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Abstract

Skeletal muscle tissue has a highly complex and heterogeneous structure comprising sev-

eral physical length scales. In the simplest model of muscle tissue, it can be represented as

a one dimensional nonlinear spring in the direction of muscle fibres. However, at the finest

level, muscle tissue includes a complex network of collagen fibres, actin and myosin pro-

teins, and other cellular materials. This study shall derive an intermediate physical model

which encapsulates the major contributions of the muscle components to the elastic

response apart from activation-related along-fibre responses. The micro-mechanical factors

in skeletal muscle tissue (eg. connective tissue, fluid, and fibres) can be homogenized into

one material aggregate that will capture the behaviour of the combination of material compo-

nents. In order to do this, the corresponding volume fractions for each type of material need

to be determined by comparing the stress-strain relationship for a volume containing each

material. This results in a model that accounts for the micro-mechanical features found in

muscle and can therefore be used to analyze effects of neuro-muscular diseases such as

cerebral palsy or muscular dystrophies. The purpose of this study is to construct a model of

muscle tissue that, through choosing the correct material parameters based on experimen-

tal data, will accurately capture the mechanical behaviour of whole muscle. This model is

then used to look at the impacts of the bulk modulus and material parameters on muscle

deformation and strain energy-density distributions.

Introduction

Skeletal muscle is a complex heterogeneous structure, and a three dimensional continuum

model is required to capture its complete mechanics. One dimensional models have been

developed, often to describe whole body movement or inter-muscular dynamics (eg. [1]).

However, when examining the mechanics or force production of the muscle these models are

not sufficient to understand the complex effects from the heterogeneity or architecture of mus-

cle [2]. In fact, three dimensions are required to fully capture the bulging and deformation

seen in skeletal muscle [3]. Therefore, to capture the complex aspects of muscle tissue, these

models are typically built using the theory of continuum mechanics and solved using a finite

element method [4–9].

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0249601 April 2, 2021 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Konno RN, Nigam N, Wakeling JM (2021)

Modelling extracellular matrix and cellular

contributions to whole muscle mechanics. PLoS

ONE 16(4): e0249601. https://doi.org/10.1371/

journal.pone.0249601

Editor: Jose Manuel Garcia Aznar, University of

Zaragoza, SPAIN

Received: November 28, 2020

Accepted: March 19, 2021

Published: April 2, 2021

Copyright: © 2021 Konno et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: This work was supported by the Natural

Sciences and Engineering Research Council of

Canada for Discovery Grants to JW and NN. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0003-1761-5266
https://doi.org/10.1371/journal.pone.0249601
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249601&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249601&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249601&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249601&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249601&domain=pdf&date_stamp=2021-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0249601&domain=pdf&date_stamp=2021-04-02
https://doi.org/10.1371/journal.pone.0249601
https://doi.org/10.1371/journal.pone.0249601
http://creativecommons.org/licenses/by/4.0/


Muscle is composed of many components making it a highly heterogeneous structure, and

these aspects are typically investigated in micro-mechanical [10–14] and homogenization [15–

17] models. The tissue heterogeneity effects are often related to micro-structure [18, 19], and

these effects cannot be implemented using a single-scale model. The micro-mechanical com-

ponents of muscle are those that are visible on a microscopic level and contribute to the

mechanical behaviour of muscle tissue. There are many micro-mechanical components of

muscle aside from the contractile fibres alone. In particular, muscle consists of connective tis-

sue, fluid, cellular components, and muscle fibres which make it a highly heterogeneous mate-

rial. Skeletal muscle consists of muscle fibres surrounded by a layer of connective tissue

(endomysium), and groups of fibres are bundled together into muscle fascicles by another

layer of connective tissue (perimysium). Bundles of fascicles are what composes the muscle

volume and is held together with a third layer of connective tissue (epimysium) [18, 19]. The

combination of connective tissue layers forms the extra-cellular matrix (ECM) and is typically

less than 10% of the muscle volume in healthy muscle [20], however the ECM has been shown

to have a large impact on the muscle force development [21]. The reason for this is the high

degree of structure found in the ECM along with the stiff collagen fibres, which results in a sig-

nificant contribution to the passive stiffness of the muscle [19, 22–27].

In order to capture the complex effects of the micro-mechanical factors on a whole muscle

level, a principled approach needs to be taken. This procedure will allow for consideration of

microscopic properties and their effects on the macroscopic muscle model. The micro-

mechanical influences on whole muscle effects have been investigated in many studies (eg.

[10–12, 14, 15, 17]). A study by Ceelen et al. [12] developed a micro-mechanical model of skel-

etal muscle for an analysis of the effect of deformation induced hypoxic damage. Sharafi and

Blemker [10] developed a formulation of the micro-mechanical effects for healthy muscle that

could be implemented in a macroscopic model. Work by Rhörle et al. [13] produced a multi-

scale framework for a continuum mechanical model, and included the effects from motor unit

recruitment and allows for analysis of electro-physiological behaviour. These developments

however do not allow for simple application to the macroscopic level, and hence studies com-

bining the material effects into a homogenous macroscopic model have been performed [15–

17]. By performing these homogenizations, a better understanding of the mechanical proper-

ties can be obtained in microscopically altered muscle tissue, such as fibrotic tissue that can

result from muscular dystrophies, cerebral palsy, and aging [22, 28].

