lines represent mean and gray ribbons represent standard deviation
from the mean.

useful in other scientific areas where compositional data are
available.

On the AGP data, we have been able to categorize 10
data normalization/association estimation workflows into
five coherent groups that show strong agreement across all
sample size scenarios (Figure 2B). Most prominently, we
have found that variance-reducing/stabilizing transforma-
tions lead to a high agreement of correlation or proportion-
ality estimates. This was also confirmed in the downstream
microbial relevance network comparison where clr-based
correlation networks and proportionality association net-
works showed high agreement among the inferred edge sets
(Figure 8). This implies that, in the presence of large sample
sizes and large number of OTUs, differences between cor-
relation and proportionality estimates are less pronounced
than previously expected. An important observation on the

AGP dataset was that the empirical distributions of associa-
tion estimates were universally right-skewed even in the ran-
domly shuffled data scenario. This implies that irrespective
of the data normalization/association inference workflow,
one will observe a higher prevalence of positive associations.
This phenomenon has been previously described in the con-
text of microbial association inference across many different
microbial habitats (14,47). While it is tempting to interpret
these results as ecological features of the underlying micro-
bial community in terms of higher prevalence of commen-
sal rather than competitive microbial interactions, the posi-
tive skewness may also be due to technical limitations in the
data generation process and shortcomings in current statis-
tical estimation. For instance, truncation to zero effects for
low sequencing read counts likely obstructs unbiased esti-
mation of negative correlations and, in turn, proportional-
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Figure 8. Shared interactions between relevance networks. (A) Consensus network of edges in common between four representative methods. Network
contains 1086 edges between 346 OTUs. Node color represents family annotation and node shape represents phylum. (B) Venn diagram showing unique
and shared interactions predicted from representative normalization methods.

ity. A possible remedy for this data-induced artifact is the
application of more advanced semi-parametric correlation
estimators that infer latent correlations under data trunca-
tion assumptions (21,48). A detailed investigation of semi-
parametric and other estimators may provide a promising
avenue for future research.

In many studies, microbial counting strategy has transi-
tioned away from the use of OTUs and toward ASVs (3). We
suspect that shrinkage may also improve association learn-
ing in these contexts where variance-stabilizing transforma-
tions are often used in analysis (49).

Despite the universal presence of positive skewness in
association estimates for the AGP data, we have observed
that variance-reducing/stabilizing transformations could
reduce positive skewness in shrunk association estimates
(Figure 3). Moreover, our results on microbial associa-
tion network construction and clustering as typical down-
stream exploratory data analysis examples also revealed
that variance-reducing/stabilizing approaches provided the
most consistent estimation in terms of taxonomic and struc-
tural coherence, as measured by taxonomic cluster purity in
spectral and hierarchical clustering (Figures 4 and 5) and
network assortativity (Figures 6 and 7). Taken together, we
can recommend any variance-reducing/stabilizing transfor-
mations followed by shrinkage estimation for association
inference. However, transformations such as asinh and clr
may be preferred since they are faster to compute than
vst, while providing similar statistical properties. The re-
sulting shrinkage correlation estimates can then also serve
as input for more involved direct microbial network in-
ference workflows that account for transitive correlations,
adjust for additional covariates or model latent effects
(14,39,50,51).

For relevance network estimation, consensus network
construction, as put forward here for the AGP data (Fig-
ure 8), is a straightforward strategy to relax the influence of
data normalization. For our AGP consensus network, we
found that more than half of the top 2000 edges in the tss-,
clr-, rhoprop- and rhoshrink-based relevance networks were
in full agreement, connecting a subset of 346 OTUs. The
inferred AGP consensus network comprised a majority of

positive edges and showed high assortativity at the genus
level (0.39) and a maximum modularity of 0.8.

Assortativity increased in the consensus network com-
pared to individual relevance networks. Notably, many
taxa in the consensus network were frequently identified
as key targets for microbiome therapeutics, such as prebi-
otic treatment and fecal microbiota transplants, including
Akkermansia muciniphila, Prevotella copri, Ruminococcus
bromii and Faecalibacterium prausnitzii (52,53).

Our computational data analysis workflow, available on
GitHub and as Synapse project (see the ‘Data Availabil-
ity’ section), is fully reproducible, provides all novel shrink-
age estimators introduced here and allows easy extension
and comparison to additional data normalization, estima-
tion and downstream analysis tasks. For instance, future
work could include the integration of more advanced zero-
replacement strategies (54,55), application of popular data
normalization schemes from single-cell data analysis (56) or
the application of other correlation (21,48) or proportion-
ality estimators, including those available in the propr pack-
age (23). Here, rather than using universal thresholding for
sparsifying associations, more advanced selection strategies
that control false discovery rates [as available in the propr
package (23)] may improve the sample size consistency of
the microbial association inference workflows.

Going forward, we believe that large-scale reproducible
computational analysis workflows that focus on sample
size-dependent consistency of statistical estimates are of
paramount importance for deriving stable testable hypothe-
ses about the complex interplay between host phenotype
and the microbiome from large-scale microbial genomic
survey data.

DATA AVAILABILITY

The code and data used are available as a GitHub
repository at https://github.com/MichelleBadri/
NormCorr-manuscript and Synapse project syn21654780.
Data used for this study were accessed from
ftp://ftp.microbio.me/AmericanGut/ag-2017-12-04/.

https://github.com/MichelleBadri/NormCorr-manuscript
ftp://ftp.microbio.me/AmericanGut/ag-2017-12-04/
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The latest complete AGP dataset can be accessed on Qiita
using study ID 10317 (25).

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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