In this study, a principled approach will be taken to develop an isotropic aggregate material

that will give a representation of the micro-mechanical effects that can be modelled on a mac-

roscopic level. This homogenization will take into account two factors: a cellular component

including the fibres and other cellular materials, and an ECM component. The cellular materi-

als being considered are both effects from cells external to the muscle fibres (eg. satillite cells,

nerve bodies, capilleries), as well as the intracellular effect from the fibres aside from the myofi-

brils. Parameters can be developed independently, so that volume changing as well as isochoric

properties can be modified. Additionally, this model will differ from previous homogenization

studies (eg. [15, 17]) by considering a nonlinear Yeoh model [29] for the cellular component.

Due to the lack of cellular component data, mechanical properties from the cells in brain grey

matter will be chosen given the material is composed of the neuron cell bodies. This gives grey

matter a nonlinear isotropic response [30, 31], and since this is a collection of cells and similar

to the the model’s cellular component, these data will be considered. Any anisotropy typically

seen in skeletal muscle will be captured in the one dimensional along-fibre component that

takes into account the effects from myofilaments within the muscle fibres, and anisotropy con-

ferred by the ECM. Recent experiments have reported varying muscle volume levels over long

contractions [32], and changes in volume have been shown to impact passive muscle tension
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[33]. The distribution of strain energy-densities has been shown to allow for a deeper under-

standing of the underlying physics of skeletal muscle mechanics [34]. Therefore, the purpose

of this study is to develop a principled model that can be accurately fit to existing experimental

data, and can then be used to develop a greater understanding of muscle mechanics in

response to altered micro-mechanical properties. In particular, we will look at the impact of

the stiffness, volume fraction, and bulk moduli of the individual components in the model

through a comparison to experimental data and strain energy-density distribution analysis.

Model

Continuum mechanical formulation

Continuum mechanics is an effective method to model the physics of biological materials, and

is typically used in three dimensional skeletal muscle models [4–6, 13, 15, 17]. To characterize

the deformation of a body, O0, to a new deformed state,O, we can introduce the deformation

gradient, F. The deformation gradient can be defined as

F ¼
dx
dX

ð1Þ

where d X is a line element in the original reference configuration and d x is a line element in

the deformed current configuration. F contains the information about how the original config-

uration is deformed, via rotations or stretches, to get to the current configuration. The dilata-

tion of the material can be denoted as J = det(F), and remains close to 1.

To characterize the response of a material to deformation, the constitutive laws for the

material need to be determined. To do this, stress and strain tensors need to be defined. The

model developed here will consider the left Cauchy-Green strain tensor b = FFT to characterize

the strain in the material. Skeletal muscle can be modelled using a nonlinear hyperelastic

approach. For a hyperelastic material, the formulation of the constitutive relationships can

be performed in terms of a strain-energy function which can be calculated at each material

point, X. The strain-energy function can be represented in the reference configuration as

W(X, b)�W(b). Characterizing the material in terms of the strain-energy allows us to write

the constitutive law in terms of the Cauchy Stress Tensor, σ, and the left Cauchy-Green strain

tensor,

sðbÞ ¼ 2J � 1b
@WðbÞ
@b

: ð2Þ

In order to determine the constitutive law explicitly, the exact form of W(b) needs to be

determined. For skeletal muscle the strain-energy function can be broken into a volumetric

and isochoric component.

Wmuscle ¼WvolðJÞ þWisoð
�bÞ ð3Þ

where �b is the isochoric component of the left Cauchy-Green Strain tensor, and is defined as

�b ¼ J � 2=3b. The strain-energy function for skeletal muscle, Wmuscle(b), is composed of the

three dimensional base material component, WBM(b), and an along-fibre component,

Wfibre(λ), which depends on the local fibre stretch (λ = ||Fa0||) along the direction of the mus-

cle fibres. a0 denotes the initial fibre direction with unit length at a given point and ||(�)||
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denotes the usual L2 norm of (�). Therefore, the volumetric and isochoric components are

Wiso ¼WfibreðlÞ þWBM;isoð
�bÞ;

Wvol ¼WBM;volðJÞ:
ð4Þ

The continuum mechanical formulation developed here can be implemented into a three

dimensional finite element model using a three field formulation with the unknowns being the

displacement u, pressure p, and dilation J [35]. The Principle of Stationary Energy can be

applied to the problem by taking the first variation of the total energy. This gives a nonlinear

problem that can be solved using the finite element library Deal ii [36]. Details on the imple-

mentation and finite element method can be found in Domı́nguez [37] and S1 Appendix.

A principled approach to muscle base material

Formulation of the base material. Muscle is often modelled as a fibre reinforced material

[4, 6, 7], and so the model developed in this study will consider the muscle as a three dimen-

sional isotropic material with one dimensional fibres running along the length of the muscle

belly. The one dimensional along-fibre component is designed to account for any anisotropic

effects in the direction of the muscle fibres. In particular, this includes the passive along-fibre

effects from within the sarcomeres, such as from the protein titin, and active forces developed

between actin and myosins. To analyze the micro-mechanical properties in whole muscle, the

isotropic base material can then be constructed by combining the effects from the principle

components (ECM and cellular materials). Since the base material has both isochoric and vol-

umetric parts, the a homogenization will need to occur in both of these strain-energy

components.

The base material can be formulated by considering a representative volume element

(RVE) that encompasses a region, VRVE, in the initial reference configuration. Since the RVE

consists of each of the micro-mechanical components of the muscle, a portion of it will consist

of ECM, VECM. The rest of the volume will consist of the cellular component, Vcell. Let |VRVE|

denote the volume the region VRVE, then the volume fraction of each material can be defined

as

jVECMj

jVRVEj
¼ a;

jVcellj

jVRVEj
¼ 1 � a: ð5Þ

The volume fractions, α and 1 − α, are determined in the reference configuration of the RVE,

and we assume these volume fractions do not change as the muscle deforms. Since skeletal

muscle achieves near incompressibility, this is an accurate approximation to leading order.

The total energy of the RVE, ERVE, can be written in terms of the microscopic strain-energy

functions for the ECM and cellular components as

ERVEðbÞ ¼

Z

VRVE

WRVEðbÞ dV

¼

Z

VECM

sECMWECM;RVEðbÞ dV þ
Z

VCELL

WCELL;RVEðbÞ dV

ð6Þ

where sECM is a structural area parameter that is constant over the RVE and will be discussed
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in more detail in the next section. Dividing by |VRVE| gives

1

jVRVEj

Z

VRVE

WRVEðbÞ dV ¼
1

jVRVEj

Z

VECM

sECMWECM;RVEðbÞ dV

þ
1

jVRVEj

Z

VCELL

WCELL;RVEðbÞ dV

¼ a
1

jVECMj

Z

VECM

sECMWECM;RVEðbÞ dV

þ ð1 � aÞ
1

jVCELLj

Z

VCELL

WCELL;RVEðbÞ dV:

ð7Þ

Given that the RVE is microscopic in size, the following approximations were made

WðbÞ �
1

jVRVEj

Z

VRVE

WRVEðbÞ dV

WECMðbÞ �
1

jVECMj

Z

VECM

WECM;RVEðbÞ dV

WCELLðbÞ �
1

jVCELLj

Z

VCELL

WCELL;RVEðbÞ dV

ð8Þ

where b denotes the left Cauchy-Green strain tensor at the centroid of the RVE. This is the

familiar Voigt approximation used in skeletal muscle homogenization studies [15, 16].

It then follows that the strain-energy function for the macroscopic base material can be

written as a linear combination of the strain energies from each component:

WBM;isoðbÞ ¼ asECMWECMðbÞ þ ð1 � aÞWcellðbÞ: ð9Þ

Similarly, it is possible to decompose the volumetric strain-energy function into its micro-

mechanical components. The volumetric strain-energy component will be characterized using

a strain-energy function typically used for soft biological materials [38], and the aggregate

function is given as

WBM;volðJÞ ¼
1

4
ðJ2 � 1 � 2 logðJÞÞ½akECM þ ð1 � aÞkcell�: ð10Þ

The bulk moduli, κECM and κcell, are parameters that will impact the compressibility of the

model and can be varied independently for each component.

Micro-mechanical components. The strain-energy function for the ECM, WECM(b), can

be determined using experimental data from Gillies et al. [39], which obtained stress-strain

curves for decellularized skeletal muscle tissue. These data are used as they are the only

mechanical data available for the entire ECM. Other micro-mechanical models consider the

response from the isotropic component of the ECM to be of the same order of magnitude [15]

as that of the fibres, instead, in this model we consider experimental data for the ECM that

have been measured for a decellularized matrix. Additional data for the ECM component will

allow for a more accurate representation in the model. Due to difficulty in measuring the

decellularized cross-sectional area of the ECM, the stress-strain relationship is typically
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reported with respect to the cross-sectional area of the muscle tissue. Therefore, to account for

this cross-sectional area calculation in the model, the additional coefficient, sECM, is used.

Material data for the cellular (non-contractile and non-ECM) properties of skeletal mus-

cle are not available. Some studies have been able to measure properties of isolated muscle

fibres. However, tensile data are only available for the longitudinal direction of the muscle

fibres [40], which may not necessarily represent the response in the transverse direction.

Ideally, data for the cellular component of the base material would be tensile data for fibre

and other cellular components measured transverse to the fibre orientation. Since these data

are not available other data need to be considered, such as the mechanical behavior of brain

grey matter or liver tissue. These materials are considered since they are essentially a cellular

mass with no collagen fibres and are often modelled as non-linear isotropic materials [30,

31, 41–43]. Along fibre data have been considered in the homogenization models by Bleiler

et al. [17] and Spyrou et al. [15], however, they only considered a linear stress-strain

response shown by Smith et al. [28]. Since the liver material has been shown to have some

anisotropy, which is likely due to micro-structural effects, grey matter is used for the cellular

component.

In order to implement the experimental data for the ECM and cellular components into the

model a strain-energy function needs to be used for each of the components. The Yeoh model

(Eq 11) gives the energy associated with a deformation in terms of the first invariant of �b [29].

Wð�bÞ ¼ c1ðI1 � 3Þ þ c2ðI1 � 3Þ
2
þ c3ðI1 � 3Þ

3 ð11Þ

This provides a computationally simplistic model that can sufficiently capture the isotropic

behaviour of these components as demonstrated by r2 values of 0.998 and 0.999 for the ECM

and cellular material, respectively (Fig 1A). Fig 1 illustrates the fit of the model for the intrinsic

micro-mechanical properties (ECM and cellular components) used in the model along with

the experimental whole muscle data from Mohommadkhah et al. [44]. sECM was set at 200 in

Fig 1 to account for the aforementioned cross-sectional area calculation effects. This gives a

significantly stiffer curve for the ECM compared to both the whole muscle data and the cellular

component (Fig 1(A)), which is expected.

Implementation of the along-fibre component

The along-fibre component of the model was obtained through fitting to experimental data by

Winters et al. [45] and is shown in Fig 1(B) in terms of its stress-stretch relationship. The stress

response for the passive component of the fibres is given as

spassðlÞ ¼ s0

0 0 � l � 1:0

2:353ðl � 1:0Þ
2

1:0 � l � 1:25

3:44ðl � 1:25Þ
2
þ 1:18ðl � 1:25Þ þ 0:147 1:25 � l � 1:5

0:427ðl � 1:5Þ
2
þ 2:90ðl � 1:5Þ þ 0:656 1:5 � l � 1:65

3:023ðl � 1:65Þ þ 1:1 l > 1:65;

8
>>>>>>>><

>>>>>>>>:

ð12Þ
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and the active component of the fibres as

sactðlÞ ¼

s0 ð0:642 sinð1:29lþ 0:629Þ

þ0:325 sinð5:31l � 4:52Þ

þ0:328 sinð6:74lþ 1:69Þ

þ0:015 sinð19:8l � 7:39Þ if 0:4 � l � 1:75

þ0:139 sinð8:04lþ 2:54Þ

þ0:0018 sinð32:2l � 6:45Þ

þ0:012 sinð23:2l � 2:64ÞÞ

0 otherwise:

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

Here, σ0 = 2 × 105 Pa is the maximum isometric stress. The active component in the model is

also multiplied by a function a(t) that represents the activation, which increased from 0 to 1

over the course of the contraction. a(t) is linearly ramped in discrete steps t, which we will call

“timesteps”. At each step we compute the new state u, p, and J of the muscle. The relationship

between the stress and the strain-energy functions is given by

sðlÞ ¼ l
@WðlÞ
@l

: ð14Þ

The strain-energy function for the along-fibre component can then be formulated as

WfibreðlÞ ¼WpassðlÞ þ aðtÞWactðlÞ: ð15Þ

Fig 1. Intrinsic model properties. (A) shows the uniaxial stress-stretch relationship for the intrinsic properties of the homogenization: ECM (blue),

cellular (yellow), and averaged whole muscle components (red), along with experimental data from Gillies et al. [39] (ECM, blue dot), Jin et al. [30]

(brain grey matter, yellow dot), and Mohammadkhah et al. [44] (transverse muscle response, red dot). The averaged whole muscle component was fit to

experimental data and is shown for comparison. Total (yellow), passive (red), and active (blue) stress-stretch relationships are shown for the along-fibre

response in (B) with the experimental data obtained by Winters et al. [45] and normalized to σ0 = 2 × 105 Pa. ECM component was scaled by 200 in (A)

to account for cross-sectional area calculations.

https://doi.org/10.1371/journal.pone.0249601.g001
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All of the parameters used in the model, and their values are summarized in Table 1. The base

material and along-fibre component were implemented in a quasi-static model described in

Wakeling et al. [34].

Methods

Stress-strain experiments

A block of muscle was constructed as seen in Fig 2(A), which had dimensions 20 cm × 6

cm × 4 cm. The fibre properties were implemented along the length of the muscle model in the

longitudinal direction (parallel to the x axis). To perform stress-strain tests that will allow for a

comparison to experimental whole muscle data, the −x face was constrained from movement

in x, y, z directions. A traction was then applied to the +x face of the muscle which extended

the muscle in the longitudinal direction.

Table 1. Summary of parameters used in the model. List of the values for the aforementioned parameters used in this

model. ci,cell/ecm are the Yeoh model parameters shown in Eq 11 and were obtained using nonlinear regression analysis.

Parameter Value/Range of Values

c1,cell 3703

c2,cell -707.7

c3,cell 123.2

c1,ecm 1988

c2,ecm 4917

c3,ecm -591.5

α 2—20%

sECM 150—250

κcell 1 × 106—1 × 108 Pa

κECM 1 × 106 Pa

σ0 2 × 105 Pa

https://doi.org/10.1371/journal.pone.0249601.t001

Fig 2. Mesh and experiment setup. (A) Mesh of the geometry used for the numerical experiments. The geometry had dimensions 20cm × 6cm × 4cm

and muscle fibre properties are orientated along the x axis. (B) Shear experiment setup. The −x face was constrained in all directions, while the +x face

was constrained in the x direction only. The arrow represents direction of applied shear stress.

https://doi.org/10.1371/journal.pone.0249601.g002
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These tests were performed with varying α in the range 0.02—0.20 and sECM coefficients of

150 and 250. The stiffness coefficients were varied to give results that are comparable to experi-

mental data for muscle. The range from 2% to 10% volume fractions of ECM are typically

found in healthy muscle [20, 21], and larger volume fractions in the range of 10% to 20% are

found in fibrotic tissue [21]. By comparing the stress-strain curves of the model to experimen-

tal data, the accurate homogenization parameters, sECM and α, can be determined.

Shear experiments

Shear tests were performed to investigate the behaviour of the model in response to more com-

plex deformation modes. A shear stress was applied to the +x face of the model, which was

constrained from movement in the x direction. To apply the shear stress to the model, we spec-

ify the component of the non-zero traction boundary condition in the y direction and set the x
and z component of the traction to 0. Meanwhile, the −x face was constrained in all directions

(Fig 2B). The shear stress was applied in three different scenarios to determine the impact of

the base material stiffness and anisotropy in the model: (1) the shear stress was applied without

activation with α = 0.05 and 0.10, (2) the shear stress was applied prior to activation of the

model, and (3) the shear stress was applied after activation of the model.

Investigation of bulk modulus and strain-energy properties

Muscle is typically considered to be isovolumetric, however, small changes in volume may

occur during muscle stretches [46], and also during long fatiguing contractions [32]. Willwa-

cher et al. [32] found that volume changes occured up 9% in the gastrocnemii during running

activities, and so to confine volume changes to this range a value for κ> 1 × 106 Pa is required.

Given the results from previous studies and lack of experimental data for the compressibility

of the ECM, the κECM was left at 1 × 106 Pa [4]. Skeletal muscle consists of 80% water [47],

which is contained in the cellular component of the muscle and makes it highly incompress-

ible. Therefore, κcell was varied in the range 1 × 106 to 1 × 108 Pa to look at the effects of the

bulk moduli on the stress-strain relationship and strain energy-density distribution. The

micro-mechanical components impact the overall stiffness of the base material component,

and these effects on the strain-energy distribution were also investigated with κcell = 1 × 107

Pa, κECM = 1 × 106 Pa, and sECM = 150. To obtain a better understanding of the physics occur-

ring in the model, the volume fractions of ECM were varied between 2% and 100%. The set up

for these tests was the same as for the tests for the stress-strain experiments with the addition

of an activation phase after the passive lengthening. This involved constraining both the posi-

tive and negative x faces of the muscle block after the muscle had been passively lengthened,

then increasing the activation in the muscle to 100%.

Results

Stress-strain results

The model qualitatively demonstrates similar stress-stretch behaviour to available experimen-

tal data. These data for skeletal muscle vary depending on the species [44, 48], so it is not useful

to compare directly to one particular set of muscle data. The stress values from the model are

the applied traction to the +x face of the block, and the stretch values are the whole muscle

stretch

lmuscle ¼
l
l0
; ð16Þ
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where l0 and l are the initial length and current length of the muscle belly, respectively. Fig 3

shows that for sECM = 150 and 250 there is a particularly good match at smaller stretch values.

Comparable material stiffness to healthy muscle occurs for α< 0.10 for sECM = 150 which is a

larger range of volume fractions compared to sECM = 250 (< 0.05). However, to better capture

the nonlinearity seen at larger strains a larger value of sECM = 250 is required. As the volume

fraction of the ECM was increased, there was an increase in stiffness that is expected with

fibrotic tissue.

Shear results

The effects of applying a shear stress to the model was demonstrated in Fig 4 with shear strain

calcated as

�shear ¼
�uy

l0
; ð17Þ

where �uy is the mean displacement in the y direction of the +x face. At small values of shear

strain, there is a linear region in the shear stress-strain relationship and only a small effect

from the variation in α (Fig 4). This shows there is more influence from the fibres for small

shear stresses. At larger strains, the stress response for the model varies with α, and the graph

becomes more nonlinear, demonstrating the nonlinearity in the base material (Fig 1A). While

the model is active, shear stress-strain relationship becomes more linear due to larger fibre

forces (Fig 4B). In Fig 4(D) and 4(E), the three dimensional mesh of the model is shown at

100% activation. The largest dilations occur in the corners of the model which experience the

most stretching during the shear. Fig 4(D) shows the model during a fixed-length contraction

after a shear stress has been applied. The deformation and dilation are smaller, compared to

Fig 4(E), where the model has been first activated then sheared.

Fig 3. Comparison of model results to experimental data. Comparison of model passive stress-stretch curves to experimental data for skeletal muscle.

(A) Gives the model with a parameter of sECM = 150, while (B) is the model with a parameter of sECM = 250. α was varied between 0.02—0.20, which

corresponds to 2—20% volume fraction of ECM. The grey lines represent experimental data from Takaza et al. [48] (circle) and Mohammadkhah et al.

[44] (dot). Error bars represent ± standard deviation when available.

https://doi.org/10.1371/journal.pone.0249601.g003
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Volumetric effects

Variation in the bulk modulus of the cellular component shows small effects on the normal

stress-strain (Fig 5) and shear stress-strain (Fig 4(C)) relationships. The largest variations in

Fig 4. Shear properties. Plot of the shear stress-strain relationship for α = 0.05, 0.10 and sECM = 250, while the muscle is passive (A) and active (B). (C)

Shear stress-strain relationship for bulk moduli of 1 × 106, 1 × 107, and 1 × 108 Pa. Wire mesh of muscle model after shear stress was applied then model

was activated (D), and after first activation then application of shear stress (E). (D,E) Color represents the dilation seen in the muscle model. (C) Shear

stress-strain relationship for bulk moduli of 1 × 106, 1 × 107, and 1 × 108 Pa.

https://doi.org/10.1371/journal.pone.0249601.g004

Fig 5. Volumetric impact on stress-strain relationship. Stress-strain relationship with κcell = 1 × 106, 1 × 107, 1 × 108 Pa. Stress was applied in the

longitudinal direction on the +x face of the muscle model. Increasing values of the bulk moduli result in a stiffer material.

https://doi.org/10.1371/journal.pone.0249601.g005

PLOS ONE Modelling micro-mechanical contributions to muscle mechanics

PLOS ONE | https://doi.org/10.1371/journal.pone.0249601 April 2, 2021 11 / 20

https://doi.org/10.1371/journal.pone.0249601.g004
https://doi.org/10.1371/journal.pone.0249601.g005
https://doi.org/10.1371/journal.pone.0249601


the stress-strain relationships were observed between κcell = 1 × 106 Pa and 1 × 107 Pa whereas

smaller variations between the relationships were seen at larger κcell. Table 2 gives the volume

changes and normalized stresses on the +x face of the muscle during the normal stress-strain

experiment, where the change in volume was calculated as the ratio between the current vol-

ume and initial volume. The volume in its new configuration was calculated as

Vol ¼
Z

V0

detðFÞdV0; ð18Þ

where V0 is the initial configuration of the muscle. At larger bulk moduli smaller changes in

volume were seen at maximal activation, for κcell = 1 × 108 Pa the change in volume was con-

siderably smaller at 0.1% change in volume compared to the 7.3% change in volume seen for

κcell = 1 × 106 Pa. While the changes in volume varied substantially, the effect on the total mus-

cle force was small (Table 2).

Changes in the κ of the muscle material also had an impact on the strain energy-density dis-

tribution of the model. The strain energy-density calculations were performed as in Wakeling

et al. [34]. There was very little change to many of the energy components, in particular, the

isochoric components of the energies for the passive lengthening periods of the experiments

(Fig 6). There was only a substantial effect to the strain energy-densities in the volumetric

component where the energy decreases with increasing bulk moduli. Large effects were seen

during activation on the volumetric component with activation increasing the volumetric

energy for some values of κcell (1 × 106 Pa) and decreasing the energy for others (κcell = 1 × 107,

1 × 108 Pa). Overall, the total internal energy remains largely unchanged by the value of κcell.

Micro-mechanical impacts on the strain-energy distribution

Fig 7 shows the impact of varying the volume fraction of ECM in the ranges 2-100% on the

strain energy-density distribution during a passive lengthening test and fixed-end contraction.

As the volume fraction of the ECM becomes larger the muscle becomes stiffer, smaller strains

are reached and less deformation occurs, which then results in smaller magnitudes of energy

potentials. The volumetric component of the energy decreases as the stiffness in the material

decreases, while the opposite behaviour occurs for each of the other components in the mate-

rial. Additionally, similar effects are seen during activation to the results in Fig 6, where there

is increasing volumetric energy for positive volumetric strain-energies and decreasing volu-

metric energy for negative volumetric strain-energies. In contrast to variations in the bulk

moduli (Fig 6), the total internal energy in the model is affected more by variations in the vol-

ume fraction of ECM.

Table 2. Total volume change and normalized stress on the +x face of the muscle after passive lengthening to a

stress of 1 × 105 Pa and fixed length contraction to an activation of 100%. The stress was normalized to σ0. These val-

ues are measured with homogenization parameters of α = 0.05 and sECM = 250.

κcell (Pa) Volume Change (%) Normalized Stress at 100% Activation

1 × 106 7.3 0.875

1 × 107 0.8 0.907

1 × 108 0.1 0.912

https://doi.org/10.1371/journal.pone.0249601.t002
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Discussion

Micro-mechanical properties

The approach taken in this study develops a base material for whole muscle based on the prin-

ciple micro-mechanical components. This aggregate base material is implemented into a con-

tinuum mechanical model developed in previous studies [4, 34]. This homogenized base

Fig 6. Strain energy-density with varying κcell. Plots of passive fibre, base material, isochoric, volumetric, and total internal strain energy-densities.

The energies are plotted over a passive lengthening period, up to a traction of 1 × 105 Pa, from timestep 3 to 13, and a linearly increasing fixed-length

activation from timestep 13 to 23. κcell is varied between values 1 × 106 Pa, 1 × 107 Pa, and 1 × 108 Pa. The larger values of κcell demonstrate increasing

incompressibility and approach the bulk moduli of water (2.15 × 109 Pa [49]), which is considered to be almost completely incompressible. The total

internal strain energy-density is the combination of the volumetric, isochoric, and activation (not shown in figure) energies.

https://doi.org/10.1371/journal.pone.0249601.g006
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material showed a good comparison to the experimental data from Takaza et al. [48] and

Mohammadkhah et al. [44], with which it was developed. The sECM parameter was varied to

account for uncertainty in the experimental data calculation, however, with improved experi-

mental techniques alteration of sECM may not be required. As described previously, the larger

values of sECM result in larger nonlinearity in the stress-strain curves for the muscle tissue.

This implies the ECM component of the model is largely responsible (along with the

Fig 7. Strain energy-density with varying ECM volume fraction. Plots of passive fibre, base material, isochoric, volumetric, and total internal strain

energy-densities. The energies are plotted over a passive lengthening period, up to a traction of 1 × 105 Pa, from timestep 3 to 13, and a linearly

increasing fixed-length activation from timestep 13 to 23. Volume fractions of the ECM are varied between 2%, 25%, 50%, 75%, and 100% to investigate

the physics of the model.

https://doi.org/10.1371/journal.pone.0249601.g007
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anisotropic component) for the nonlinear effects seen in the model, which agrees with experi-

mental data [18, 28]. Binder-Markey et al. [20] found that the ECM volume fractions for vari-

ous skeletal muscles were typically less than 10%, and for some muscles (eg.

Semimembranosus) the volume fractions were less than 2%. Therefore, the volume fractions

less than 10% in Fig 3(A) and less than 5% in Fig 3(B) are reasonable ranges when compared

to the experimental data for healthy muscle.

While other models have considered an explicit anisotropic ECM [15–17], in the model

developed here these effects are accounted for in the one dimensional along-fibre component.

Nevertheless, accurate stress-strain mechanics result from the model (Fig 3). A unique compo-

nent of this model is the use of a nonlinear cellular component derived from brain grey matter.

The cellular component of muscle is difficult to measure experimentally, and grey matter pro-

vided a good substitute. It demonstrated similar isotropic effects and structure to the cellular

component of muscle, and therefore provided good experimental data for the model. Some

homogenization methods have considered a linear titin response for the cellular contribution

[15, 17], which may not elicit an isotropic response in muscle, or a response derived through a

ratio between the fibre and ECM stiffness to ensure they are of the same order of magnitude

[15]. Here the model is developed using a different implementation of the cellular component

(brain grey matter), and has resulted in realistic behaviour when compared to skeletal muscle

(Fig 3). Additionally, when a shear stress was applied to the model, the material is able to cap-

ture most typical shear behaviour seen in muscle [15, 50]. At small strains there is a linear rela-

tionship and little effect from variations in the base material stiffness. At larger strains, there is

more nonlinearity in the shear stress-strain relationship and more effect from the base material

properties. This demonstrates the nonlinearity in the base material, and is qualitatively similar

to the shear results in other muscle models [15]. The order of magnitude of the shear stress is

on the same order of magnitude as that of the normal stress, which agrees with the previous

findings [50].

Volumetric and strain-energy effects

Skeletal muscles are often viewed as nearly incompressible materials [51], however, volume

changes that may occur have often been within the error of the measurement device [46] and

recent studies have reported volume changes for long fatiguing contractions [32]. Therefore,

the volumetric properties of the model were manipulated to determine the effects of varying

the bulk moduli in nearly incompressible materials. Fig 5 demonstrates that variations in the

bulk moduli have little effect on the overall stress-strain relationship during passive tests, par-

ticularly in the physiological range that muscles typically operate over λmuscle < 1.1 [52], which

agrees with previous results [53, 54]. This demonstrates that when considering the mechanical

behaviour the model there is little dependence on the bulk moduli assuming it is nearly incom-

pressible. [34] suggested that the isochoric and volumetric components of the strain-energy

can play a critical role in understanding muscle mechanics on a three dimensional level. When

considering the distribution of the strain energy-densities there is an effect from the bulk mod-

uli of the material. The total potential energy in the system, including the energy from activa-

tion and external work on the material, is balanced during the quasi-static simulation ran in

this study. As the material became more incompressible, the volumetric strain energy-density

decreases counteracting the increase in energy seen in the isochoric component of the total

strain-energy. The increases in isochoric strain-energy occured due to increased strain during

the passive lengthening phase. These impacts on the energies are likely due to a greater ener-

getic penalty associated with volume change. The isochoric components of the strain energy-

density distribution (passive fibre and base material) appear nearly unaffected, which can be
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explained by the difference in magnitudes of the strain-energy. However, the distribution of

the strain energy-densities was impacted by the choice of bulk moduli, which contributed to

the energy balance in muscle and the ability to resist volume change. The total contractile

force produced by the muscle during the fixed-end contraction was not strongly impacted by

the bulk moduli (Table 2). The main effect from increasing the bulk moduli was in the

decreased ability of the material to change volume.

Investigation of the strain-energy distribution in the muscle model allows for an under-

standing of muscle behaviour during deformation and contraction. Fig 7 shows that as the

muscle is pulled to a traction of 1 × 105 Pa there is a strong energy dependence on the stiffness

of the material. The results show that there is larger internal energy developed by the material

with lower stiffness (2% ECM), which is expected given that compliant tissue will have a larger

strain. Interestingly, there are negative volumetric strain energy-densities that appear during

passive lengthening and activation. This is due to the calculation of the strain energy-densities,

which are calculated with respect to the initial configuration in which the energy is assumed to

be zero for all the components. Therefore, negative values are expected for the balance of the

energies. The increasing activation in the muscle had a relatively small impact on the passive

fibre and base material energies (Fig 7), likely due to the constraints imposed during fixed-

length activation restricting movement of the ±x faces of the geometries. Large variations

occur in the volumetric and isochoric energies in Fig 7, and are partly due to the difference in

bulk moduli of the micro-mechanical components (similarly to Fig 6). Although, the stiffness

of the material does play a significant role in increasing the variation in energy for varying vol-

ume fractions. By investigating the effects of the strain energy-density distributions, an under-

standing of how the stiffness of the material, which can be altered through the homogenized

model, impacts the energy lost or gained through a three dimensional muscle architecture. In

this case the increase in stiffness of the material was shown to increase the volumetric energies

and hence reduce the ability of a muscle to deform or bulge during contraction. This in turn

gives an understanding of how the combination of the microscopic composition and macro-

scopic deformation of the muscle impact the distribution of strain energy-densities, which

demonstrates the critical role these material properties play in contributing to the force pro-

duced by skeletal muscle. The micro-mechanical parameters demonstrated a strong impact on

muscle mechanics, while κcell had a strong effect on the model’s ability to change volume, the

volume fraction of the ECM, α, was particularly important in altering the strain energy-density

distribution.

Applications

Homogenization models are used to analyze the impacts of the variation of micro-mechanical

components, and have the ability to investigate the effects from many conditions such as fibro-

sis. Fibrosis is the increase in collagen content in the muscle as the result of diseases such as

cerebral palsy or muscular dystrophies [22, 28]. This model allows for the investigation of

these effects by altering the volume fraction of the ECM. Fig 7 shows that alterations in the vol-

ume fraction of the material have strong effects on the mechanics of the muscle, and further

investigation of varying micro-mechanical properties and the impacts on the strain energy-

density distribution could provide a deeper understanding of the effects from fibrosis. The

stiffness parameter for ECM, sECM, allows for investigation of effects such as glycination,

which is a type of biochemical linkage between a sugar and a protein or lipid. In the process of

aging, glycination occurs which increases the stiffness of the ECM [55], and these effects could

be further understood through an application of this model. The formulation of forces and

energies in the model allows for an analysis of the contribution from each of the homogenized
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components to the whole muscle mechanics. This ability to analyze the impacts from individ-

ual components is not typically found in macroscopic models, but can provide insight into the

mechanics of muscles under conditions of varying micro-mechanical properties.

Conclusion

In this paper we have developed a principled model for muscle base material, which has been

designed to easily encorporate available micro-mechanical experimental data from the litera-

ture into a macroscopic model. The characteristics of this model were then examined through

tension and activation experiments for both normal stress and shear stress experiments. The

breakdown of the strain energy-densities associated with passive lengthening and activation

were analyzed under the effects of micro-mechanical components, and these components

were found to have an effect on the distribution of these energies. This numerical model has

the potential for gaining a deeper understanding on the effects of changes to the tissue micro-

structure and composition on the three dimensional mechanics of muscle contraction.
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